1
|
Johanssen VA, Ruan JL, Vince O, Thomas A, Peeters S, Soto MS, Buck J, Gray M, Stride E, Sibson NR. Targeted opening of the blood-brain barrier using VCAM-1 functionalised microbubbles and "whole brain" ultrasound. Theranostics 2024; 14:4076-4089. [PMID: 38994029 PMCID: PMC11234285 DOI: 10.7150/thno.93172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/26/2024] [Indexed: 07/13/2024] Open
Abstract
Metastatic tumours in the brain now represent one of the leading causes of death from cancer. Current treatments are largely ineffective owing to the combination of late diagnosis and poor delivery of therapies across the blood-brain barrier (BBB). Conjugating magnetic resonance imaging (MRI) contrast agents with a monoclonal antibody for VCAM-1 (anti-VCAM1) has been shown to enable detection of micrometastases, two to three orders of magnitude smaller in volume than those currently detectable clinically. The aim of this study was to exploit this targeting approach to enable localised and temporary BBB opening at the site of early-stage metastases using functionalised microbubbles and ultrasound. Methods: Microbubbles functionalised with anti-VCAM1 were synthesised and shown to bind to VCAM-1-expressing cells in vitro. Experiments were then conducted in vivo in a unilateral breast cancer brain metastasis mouse model using Gadolinium-DTPA (Gd-DTPA) enhanced MRI to detect BBB opening. Following injection of Gd-DTPA and targeted microbubbles, the whole brain volume was simultaneously exposed to ultrasound (0.5 MHz, 10% duty cycle, 0.7 MPa peak negative pressure, 2 min treatment time). T1-weighted MRI was then performed to identify BBB opening, followed by histological confirmation via immunoglobulin G (IgG) immunohistochemistry. Results: In mice treated with targeted microbubbles and ultrasound, statistically significantly greater extravasation of Gd-DTPA and IgG was observed in the left tumour-bearing hemisphere compared to the right hemisphere 5 min after treatment. No acute adverse effects were observed. There was no investigation of longer term bioeffects owing to the nature of the study. Conclusion: The results demonstrate the feasibility of using targeted microbubbles in combination with low intensity ultrasound to localise opening of the BBB to metastatic sites in the brain. This approach has potential application in the treatment of metastatic tumours whose location cannot be established a priori with conventional imaging methods.
Collapse
Affiliation(s)
| | - Jia-Ling Ruan
- Department of Oncology, University of Oxford, Oxford, UK
| | - Oliver Vince
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK
| | - Alec Thomas
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK
| | - Sarah Peeters
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Jessica Buck
- Department of Oncology, University of Oxford, Oxford, UK
| | - Michael Gray
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Research, University of Oxford, UK
| | | |
Collapse
|
2
|
Zhao Z, Chen Y, Sun T, Jiang C. Nanomaterials for brain metastasis. J Control Release 2024; 365:833-847. [PMID: 38065414 DOI: 10.1016/j.jconrel.2023.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Tumor metastasis is a significant contributor to the mortality of cancer patients. Specifically, current conventional treatments are unable to achieve complete remission of brain metastasis. This is due to the unique pathological environment of brain metastasis, which differs significantly from peripheral metastasis. Brain metastasis is characterized by high tumor mutation rates and a complex microenvironment with immunosuppression. Additionally, the presence of blood-brain barrier (BBB)/blood tumor barrier (BTB) restricts drug leakage into the brain. Therefore, it is crucial to take account of the specific characteristics of brain metastasis when developing new therapeutic strategies. Nanomaterials offer promising opportunities for targeted therapies in treating brain metastasis. They can be tailored and customized based on specific pathological features and incorporate various treatment approaches, which makes them advantageous in advancing therapeutic strategies for brain metastasis. This review provides an overview of current clinical treatment options for patients with brain metastasis. It also explores the roles and changes that different cells within the complex microenvironment play during tumor spread. Furthermore, it highlights the use of nanomaterials in current brain treatment approaches.
Collapse
Affiliation(s)
- Zhenhao Zhao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yun Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
3
|
Lim M, Fletcher NL, Saunus JM, McCart Reed AE, Chittoory H, Simpson PT, Thurecht KJ, Lakhani SR. Targeted Hyperbranched Nanoparticles for Delivery of Doxorubicin in Breast Cancer Brain Metastasis. Mol Pharm 2023; 20:6169-6183. [PMID: 37970806 PMCID: PMC10699306 DOI: 10.1021/acs.molpharmaceut.3c00558] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Breast cancer brain metastases (BM) are associated with a dismal prognosis and very limited treatment options. Standard chemotherapy is challenging in BM patients because the high dosage required for an effective outcome causes unacceptable systemic toxicities, a consequence of poor brain penetration, and a short physiological half-life. Nanomedicines have the potential to circumvent off-target toxicities and factors limiting the efficacy of conventional chemotherapy. The HER3 receptor is commonly expressed in breast cancer BM. Here, we investigate the use of hyperbranched polymers (HBP) functionalized with a HER3 bispecific-antibody fragment for cancer cell-specific targeting and pH-responsive release of doxorubicin (DOX) to selectively deliver and treat BM. We demonstrated that DOX-release from the HBP carrier was controlled, gradual, and greater in endosomal acidic conditions (pH 5.5) relative to physiologic pH (pH 7.4). We showed that the HER3-targeted HBP with DOX payload was HER3-specific and induced cytotoxicity in BT474 breast cancer cells (IC50: 17.6 μg/mL). Therapeutic testing in a BM mouse model showed that HER3-targeted HBP with DOX payload impacted tumor proliferation, reduced tumor size, and prolonged overall survival. HER3-targeted HBP level detected in ex vivo brain samples was 14-fold more than untargeted-HBP. The HBP treatments were well tolerated, with less cardiac and oocyte toxicity compared to free DOX. Taken together, our HER3-targeted HBP nanomedicine has the potential to deliver chemotherapy to BM while reducing chemotherapy-associated toxicities.
Collapse
Affiliation(s)
- Malcolm Lim
- UQ
Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Herston, Queensland 4006, Australia
| | - Nicholas L. Fletcher
- Centre
for Advanced Imaging, The University of
Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
- Australian
Research Council Training Centre for Innovation in Biomedical Imaging
Technology, The University of Queensland,
Brisbane, St. Lucia, Queensland 4072, Australia
- Australian
Research Council Centre of Excellence in Convergent Bio-Nano Science
and Technology, The University of Queensland,
Brisbane, St. Lucia, Queensland 4072, Australia
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
| | - Jodi M. Saunus
- UQ
Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Herston, Queensland 4006, Australia
| | - Amy E. McCart Reed
- UQ
Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Herston, Queensland 4006, Australia
| | - Haarika Chittoory
- UQ
Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Herston, Queensland 4006, Australia
| | - Peter T. Simpson
- UQ
Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Herston, Queensland 4006, Australia
| | - Kristofer J. Thurecht
- Centre
for Advanced Imaging, The University of
Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
- Australian
Research Council Training Centre for Innovation in Biomedical Imaging
Technology, The University of Queensland,
Brisbane, St. Lucia, Queensland 4072, Australia
- Australian
Research Council Centre of Excellence in Convergent Bio-Nano Science
and Technology, The University of Queensland,
Brisbane, St. Lucia, Queensland 4072, Australia
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
| | - Sunil R. Lakhani
- UQ
Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Herston, Queensland 4006, Australia
- Pathology
Queensland, Royal Brisbane and Women’s
Hospital, Herston, Queensland 4006, Australia
| |
Collapse
|
4
|
Cuschieri A, Borg M, Levinskaia E, Zammit C. LITT for biopsy proven radiation necrosis: A qualitative systematic review. J Clin Neurosci 2023; 116:69-78. [PMID: 37639807 DOI: 10.1016/j.jocn.2023.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION With the widespread use of stereotactic radiosurgery (SRS), post-radiation treatment effects (PTREs) are increasing in prevalence. Radiation necrosis (RN) is a serious PTRE which carries a poor prognosis. Since 2012, laser interstitial thermal therapy (LITT) has been used to treat RN. However, reviews have attempting to generalise the efficacy of LITT against biopsy-proven RN are limited. In this systematic review, patient demographic characteristics and post-LITT clinical outcomes are characterised. METHODS A systematic literature search was conducted in four major databases for cohort studies and case reports published between 2012 and 2022, following the PRISMA 2020 checklist. Data was extracted and descriptively analysed. Quality of reporting was assessed using the PROCESS criteria and reporting bias was evaluated using the ROBINS-I scoring system. RESULTS Eleven studies met our inclusion criteria, with an overall moderate risk of reporting bias being observed. Mean pre-LITT target lesion volume was 6.75 cm3, and was independent of gender, time since SRS, age and number of interventions prior to LITT. DISCUSSION AND CONCLUSION LITT is a versatile treatment option which may be used to treat a vast range of patients with refractory biopsy-proven RN. However, neurosurgeons should exercise caution when selecting patients for LITT due to insufficient data on the treatment's efficacy against biopsy-proven RN. This warrants further studies to unequivocally determine the safety and clinical outcomes.
Collapse
Affiliation(s)
- Andrea Cuschieri
- Faculty of Medicine and Surgery, University of Malta, Imsida MSD2080, Malta.
| | - Mariah Borg
- Faculty of Medicine and Surgery, University of Malta, Imsida MSD2080, Malta
| | | | - Christian Zammit
- Faculty of Medicine and Surgery, University of Malta, Imsida MSD2080, Malta
| |
Collapse
|
5
|
Dual Targeting of EGFR and MTOR Pathways Inhibits Glioblastoma Growth by Modulating the Tumor Microenvironment. Cells 2023; 12:cells12040547. [PMID: 36831214 PMCID: PMC9954001 DOI: 10.3390/cells12040547] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/10/2023] Open
Abstract
Glioblastoma's (GBM) aggressive growth is driven by redundant activation of a myriad of signaling pathways and genomic alterations in tyrosine kinase receptors, such as epidermal growth factor receptor (EGFR), which is altered in over 50% of cases. Single agents targeting EGFR have not proven effective against GBM. In this study, we aimed to identify an effective anti-tumor regimen using pharmacogenomic testing of patient-derived GBM samples, in culture and in vivo. High-throughput pharmacological screens of ten EGFR-driven GBM samples identified the combination of erlotinib (EGFRi) and MLN0128 (a mammalian target of rapamycin inhibitor, or MTORi) as the most effective at inhibiting tumor cell viability. The anti-tumor activity of erlonitib+MLN0128 was synergistic and produced inhibition of the p-EGFR, mitogen-activated protein kinase (MAPK), and Phosphoinositide 3-kinase (PI3K) pathways in culture. Using an orthotopic murine model of GBM, we show that erlotinib+MLN0128 inhibited tumor growth in vivo and significantly prolonged the survival of tumor-bearing mice. Expression profiling of tumor tissues from treated mice revealed a unique gene signature induced by erlotinib+MLN0128, consisting of downregulation of immunosuppressive chemokines in the tumor microenvironment, including C-C motif chemokine ligand 2 (CCL2) and periostin. Lower periostin levels resulted in the inhibition of Iba1+ (tumor-promoting) macrophage infiltration of GBM xenografts. Taken together, our results demonstrate that pharmacological co-targeting of EGFR and MTOR using clinically available drugs represents an effective treatment paradigm for EGFR-driven GBMs, acting both by inhibiting tumor cell growth and modulating the immune tumor microenvironment.
Collapse
|
6
|
|
7
|
Kalita-de Croft P, Joshi V, Saunus JM, Lakhani SR. Emerging Biomarkers for Diagnosis, Prevention and Treatment of Brain Metastases-From Biology to Clinical Utility. Diseases 2022; 10:11. [PMID: 35225863 PMCID: PMC8884016 DOI: 10.3390/diseases10010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022] Open
Abstract
Primary malignancies of the lung, skin (melanoma), and breast have higher propensity for metastatic spread to the brain. Advances in molecular tumour profiling have aided the development of targeted therapies, stereotactic radiotherapy, and immunotherapy, which have led to some improvement in patient outcomes; however, the overall prognosis remains poor. Continued research to identify new prognostic and predictive biomarkers is necessary to further impact patient outcomes, as this will enable better risk stratification at the point of primary cancer diagnosis, earlier detection of metastatic deposits (for example, through surveillance), and more effective systemic treatments. Brain metastases exhibit considerable inter- and intratumoural heterogeneity-apart from distinct histology, treatment history and other clinical factors, the metastatic brain tumour microenvironment is incredibly variable both in terms of subclonal diversity and cellular composition. This review discusses emerging biomarkers; specifically, the biological context and potential clinical utility of tumour tissue biomarkers, circulating tumour cells, extracellular vesicles, and circulating tumour DNA.
Collapse
Affiliation(s)
- Priyakshi Kalita-de Croft
- UQ Centre for Clinical Research, The University of Queensland Faculty of Medicine, Herston, QLD 4029, Australia; (V.J.); (J.M.S.)
| | - Vaibhavi Joshi
- UQ Centre for Clinical Research, The University of Queensland Faculty of Medicine, Herston, QLD 4029, Australia; (V.J.); (J.M.S.)
| | - Jodi M. Saunus
- UQ Centre for Clinical Research, The University of Queensland Faculty of Medicine, Herston, QLD 4029, Australia; (V.J.); (J.M.S.)
| | - Sunil R. Lakhani
- UQ Centre for Clinical Research, The University of Queensland Faculty of Medicine, Herston, QLD 4029, Australia; (V.J.); (J.M.S.)
- Pathology Queensland, The Royal Brisbane and Women’s Hospital Herston, Herston, QLD 4029, Australia
| |
Collapse
|
8
|
Cavaco M, Frutos S, Oliete P, Valle J, Andreu D, Castanho MARB, Vila-Perelló M, Neves V. Conjugation of a Blood Brain Barrier Peptide Shuttle to an Fc Domain for Brain Delivery of Therapeutic Biomolecules. ACS Med Chem Lett 2021; 12:1663-1668. [PMID: 36060671 PMCID: PMC9437899 DOI: 10.1021/acsmedchemlett.1c00225] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The frequency of brain disease has increased significantly in the past years. After diagnosis, therapeutic options are usually limited, which demands the development of innovative therapeutic strategies. The use of antibody-drug conjugates (ADCs) is promising but highly limited by the existence of the blood-brain barrier (BBB). To overcome the impermeability of this barrier, antibody fragments can be engineered and conjugated to BBB peptide shuttles (BBBpS), which are capable of brain penetration. Herein, we linked the highly efficient BBBpS, PepH3, to the IgG fragment crystallizable (Fc) domain using the streamlined expressed protein ligation (SEPL) method. With this strategy, we obtained an Fc-PepH3 scaffold that can carry different payloads. Fc-PepH3 was shown to be nontoxic, capable of crossing an in vitro cellular BBB model, and able to bind to the neonatal Fc receptor (FcRn), which is responsible for antibody long half-life (t 1/2). Overall, we demonstrated the potential of Fc-PepH3 as a versatile platform readily adaptable to diverse drugs of therapeutic value to treat different brain conditions.
Collapse
Affiliation(s)
- Marco Cavaco
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof Egas Moniz, 1649-028 Lisboa, Portugal
- Proteomics
and Protein Chemistry Unit, Department of Experimental and Health
Sciences, Pompeu Fabra University, Dr. Aiguader 88, Barcelona Biomedical
Research Park, 08003 Barcelona, Spain
| | - Silvia Frutos
- SpliceBio
S.L., Baldiri Reixac
10-12, 08028 Barcelona, Spain
| | - Paula Oliete
- SpliceBio
S.L., Baldiri Reixac
10-12, 08028 Barcelona, Spain
| | - Javier Valle
- Proteomics
and Protein Chemistry Unit, Department of Experimental and Health
Sciences, Pompeu Fabra University, Dr. Aiguader 88, Barcelona Biomedical
Research Park, 08003 Barcelona, Spain
| | - David Andreu
- Proteomics
and Protein Chemistry Unit, Department of Experimental and Health
Sciences, Pompeu Fabra University, Dr. Aiguader 88, Barcelona Biomedical
Research Park, 08003 Barcelona, Spain
| | - Miguel A. R. B. Castanho
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof Egas Moniz, 1649-028 Lisboa, Portugal
| | | | - Vera Neves
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
9
|
Pozzi S, Scomparin A, Israeli Dangoor S, Rodriguez Ajamil D, Ofek P, Neufeld L, Krivitsky A, Vaskovich-Koubi D, Kleiner R, Dey P, Koshrovski-Michael S, Reisman N, Satchi-Fainaro R. Meet me halfway: Are in vitro 3D cancer models on the way to replace in vivo models for nanomedicine development? Adv Drug Deliv Rev 2021; 175:113760. [PMID: 33838208 DOI: 10.1016/j.addr.2021.04.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/24/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022]
Abstract
The complexity and diversity of the biochemical processes that occur during tumorigenesis and metastasis are frequently over-simplified in the traditional in vitro cell cultures. Two-dimensional cultures limit researchers' experimental observations and frequently give rise to misleading and contradictory results. Therefore, in order to overcome the limitations of in vitro studies and bridge the translational gap to in vivo applications, 3D models of cancer were developed in the last decades. The three dimensions of the tumor, including its cellular and extracellular microenvironment, are recreated by combining co-cultures of cancer and stromal cells in 3D hydrogel-based growth factors-inclusive scaffolds. More complex 3D cultures, containing functional blood vasculature, can integrate in the system external stimuli (e.g. oxygen and nutrient deprivation, cytokines, growth factors) along with drugs, or other therapeutic compounds. In this scenario, cell signaling pathways, metastatic cascade steps, cell differentiation and self-renewal, tumor-microenvironment interactions, and precision and personalized medicine, are among the wide range of biological applications that can be studied. Here, we discuss a broad variety of strategies exploited by scientists to create in vitro 3D cancer models that resemble as much as possible the biology and patho-physiology of in vivo tumors and predict faithfully the treatment outcome.
Collapse
Affiliation(s)
- Sabina Pozzi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Anna Scomparin
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Sahar Israeli Dangoor
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Daniel Rodriguez Ajamil
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Paula Ofek
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Lena Neufeld
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Adva Krivitsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Daniella Vaskovich-Koubi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ron Kleiner
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Pradip Dey
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shani Koshrovski-Michael
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Noa Reisman
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
10
|
Sas-Korczynska B, Rucinska M. WBRT for brain metastases from non-small cell lung cancer: for whom and when?-Contemporary point of view. J Thorac Dis 2021; 13:3246-3257. [PMID: 34164217 PMCID: PMC8182552 DOI: 10.21037/jtd-2019-rbmlc-06] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The incidence of brain metastases (BM) is estimated between 20% and 40% of patients with solid cancer. The most common cause of this failure is lung cancer, and in locally advanced non-small cell lung cancer (NSCLC) BM represent a common site of relapse in 30-55% cases. The basic criteria of therapeutic decision-making are based on the significant prognostic factors which are components of prognostic scores. The standard approach to treatment of BM from NSCLC include whole brain radiotherapy (WBRT) which is used as adjuvant modality after local therapy (surgery or stereotactic radiosurgery) or as primary treatment and it remains the primary modality of treatment for patients with multiple metastases. WBRT is also used in combination with systemic therapy. The aim of presented review of literature is trying to answer which patients with BM from NSCLC should receive WBRT and when it could be omitted. There were presented the aspects of application of WBRT in relation to (I) choice between WBRT or the best supportive care and (II) employment of WBRT in combination with local treatment modalities [surgical resection or stereotactic radio-surgery (SRS)] and/or with systemic therapy. According to data from literature we concluded that the most important factor that needs to be considered when assessing the suitability of a patient for WBRT is the patient's prognosis based on the Lung-molGPA score. WBRT should be applied in treatment of multiple BM from lung cancer in patients with favourable prognosis and in in patients with presence of EML4-ALK translocation before therapy with crizotinib. Whereas WBRT could be omitted in patients with poor prognosis and after primary SRS.
Collapse
Affiliation(s)
- Beata Sas-Korczynska
- Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland.,Department of Radiotherapy, Military Institute of Medicine, Warsaw, Poland
| | - Monika Rucinska
- Department of Radiotherapy, Military Institute of Medicine, Warsaw, Poland.,Department of Oncology, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
11
|
Nakayama J, Han Y, Kuroiwa Y, Azuma K, Yamamoto Y, Semba K. The In Vivo Selection Method in Breast Cancer Metastasis. Int J Mol Sci 2021; 22:1886. [PMID: 33672831 PMCID: PMC7918415 DOI: 10.3390/ijms22041886] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/25/2022] Open
Abstract
Metastasis is a complex event in cancer progression and causes most deaths from cancer. Repeated transplantation of metastatic cancer cells derived from transplanted murine organs can be used to select the population of highly metastatic cancer cells; this method is called as in vivo selection. The in vivo selection method and highly metastatic cancer cell lines have contributed to reveal the molecular mechanisms of cancer metastasis. Here, we present an overview of the methodology for the in vivo selection method. Recent comparative analysis of the transplantation methods for metastasis have revealed the divergence of metastasis gene signatures. Even cancer cells that metastasize to the same organ show various metastatic cascades and gene expression patterns by changing the transplantation method for the in vivo selection. These findings suggest that the selection of metastasis models for the study of metastasis gene signatures has the potential to influence research results. The study of novel gene signatures that are identified from novel highly metastatic cell lines and patient-derived xenografts (PDXs) will be helpful for understanding the novel mechanisms of metastasis.
Collapse
Affiliation(s)
- Jun Nakayama
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo 104-0045, Japan; (Y.K.); (Y.Y.)
| | - Yuxuan Han
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan; (Y.H.); (K.A.); (K.S.)
| | - Yuka Kuroiwa
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo 104-0045, Japan; (Y.K.); (Y.Y.)
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan; (Y.H.); (K.A.); (K.S.)
| | - Kazushi Azuma
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan; (Y.H.); (K.A.); (K.S.)
| | - Yusuke Yamamoto
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo 104-0045, Japan; (Y.K.); (Y.Y.)
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan; (Y.H.); (K.A.); (K.S.)
- Department of Cell Factory, Translational Research Center, Fukushima Medical University, Fukushima 960-1295, Japan
| |
Collapse
|
12
|
Brain Metastases from Uterine Cervical and Endometrial Cancer. Cancers (Basel) 2021; 13:cancers13030519. [PMID: 33572880 PMCID: PMC7866278 DOI: 10.3390/cancers13030519] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary This review investigated the prevalence, clinical characteristics, clinical presentation, diagnosis, treatment, and prognosis of patients with brain metastases from uterine cervical carcinoma (CC) and uterine endometrial carcinoma (EC). The findings of this review indicate the factors that can facilitate better treatment selection and, consequently, better outcomes in patients with CC and EC. Abstract Reports on brain metastases (BMs) from uterine cervical carcinoma (CC) and uterine endometrial carcinoma (EC) have recently increased due to the development of massive databases and improvements in diagnostic procedures. This review separately investigates the prevalence, clinical characteristics, clinical presentation, diagnosis, treatment, and prognosis of BMs from CC and uterine endometrial carcinoma EC. For patients with CC, early-stage disease and poorly differentiated carcinoma lead to BMs, and elderly age, poor performance status, and multiple BMs are listed as poor prognostic factors. Advanced-stage disease and high-grade carcinoma are high-risk factors for BMs from EC, and multiple metastases and extracranial metastases, or unimodal therapies, are possibly factors indicating poor prognosis. There is no “most effective” therapy that has gained consensus for the treatment of BMs. Treatment decisions are based on clinical status, number of the metastases, tumor size, and metastases at distant organs. Surgical resection followed by adjuvant radiotherapy appears to be the best treatment approach to date. Stereotactic ablative radiation therapy has been increasingly associated with good outcomes in preserving cognitive functions. Despite treatment, patients died within 1 year after the BM diagnosis. BMs from uterine cancer remain quite rare, and the current evidence is limited; thus, further studies are needed.
Collapse
|
13
|
Seiler A, Sood AK, Jenewein J, Fagundes CP. Can stress promote the pathophysiology of brain metastases? A critical review of biobehavioral mechanisms. Brain Behav Immun 2020; 87:860-880. [PMID: 31881262 DOI: 10.1016/j.bbi.2019.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 12/15/2019] [Accepted: 12/20/2019] [Indexed: 01/20/2023] Open
Abstract
Chronic stress can promote tumor growth and progression through immunosuppressive effects and bi-directional interactions between tumor cells and their microenvironment. β-Adrenergic receptor signaling plays a critical role in mediating stress-related effects on tumor progression. Stress-related mechanisms that modulate the dissemination of tumor cells to the brain have received scant attention. Brain metastases are highly resistant to chemotherapy and contribute considerably to morbidity and mortality in various cancers, occurring in up to 20% of patients in some cancer types. Understanding the mechanisms promoting brain metastasis could help to identify interventions that improve disease outcomes. In this review, we discuss biobehavioral, sympathetic, neuroendocrine, and immunological mechanisms by which chronic stress can impact tumor progression and metastatic dissemination to the brain. The critical role of the inflammatory tumor microenvironment in tumor progression and metastatic dissemination to the brain, and its association with stress pathways are delineated. We also discuss translational implications for biobehavioral and pharmacological interventions.
Collapse
Affiliation(s)
- Annina Seiler
- Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Josef Jenewein
- Clinic Zugersee, Center for Psychiatry and Psychotherapy, Oberwil-Zug, Switzerland
| | - Christopher P Fagundes
- Department of Psychology, Rice University, Houston, TX, United States; Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
14
|
Characterization of Brain Metastases in Urothelial Cancers. Clin Genitourin Cancer 2020; 18:e679-e683. [PMID: 32359862 DOI: 10.1016/j.clgc.2020.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 11/23/2022]
|
15
|
Kalita-de Croft P, Straube J, Lim M, Al-Ejeh F, Lakhani SR, Saunus JM. Proteomic Analysis of the Breast Cancer Brain Metastasis Microenvironment. Int J Mol Sci 2019; 20:ijms20102524. [PMID: 31121957 PMCID: PMC6567270 DOI: 10.3390/ijms20102524] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/09/2019] [Accepted: 05/21/2019] [Indexed: 12/30/2022] Open
Abstract
Patients with brain-metastatic breast cancer face a bleak prognosis marked by morbidity and premature death. A deeper understanding of molecular interactions in the metastatic brain tumour microenvironment may inform the development of new therapeutic strategies. In this study, triple-negative MDA-MB-231 breast cancer cells or PBS (modelling traumatic brain injury) were stereotactically injected into the cerebral cortex of NOD/SCID mice to model metastatic colonization. Brain cells were isolated from five tumour-associated samples and five controls (pooled uninvolved and injured tissue) by immunoaffinity chromatography, and proteomic profiles were compared using the Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS) discovery platform. Ontology and cell type biomarker enrichment analysis of the 125 differentially abundant proteins (p < 0.05) showed the changes largely represent cellular components involved in metabolic reprogramming and cell migration (min q = 4.59 × 10-5), with high-throughput PubMed text mining indicating they have been most frequently studied in the contexts of mitochondrial dysfunction, oxidative stress and autophagy. Analysis of mouse brain cell type-specific biomarkers suggested the changes were paralleled by increased proportions of microglia, mural cells and interneurons. Finally, we orthogonally validated three of the proteins in an independent xenograft cohort, and investigated their expression in craniotomy specimens from triple-negative metastatic breast cancer patients, using a combination of standard and fluorescent multiplex immunohistochemistry. This included 3-Hydroxyisobutyryl-CoA Hydrolase (HIBCH), which is integral for gluconeogenic valine catabolism in the brain, and was strongly induced in both graft-associated brain tissue (13.5-fold by SWATH-MS; p = 7.2 × 10-4), and areas of tumour-associated, reactive gliosis in human clinical samples. HIBCH was also induced in the tumour compartment, with expression frequently localized to margins and haemorrhagic areas. These observations raise the possibility that catabolism of valine is an effective adaptation in metastatic cells able to access it, and that intermediates or products could be transferred from tumour-associated glia. Overall, our findings indicate that metabolic reprogramming dominates the proteomic landscape of graft-associated brain tissue in the intracranial MDA-MB-231 xenograft model. Brain-derived metabolic provisions could represent an exploitable dependency in breast cancer brain metastases.
Collapse
Affiliation(s)
- Priyakshi Kalita-de Croft
- Faculty of Medicine, the University of Queensland, Centre for Clinical Research, Herston 4029, QLD, Australia.
| | - Jasmin Straube
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia.
| | - Malcolm Lim
- Faculty of Medicine, the University of Queensland, Centre for Clinical Research, Herston 4029, QLD, Australia.
| | - Fares Al-Ejeh
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia.
| | - Sunil R Lakhani
- Faculty of Medicine, the University of Queensland, Centre for Clinical Research, Herston 4029, QLD, Australia.
- Pathology Queensland, The Royal Brisbane & Women's Hospital, Herston 4029, QLD, Australia.
| | - Jodi M Saunus
- Faculty of Medicine, the University of Queensland, Centre for Clinical Research, Herston 4029, QLD, Australia.
| |
Collapse
|