1
|
Goossen CJ, Kufner A, Dustin CM, Al Ghouleh I, Yuan S, Straub AC, Sembrat J, Baust JJ, Gomez D, Kračun D, Pagano PJ. Redox regulation of lung endothelial PERK, unfolded protein response (UPR) and proliferation via NOX1: Targeted inhibition as a potential therapy for PAH. Redox Biol 2025; 82:103554. [PMID: 40154102 PMCID: PMC11986987 DOI: 10.1016/j.redox.2025.103554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/07/2025] [Accepted: 02/16/2025] [Indexed: 04/01/2025] Open
Abstract
AIMS Reactive oxygen species (ROS) play an important role in the pathogenesis of pulmonary arterial hypertension (PAH) and NADPH oxidases (NOXs) as sources of ROS are implicated in the development of the disease. We previously showed that NOX isozyme 1 (NOX1)-derived ROS contributes to pulmonary vascular endothelial cell (EC) proliferation in response to PAH triggers in vitro. However, whether and how NOX1 is involved in PAH in vivo have not been explored nor has NOX1 been examined as a viable and effective therapeutic disease target. METHODS AND RESULTS Herein, infusion of mice exposed to Sugen/hypoxia (10 % O2) with a specific NOX1 inhibitor, NOXA1ds, delivered via osmotic minipumps (i.p.), significantly suppressed pathological changes in hemodynamic parameters characteristic of PAH. Furthermore, lungs of human patients with idiopathic PAH (iPAH) and exploratory RNA-seq analysis of hypoxic human pulmonary ECs, in which NOX1 was suppressed, were probed. The findings showed a clear indication of NOX1 in the promotion of both protein disulfide isomerase (PDI) and the unfolded protein response (UPR; in particular, the PERK arm of the pathway including eIF2α and ATF4) leading to proliferation. In aggregate, these results are consistent with a causal role for NOX1 in the development of mouse and human PAH and reveal a novel and mechanistic pathway by which NOX1 activates the UPR response during EC proliferation. CONCLUSION NOX1 promotes phenotypic changes in ECs that are pivotal to proliferation and PAH through activation of the UPR. Taken together, our results are consistent with selective inhibition of NOX1 as a novel modality for attenuating PAH.
Collapse
Affiliation(s)
- Christian J Goossen
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Alex Kufner
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Christopher M Dustin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Imad Al Ghouleh
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Shuai Yuan
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Adam C Straub
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - John Sembrat
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Jeffrey J Baust
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Delphine Gomez
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Damir Kračun
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Balgrist University Hospital, University of Zurich, Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.
| | - Patrick J Pagano
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
2
|
Siang S, Patel U, Chaves-Mejía M, Purslow JA, Potoyan D, Roche J. Fine-Tuning of ATF4 DNA Binding Activity by a Secondary Basic Motif Unique to the ATF-X Subfamily of bZip Transcription Factors. Biochemistry 2025; 64:1257-1265. [PMID: 39993237 PMCID: PMC11924230 DOI: 10.1021/acs.biochem.4c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
The fine-tuning of transcription factor DNA-binding activity is often governed by transient intramolecular interactions between the transactivation domain and the DNA-binding domain. An example of such interaction is found in the transcription factor ATF4, a central regulator of the Integrated Stress Response. In ATF4, dynamic coupling between the transactivation domain and the basic-leucine zipper (bZip) domain modulates the phosphorylation levels of the disordered transactivation domain by casein kinase 2. However, the structural and molecular basis of these interdomain interactions remains poorly understood. This study focuses on a secondary basic motif at the C-terminus of ATF4, which is shared exclusively with its closest paralogue, ATF5. Through a combination of solution NMR spectroscopy, fluorescence polarization assays, and long-timescale molecular simulations, we demonstrate that this secondary basic motif is the primary driver of interdomain coupling between the transactivation and bZip domains of ATF4. Moreover, this motif enhances ATF4's DNA-binding specificity via interaction with the transactivation domain while also potentially facilitating rapid DNA scanning. Our findings reveal the pivotal role of a conserved motif in establishing disorder-mediated interactions that critically modulate ATF4's DNA-binding activity.
Collapse
Affiliation(s)
- Steven Siang
- Roy
J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Urval Patel
- Roy
J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Manuela Chaves-Mejía
- Roy
J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Jeffrey A. Purslow
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Davit Potoyan
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Julien Roche
- Roy
J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
3
|
Kennedy BB, Raza M, Mirza S, Rajan AR, Oruji F, Storck MM, Lele SM, Reznicek TE, Li L, Rowley MJ, Wan S, Mohapatra BC, Band H, Band V. ECD co-operates with ERBB2 to promote tumorigenesis through upregulation of unfolded protein response and glycolysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635284. [PMID: 39975123 PMCID: PMC11838291 DOI: 10.1101/2025.01.28.635284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The ecdysoneless (ECD) mRNA and protein are overexpressed in breast cancer (BC), and its overexpression correlates with poor prognosis and short patient survival, particularly in ERBB2/HER2-positive BC. This study investigates the co-operative oncogenic mechanism of ECD and ERBB2 by deriving transgenic mice overexpressing ECD and/or ERBB2 (huHER2) in mammary epithelium under MMTV promoter, as well as human mammary immortal epithelial cell lines (hMECs) overexpressing ECD and/or ERBB2. While huHER2 Tg mice developed more homogenous solid nodular carcinomas, double transgenic mice ( ECD;huHER2 Tg) developed heterogenous and histologically aggressive mammary tumors with basal-like phenotype and epithelial mesenchymal transition (EMT) features, like ECD Tg tumors, resembling more to patient tumors. Importantly, transcriptomic profile of ECD;huHER2 Tg tumors revealed upregulation of two major oncogenic pathways, unfolded protein response (UPR) and glycolysis. Similarly, hMECs expressing both ECD and ERBB2 as compared to single gene expressing cells showed increase in oncogenic traits, and RNA-seq analysis showed a significant upregulation of glycolysis and UPR pathways. ECD is an RNA binding protein, and directly associates with three key glycolytic enzymes ( LDHA , PKM2 and HK2 ) and mRNA of a major UPR regulated gene GRP78, that results in increased mRNA stability. Lastly, we show an increase in glucose uptake and enhanced glycolytic rate in ECD+ERBB2-overexpressing cells as compared to ECD- or ERBB2-overexpressing hMECs. Taken together, our findings support a co-operative role of ECD and ERBB2 in oncogenesis by enhancing two major oncogenic pathways, UPR and glycolysis. Significance This study provides mechanistic insights that overexpression of ECD in ERBB2+ breast cancer patients correlates with shorter patient survival, by identifying direct ECD binding to mRNAs for UPR and glycolysis pathways.
Collapse
|
4
|
Famta P, Shah S, Dey B, Kumar KC, Bagasariya D, Vambhurkar G, Pandey G, Sharma A, Srinivasarao DA, Kumar R, Guru SK, Raghuvanshi RS, Srivastava S. Despicable role of epithelial-mesenchymal transition in breast cancer metastasis: Exhibiting de novo restorative regimens. CANCER PATHOGENESIS AND THERAPY 2025; 3:30-47. [PMID: 39872366 PMCID: PMC11764040 DOI: 10.1016/j.cpt.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/30/2025]
Abstract
Breast cancer (BC) is the most prevalent cancer in women globally. Anti-cancer advancements have enabled the killing of BC cells through various therapies; however, cancer relapse is still a major limitation and decreases patient survival and quality of life. Epithelial-to-mesenchymal transition (EMT) is responsible for tumor relapse in several cancers. This highly regulated event causes phenotypic, genetic, and epigenetic changes in the tumor microenvironment (TME). This review summarizes the recent advancements regarding EMT using de-differentiation and partial EMT theories. We extensively review the mechanistic pathways, TME components, and various anti-cancer adjuvant and neo-adjuvant therapies responsible for triggering EMT in BC tumors. Information regarding essential clinical studies and trials is also discussed. Furthermore, we also highlight the recent strategies targeting various EMT pathways. This review provides a holistic picture of BC biology, molecular pathways, and recent advances in therapeutic strategies.
Collapse
Affiliation(s)
- Paras Famta
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Saurabh Shah
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Biswajit Dey
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Kondasingh Charan Kumar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Deepkumar Bagasariya
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Dadi A. Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Rahul Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | | | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| |
Collapse
|
5
|
Chen H, Yu S, Zhang X, Gao Y, Wang H, Li Y, He D, Jia W. Comparative proteomics reveals that fatty acid metabolism is involved in myocardial adaptation to chronic hypoxic injury. PLoS One 2024; 19:e0305571. [PMID: 38885281 PMCID: PMC11182518 DOI: 10.1371/journal.pone.0305571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
Congenital heart disease (CHD) is the most serious form of heart disease, and chronic hypoxia is the basic physiological process underlying CHD. Some patients with CHD do not undergo surgery, and thus, they remain susceptible to chronic hypoxia, suggesting that some protective mechanism might exist in CHD patients. However, the mechanism underlying myocardial adaptation to chronic hypoxia remains unclear. Proteomics was used to identify the differentially expressed proteins in cardiomyocytes cultured under hypoxia for different durations. Western blotting assays were used to verify protein expression. A Real-Time Cell Analyzer (RTCA) was used to analyze cell growth. In this study, 3881 proteins were identified by proteomics. Subsequent bioinformatics analysis revealed that proteins were enriched in regulating oxidoreductase activity. Functional similarity cluster analyses showed that chronic hypoxia resulted in proteins enrichment in the mitochondrial metabolic pathway. Further KEGG analyses found that the proteins involved in fatty acid metabolism, the TCA cycle and oxidative phosphorylation were markedly upregulated. Moreover, knockdown of CPT1A or ECI1, which is critical for fatty acid degradation, suppressed the growth of cardiomyocytes under chronic hypoxia. The results of our study revealed that chronic hypoxia activates fatty acid metabolism to maintain the growth of cardiomyocytes.
Collapse
Affiliation(s)
- Hu Chen
- Department of Cardiothoracic Surgery, School of Clinical Medicine and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Shiran Yu
- Department of Cardiothoracic Surgery, School of Clinical Medicine and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- Department of Thoracic Surgery, The Third Affiliated Hospital of Chengdu Medical College, Pidu District People’s Hospital, Chengdu, China
| | - Xiaoyun Zhang
- Department of Cardiology, Pengzhou People’s Hospital, Pengzhou, China
| | - Yujie Gao
- Department of Stomatology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Hongqi Wang
- Department of Cardiothoracic Surgery, School of Clinical Medicine and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yuankun Li
- Department of Cardiothoracic Surgery, School of Clinical Medicine and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Dongsheng He
- Department of Cardiothoracic Surgery, School of Clinical Medicine and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Weikun Jia
- Department of Cardiothoracic Surgery, School of Clinical Medicine and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
6
|
Patel R, Alfarsi LH, El-Ansari R, Masisi BK, Erkan B, Fakroun A, Ellis IO, Rakha EA, Green AR. ATF4 as a Prognostic Marker and Modulator of Glutamine Metabolism in Oestrogen Receptor-Positive Breast Cancer. Pathobiology 2024; 91:411-421. [PMID: 38861938 PMCID: PMC11614298 DOI: 10.1159/000539564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/25/2024] [Indexed: 06/13/2024] Open
Abstract
INTRODUCTION ATF4, a stress-responsive transcription factor that upregulates adaptive genes, is a potential prognostic marker and modulator of glutamine metabolism in breast cancer. However, its exact role remains to be elucidated. METHODS ATF4 expression was evaluated at genomic and transcriptomic levels using METABRIC (n = 1,980), GeneMiner (n = 4,712), and KM-Plotter datasets. Proteomic expression was assessed via immunohistochemistry (n = 2,225) in the Nottingham Primary Breast Cancer Series. ATF4 genomic copy number (CN) variation and mRNA/protein in association with clinicopathological parameters, amino acid transporters (AATs), and patient outcome were investigated. RESULTS Genomic, transcriptomic, and proteomic overexpression of ATF4 was associated with more aggressive ER-negative tumours. ATF4 mRNA and protein expression were significantly associated with increased expression of glutamine related AATs including SLC1A5 (p < 0.01) and SLC7A11 (p < 0.02). High ATF4 and SLC1A5 protein expression was significantly associated with shorter breast cancer-specific survival (p < 0.01), especially in ER+ tumours (p < 0.01), while high ATF4 and SLC7A11 protein expression was associated with shorter survival (p < 0.01). CONCLUSION These findings suggest a complex interplay between ATF4 and AATs in breast cancer biology and underscore the potential role for ATF4 as a prognostic marker in ER+ breast cancer, offering a unique opportunity for risk stratification and personalized treatment strategies.
Collapse
Affiliation(s)
- Roshni Patel
- Nottingham Breast Cancer Research Centre, Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Lutfi H. Alfarsi
- Nottingham Breast Cancer Research Centre, Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Rokaya El-Ansari
- Nottingham Breast Cancer Research Centre, Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Brendah K. Masisi
- Nottingham Breast Cancer Research Centre, Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Busra Erkan
- Nottingham Breast Cancer Research Centre, Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Ali Fakroun
- Nottingham Breast Cancer Research Centre, Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Ian O. Ellis
- Nottingham Breast Cancer Research Centre, Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
- Cellular Pathology, Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, UK
| | - Emad A. Rakha
- Nottingham Breast Cancer Research Centre, Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
- Cellular Pathology, Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, UK
| | - Andrew R. Green
- Nottingham Breast Cancer Research Centre, Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| |
Collapse
|
7
|
Shao L, Zhu Z, Jia X, Ma Y, Dong C. A bioinformatic analysis found low expression and clinical significance of ATF4 in breast cancer. Heliyon 2024; 10:e24669. [PMID: 38312639 PMCID: PMC10835298 DOI: 10.1016/j.heliyon.2024.e24669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/06/2024] Open
Abstract
Background Activating Transcription Factor 4 (ATF4) expression exhibits differential patterns across different types of tumors. Besides, the pathogenesis of breast cancer is complex, and the exact relationship between ATF4 and ATF4 remains uncertain. Methods The analysis of ATF4 expression was conducted by utilizing The Cancer Genome Atlas (TCGA) pan-cancer data, while the gene expression profile of breast cancer was checked by the comprehensive database-Gene Expression Omnibus database. In order to gain a more comprehensive understanding of the specific cell types that exhibit ATF4 expression within the microenvironment of breast cancer, we conducted a single-cell analysis of ATF4 using two distinct datasets of human breast cancer (GSE114717 and GSE11088, respectively). The spatial distribution of ATF4 within a tissue was demonstrated based on datasets obtained from the Human Protein Atlas (HPA) and SpatialDB. The clinical prognostic significance of ATF4 was assessed by analyzing clinical survival data obtained from TCGA, GSE4830, and GSE25055 datasets. We used the R package clusterProfiler to carry out an enrichment analysis of ATF4. We assessed how ATF4 impacts the growth and movement of breast cancer cell lines. We manipulated ATF4 levels using plasmid transfection techniques. Results The expression of ATF4 was found to be suboptimal and demonstrated a significant correlation with enhanced disease-specific survival (p = 0.012) and overall survival (p = 0.032) in breast cancer as well as other malignancies. We conducted an analysis to investigate the interaction between the infiltration level of immune cells and the expression of ATF4, using samples obtained from TCGA with known immune cell infiltration scores. Furthermore, a notable positive correlation exists between the elevated expression of ATF4 and immune-related genomes, specifically those associated with chemokine as well as immunity. Subsequent examination revealed a notable augmentation in the cytodifferentiation of T cells into regulatory T (Treg) cells within tissues exhibiting elevated levels of ATF4 expression. ATF4 exhibits notable upregulation in the MDA-MB-231 cell, thereby exerting a substantial impact on cell proliferation and migration upon its knockdown. Conversely, the overexpression of ATF4 in the MCF7 Luminal A breast cancer cell line can also modulate cellular function. Conclusions Our study suggests that ATF4 helps T cells differentiate into Treg cells in breast cancer. ATF4 can represent a clinically useful biomarker to predict the overall survival rate, especially in patients with different subtypes of breast cancer. Provide certain guidance value for the development of targeted drugs or inhibitors targeting ATF4.
Collapse
Affiliation(s)
- Lujing Shao
- Department of Oncology, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Zhounan Zhu
- Department of Oncology, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Xinyan Jia
- Jinzhou Medical University, Jinzhou, Liaoning, 121000, PR China
| | - Yabin Ma
- Department of Pharmacy, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Chunyan Dong
- Department of Oncology, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Tongji University, Shanghai, 200092, PR China
| |
Collapse
|
8
|
Kosai K, Masuda T, Kitagawa A, Tobo T, Ono Y, Ando Y, Takahashi J, Haratake N, Kohno M, Takenaka T, Yoshizumi T, Mimori K. Transducin Beta-Like 2 is a Potential Driver Gene that Adapts to Endoplasmic Reticulum Stress to Promote Tumor Growth of Lung Adenocarcinoma. Ann Surg Oncol 2023; 30:7538-7548. [PMID: 37477745 DOI: 10.1245/s10434-023-13864-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress has a close relation with cancer progression. Blocking the adaptive pathway of ER stress could be an anticancer strategy. Here, we identified an ER stress-related gene, Transducin beta-like 2 (TBL2), an ER-localized type I transmembrane protein, on increased chromosome 7q as a candidate driver gene of lung adenocarcinoma (LUAD). METHODS The association between TBL2 mRNA expression and prognostic outcomes and clinicopathological factors was analyzed using The Cancer Genome Atlas (TCGA) datasets of LUAD and lung squamous cell carcinoma (LUSC). Localization of TBL2 in tumor tissues was observed by immunohistochemical staining. Gene set enrichment analysis (GSEA) was conducted using TCGA dataset. In vitro cell proliferation assays were performed using TBL2 knockdown LUAD cells, LUSC cells, and LUAD cells overexpressing TBL2. Apoptosis and ATF4 expression (ER stress marker) were evaluated by western blotting. RESULTS TBL2 was overexpressed in LUAD and LUSC cells. Multivariate analysis indicated high TBL2 mRNA expression was an independent poor prognostic factor of LUAD. GSEA revealed high TBL2 expression was positively correlated to the ER stress response in LUAD. TBL2 knockdown attenuated LUAD cell proliferation under ER stress. TBL2 inhibited apoptosis in LUAD cells under ER stress. TBL2 knockdown reduced ATF4 expression under ER stress. CONCLUSIONS TBL2 may be a novel driver gene that facilitates cell proliferation, possibly by upregulating ATF4 expression followed by adaptation to ER stress, and it is a poor prognostic biomarker of LUAD.
Collapse
Affiliation(s)
- Keisuke Kosai
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Oita, Japan
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Oita, Japan
| | - Akihiro Kitagawa
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Oita, Japan
| | - Taro Tobo
- Department of Pathology, Kyushu University Beppu Hospital, Beppu, Oita, Japan
| | - Yuya Ono
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Oita, Japan
| | - Yuki Ando
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Oita, Japan
| | - Junichi Takahashi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Oita, Japan
| | - Naoki Haratake
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Mikihiro Kohno
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Tomoyoshi Takenaka
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Oita, Japan.
| |
Collapse
|
9
|
Yang SY, Liao L, Hu SY, Deng L, Andriani L, Zhang TM, Zhang YL, Ma XY, Zhang FL, Liu YY, Li DQ. ETHE1 Accelerates Triple-Negative Breast Cancer Metastasis by Activating GCN2/eIF2α/ATF4 Signaling. Int J Mol Sci 2023; 24:14566. [PMID: 37834012 PMCID: PMC10572406 DOI: 10.3390/ijms241914566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most fatal subtype of breast cancer; however, effective treatment strategies for TNBC are lacking. Therefore, it is important to explore the mechanism of TNBC metastasis and identify its therapeutic targets. Dysregulation of ETHE1 leads to ethylmalonic encephalopathy in humans; however, the role of ETHE1 in TNBC remains elusive. Stable cell lines with ETHE1 overexpression or knockdown were constructed to explore the biological functions of ETHE1 during TNBC progression in vitro and in vivo. Mass spectrometry was used to analyze the molecular mechanism through which ETHE1 functions in TNBC progression. ETHE1 had no impact on TNBC cell proliferation and xenograft tumor growth but promoted TNBC cell migration and invasion in vitro and lung metastasis in vivo. The effect of ETHE1 on TNBC cell migratory potential was independent of its enzymatic activity. Mechanistic investigations revealed that ETHE1 interacted with eIF2α and enhanced its phosphorylation by promoting the interaction between eIF2α and GCN2. Phosphorylated eIF2α in turn upregulated the expression of ATF4, a transcriptional activator of genes involved in cell migration and tumor metastasis. Notably, inhibition of eIF2α phosphorylation through ISRIB or ATF4 knockdown partially abolished the tumor-promoting effect of ETHE1 overexpression. ETHE1 has a functional and mechanistic role in TNBC metastasis and offers a new therapeutic strategy for targeting ETHE1-propelled TNBC using ISRIB.
Collapse
Affiliation(s)
- Shao-Ying Yang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; (S.-Y.Y.); (L.L.); (S.-Y.H.); (L.D.); (T.-M.Z.)
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Y.-L.Z.); (F.-L.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Li Liao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; (S.-Y.Y.); (L.L.); (S.-Y.H.); (L.D.); (T.-M.Z.)
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Y.-L.Z.); (F.-L.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shu-Yuan Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; (S.-Y.Y.); (L.L.); (S.-Y.H.); (L.D.); (T.-M.Z.)
| | - Ling Deng
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; (S.-Y.Y.); (L.L.); (S.-Y.H.); (L.D.); (T.-M.Z.)
| | - Lisa Andriani
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China; (L.A.); (X.-Y.M.)
| | - Tai-Mei Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; (S.-Y.Y.); (L.L.); (S.-Y.H.); (L.D.); (T.-M.Z.)
| | - Yin-Ling Zhang
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Y.-L.Z.); (F.-L.Z.)
| | - Xiao-Yan Ma
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China; (L.A.); (X.-Y.M.)
| | - Fang-Lin Zhang
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Y.-L.Z.); (F.-L.Z.)
| | - Ying-Ying Liu
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China; (L.A.); (X.-Y.M.)
| | - Da-Qiang Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; (S.-Y.Y.); (L.L.); (S.-Y.H.); (L.D.); (T.-M.Z.)
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Y.-L.Z.); (F.-L.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China; (L.A.); (X.-Y.M.)
- Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
10
|
Wang SF, Tseng LM, Lee HC. Role of mitochondrial alterations in human cancer progression and cancer immunity. J Biomed Sci 2023; 30:61. [PMID: 37525297 PMCID: PMC10392014 DOI: 10.1186/s12929-023-00956-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023] Open
Abstract
Dysregulating cellular metabolism is one of the emerging cancer hallmarks. Mitochondria are essential organelles responsible for numerous physiologic processes, such as energy production, cellular metabolism, apoptosis, and calcium and redox homeostasis. Although the "Warburg effect," in which cancer cells prefer aerobic glycolysis even under normal oxygen circumstances, was proposed a century ago, how mitochondrial dysfunction contributes to cancer progression is still unclear. This review discusses recent progress in the alterations of mitochondrial DNA (mtDNA) and mitochondrial dynamics in cancer malignant progression. Moreover, we integrate the possible regulatory mechanism of mitochondrial dysfunction-mediated mitochondrial retrograde signaling pathways, including mitochondrion-derived molecules (reactive oxygen species, calcium, oncometabolites, and mtDNA) and mitochondrial stress response pathways (mitochondrial unfolded protein response and integrated stress response) in cancer progression and provide the possible therapeutic targets. Furthermore, we discuss recent findings on the role of mitochondria in the immune regulatory function of immune cells and reveal the impact of the tumor microenvironment and metabolism remodeling on cancer immunity. Targeting the mitochondria and metabolism might improve cancer immunotherapy. These findings suggest that targeting mitochondrial retrograde signaling in cancer malignancy and modulating metabolism and mitochondria in cancer immunity might be promising treatment strategies for cancer patients and provide precise and personalized medicine against cancer.
Collapse
Affiliation(s)
- Sheng-Fan Wang
- Department of Pharmacy, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou Dist., Taipei, 112, Taiwan
- School of Pharmacy, Taipei Medical University, No. 250, Wuxing St., Xinyi Dist., Taipei, 110, Taiwan
- Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei, 112, Taiwan
| | - Ling-Ming Tseng
- Division of General Surgery, Department of Surgery, Comprehensive Breast Health Center, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou Dist., Taipei, 112, Taiwan
- Department of Surgery, College of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei, 112, Taiwan
| | - Hsin-Chen Lee
- Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei, 112, Taiwan.
- Department of Pharmacy, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei, 112, Taiwan.
| |
Collapse
|
11
|
Sun S, Yi Y, Xiao ZXJ, Chen H. ER stress activates TAp73α to promote colon cancer cell apoptosis via the PERK-ATF4 pathway. J Cancer 2023; 14:1946-1955. [PMID: 37497416 PMCID: PMC10367919 DOI: 10.7150/jca.84170] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/18/2023] [Indexed: 07/28/2023] Open
Abstract
Colorectal cancer (CRC) is the fourth most diagnosed cancer worldwide. 43% of CRCs harbor p53 mutations. The tumor suppressor p53 induces cell growth arrest and/or apoptosis in response to stress, including endoplasmic reticulum (ER) stress. It has been documented that the p53 gene is mutated in more than 50% of human tumors and loses its tumor suppressor function, suggesting that ER stress-induced apoptosis might not rely on p53. In this study, we found that activation of ER stress promotes p53 null colon cancer cell apoptosis concomitant with an increased level of the TAp73α protein, a homologue of p53 in vitro and in vivo. Knockdown of TAp73α partially restores ER stress-induced apoptosis, indicating that ER stress stimulates apoptosis in a manner dependent on TAp73α, but not p53. Furthermore, we found that ER stress activates TAp73α mRNA and protein expression through PERK signalling, a branch of the unfolded protein response (UPR). Moreover, PERK promotes TAp73α expression by upregulating the expression of the transcription factor ATF4. ATF4 directly activates the transcription of TAp73α. Consistent with this finding, ATF4 knockdown inhibited PERK- or ER stress-induced TAp73α expression. Our findings reveal that ER stress activates TAp73α to promote colon cancer cell apoptosis via the PERK-ATF4 signalling. Therefore, prolonged ER stress or upregulation of TAp73α might be a therapeutic strategy for colon cancer.
Collapse
Affiliation(s)
- Shengnan Sun
- Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610064, China
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, China
| | - Yong Yi
- Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Zhi-Xiong Jim Xiao
- Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Hu Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| |
Collapse
|
12
|
Fangninou FF, Yu Z, Li Z, Guadie A, Li W, Xue L, Yin D. Metastatic effects of environmental carcinogens mediated by MAPK and UPR pathways with an in vivo Drosophila Model. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129826. [PMID: 36084456 DOI: 10.1016/j.jhazmat.2022.129826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/20/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Metastasis includes tumor invasion and migration and underlies over 90% of cancer mortality. The metastatic effects of environmental carcinogens raised serious health concerns. However, the underlying mechanisms remained poorly studied. In the present study, an in vivo RasV12/lgl-/- model of the fruitfly, Drosophila melanogaster, with an 8-day exposure was employed to explore the metastatic effects of 3,3',4,4',5-pentachlorobiphenyl (PCB126), perfluorooctanoic acid (PFOA) and cadmium chloride (CdCl2). At 1.0 mg/L, PCB126, PFOA, and CdCl2 significantly increased tumor invasion rates by 1.32-, 1.33-, and 1.29-fold of the control, respectively. They also decreased the larval body weight and locomotion behavior. Moreover, they commonly disturbed the expression levels of target genes in MAPK and UPR pathways, and their metastatic effects were significantly abolished by the addition of p38 inhibitor (SB203580), JNK inhibitor (SP600125) and IRE1 inhibitor (KIRA6). Notably, the addition of the IRE inhibitor significantly influenced sna/E-cad pathway which is essential in both p38 and JNK regulations. The results demonstrated an essential role of sna/E-cad in connecting the effects of carcinogens on UPR and MAPK regulations and the resultant metastasis.
Collapse
Affiliation(s)
- Fangnon Firmin Fangninou
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; UNEP Tongji Institute of Environment for Sustainable Development, Tongji University, Shanghai 200092, PR China
| | - Zhenyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Zhuo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Awoke Guadie
- Department of Biology, College of Natural Sciences, Arba Minch University, Arba Minch 21, Ethiopia
| | - Wenzhe Li
- College of Life Science and Technology, Tongji University, Shanghai 200092, PR China
| | - Lei Xue
- College of Life Science and Technology, Tongji University, Shanghai 200092, PR China
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| |
Collapse
|
13
|
Jürgens L, Wethmar K. The Emerging Role of uORF-Encoded uPeptides and HLA uLigands in Cellular and Tumor Biology. Cancers (Basel) 2022; 14:6031. [PMID: 36551517 PMCID: PMC9776223 DOI: 10.3390/cancers14246031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Recent technological advances have facilitated the detection of numerous non-canonical human peptides derived from regulatory regions of mRNAs, long non-coding RNAs, and other cryptic transcripts. In this review, we first give an overview of the classification of these novel peptides and summarize recent improvements in their annotation and detection by ribosome profiling, mass spectrometry, and individual experimental analysis. A large fraction of the novel peptides originates from translation at upstream open reading frames (uORFs) that are located within the transcript leader sequence of regular mRNA. In humans, uORF-encoded peptides (uPeptides) have been detected in both healthy and malignantly transformed cells and emerge as important regulators in cellular and immunological pathways. In the second part of the review, we focus on various functional implications of uPeptides. As uPeptides frequently act at the transition of translational regulation and individual peptide function, we describe the mechanistic modes of translational regulation through ribosome stalling, the involvement in cellular programs through protein interaction and complex formation, and their role within the human leukocyte antigen (HLA)-associated immunopeptidome as HLA uLigands. We delineate how malignant transformation may lead to the formation of novel uORFs, uPeptides, or HLA uLigands and explain their potential implication in tumor biology. Ultimately, we speculate on a potential use of uPeptides as peptide drugs and discuss how uPeptides and HLA uLigands may facilitate translational inhibition of oncogenic protein messages and immunotherapeutic approaches in cancer therapy.
Collapse
Affiliation(s)
| | - Klaus Wethmar
- University Hospital Münster, Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, 48149 Münster, Germany
| |
Collapse
|
14
|
Xu D, Liu Z, Liang MX, Fei YJ, Zhang W, Wu Y, Tang JH. Endoplasmic reticulum stress targeted therapy for breast cancer. Cell Commun Signal 2022; 20:174. [PMCID: PMC9639265 DOI: 10.1186/s12964-022-00964-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractRecurrence, metastasis, and drug resistance are still big challenges in breast cancer therapy. Internal and external stresses have been proven to substantially facilitate breast cancer progression through molecular and systemic mechanisms. For example, endoplasmic reticulum stress (ERS) results in activation of the unfolded protein response (UPR), which are considered an important cellular stress response. More and more reports indicate its key role in protein homeostasis and other diverse functions involved in the process of breast cancer progression. Therefore, therapies targeting the activation of ERS and its downstream signaling pathways are potentially helpful and novel tools to counteract and fight breast cancer. However, recent advances in our understanding of ERS are focused on characterizing and modulating ERS between healthy and disease states, and so little attention has been paid to studying the role and clinical application of targeting ERS in a certain cancer. In this review, we summarize the function and main mechanisms of ERS in different molecular types of breast cancer, and focus on the development of agents targeting ERS to provide new treatment strategies for breast cancer.
Collapse
|
15
|
Lee S, Osmanbeyoglu HU. Chromatin accessibility landscape and active transcription factors in primary human invasive lobular and ductal breast carcinomas. BREAST CANCER RESEARCH : BCR 2022; 24:54. [PMID: 35906698 PMCID: PMC9338552 DOI: 10.1186/s13058-022-01550-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Invasive lobular breast carcinoma (ILC), the second most prevalent histological subtype of breast cancer, exhibits unique molecular features compared with the more common invasive ductal carcinoma (IDC). While genomic and transcriptomic features of ILC and IDC have been characterized, genome-wide chromatin accessibility pattern differences between ILC and IDC remain largely unexplored. METHODS Here, we characterized tumor-intrinsic chromatin accessibility differences between ILC and IDC using primary tumors from The Cancer Genome Atlas (TCGA) breast cancer assay for transposase-accessible chromatin with sequencing (ATAC-seq) dataset. RESULTS We identified distinct patterns of genome-wide chromatin accessibility in ILC and IDC. Inferred patient-specific transcription factor (TF) motif activities revealed regulatory differences between and within ILC and IDC tumors. EGR1, RUNX3, TP63, STAT6, SOX family, and TEAD family TFs were higher in ILC, while ATF4, PBX3, SPDEF, PITX family, and FOX family TFs were higher in IDC. CONCLUSIONS This study reveals the distinct epigenomic features of ILC and IDC and the active TFs driving cancer progression that may provide valuable information on patient prognosis.
Collapse
Affiliation(s)
- Sanghoon Lee
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, USA.,UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, USA
| | - Hatice Ulku Osmanbeyoglu
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, USA. .,Department of Bioengineering, School of Engineering, University of Pittsburgh, Pittsburgh, USA. .,UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, USA. .,Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, USA.
| |
Collapse
|
16
|
Chu HS, Peterson C, Chamling X, Berlinicke C, Zack D, Jun AS, Foster J. Integrated Stress Response Regulation of Corneal Epithelial Cell Motility and Cytokine Production. Invest Ophthalmol Vis Sci 2022; 63:1. [PMID: 35802384 PMCID: PMC9279922 DOI: 10.1167/iovs.63.8.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate the effect of an active integrated stress response (ISR) on human corneal epithelial cell motility and cytokine production. Methods ISR agonists tunicamycin (TUN) and SAL003 (SAL) were used to stimulate the ISR in immortalized corneal epithelial cell lines, primary human limbal epithelial stem cells, and ex vivo human corneas. Reporter lines for ISR-associated transcription factors activating transcription factor 4 (ATF4) and XBP1 activity were generated to visualize pathway activity in response to kinase-specific agonists. Scratch assays and multiplex magnetic bead arrays were used to investigate the effects of an active ISR on scratch wounds and cytokine production. A C/EBP homologous protein (CHOP) knockout cell line was generated to investigate the effects of ISR ablation. Finally, an ISR antagonist was assayed for its ability to rescue negative phenotypic changes associated with an active ISR. Results ISR stimulation, mediated through CHOP, inhibited cell motility in both immortalized and primary human limbal epithelial cells. Scratch wounding of ex vivo corneas elicited an increase in the ISR mediators phosphorylated-eIF2α and ATF4. ISR stimulation also increased the production of vascular endothelial growth factor (VEGF) and proinflammatory cytokines. ISR ablation, through CHOP knockout or inhibition with integrated stress response inhibitor (ISRIB) rescued epithelia migration ability and reduced VEGF secretion. Conclusions We demonstrate that the ISR has dramatic effects on the ability of corneal epithelial cells to respond to wounding models and increases the production of proinflammatory and angiogenic factors. Inhibition of the ISR may provide a new therapeutic option for corneal diseases in which the ISR is implicated.
Collapse
Affiliation(s)
- Hsiao-Sang Chu
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Cornelia Peterson
- Department of Molecular and Comparative Pathology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Xitiz Chamling
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Cynthia Berlinicke
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Donald Zack
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Albert S Jun
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - James Foster
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| |
Collapse
|
17
|
Kiesel VA, Sheeley MP, Hicks EM, Andolino C, Donkin SS, Wendt MK, Hursting SD, Teegarden D. Hypoxia-Mediated ATF4 Induction Promotes Survival in Detached Conditions in Metastatic Murine Mammary Cancer Cells. Front Oncol 2022; 12:767479. [PMID: 35847893 PMCID: PMC9280133 DOI: 10.3389/fonc.2022.767479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 05/27/2022] [Indexed: 11/23/2022] Open
Abstract
Regions of hypoxia are common in solid tumors and drive changes in gene expression that increase risk of cancer metastasis. Tumor cells must respond to the stress of hypoxia by activating genes to modify cell metabolism and antioxidant response to improve survival. The goal of the current study was to determine the effect of hypoxia on cell metabolism and markers of oxidative stress in metastatic (metM-Wntlung) compared with nonmetastatic (M-Wnt) murine mammary cancer cell lines. We show that hypoxia induced a greater suppression of glutamine to glutamate conversion in metastatic cells (13% in metastatic cells compared to 7% in nonmetastatic cells). We also show that hypoxia increased expression of genes involved in antioxidant response in metastatic compared to nonmetastatic cells, including glutamate cysteine ligase catalytic and modifier subunits and malic enzyme 1. Interestingly, hypoxia increased the mRNA level of the transaminase glutamic pyruvic transaminase 2 (Gpt2, 7.7-fold) only in metM-Wntlung cells. The change in Gpt2 expression was accompanied by transcriptional (4.2-fold) and translational (6.5-fold) induction of the integrated stress response effector protein activating transcription factor 4 (ATF4). Genetic depletion ATF4 demonstrated importance of this molecule for survival of hypoxic metastatic cells in detached conditions. These findings indicate that more aggressive, metastatic cancer cells utilize hypoxia for metabolic reprogramming and induction of antioxidant defense, including activation of ATF4, for survival in detached conditions.
Collapse
Affiliation(s)
- Violet A. Kiesel
- Purdue University, Department of Nutrition Science, West Lafayette, IN, United States
| | - Madeline P. Sheeley
- Purdue University, Department of Nutrition Science, West Lafayette, IN, United States
| | - Emily M. Hicks
- Purdue University, Department of Nutrition Science, West Lafayette, IN, United States
| | - Chaylen Andolino
- Purdue University, Department of Nutrition Science, West Lafayette, IN, United States
| | - Shawn S. Donkin
- Purdue University, Department of Animal Science, West Lafayette, IN, United States
| | - Michael K. Wendt
- Purdue University, Department of Medicinal Chemistry and Molecular Pharmacology, West Lafayette, IN, United States
- Purdue University, Purdue University Center for Cancer Research, West Lafayette, IN, United States
| | - Stephen D. Hursting
- University of North Carolina at Chapel Hill, Department of Nutrition, Chapel Hill, NC, United States
- University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, United States
- University of North Carolina at Chapel Hill, Nutrition Research Institute, Kannapolis, NC, United States
| | - Dorothy Teegarden
- Purdue University, Department of Nutrition Science, West Lafayette, IN, United States
- Purdue University, Purdue University Center for Cancer Research, West Lafayette, IN, United States
| |
Collapse
|
18
|
Kristipati RR, Jose TG, Dhamodharan P, Chandrasekaran S, Arumugam M. Gene expression and network based study of colorectal adenocarcinoma reveals tankyrase, PIK3CB and cyclin G-associated kinase as potential target candidates. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Liu B, Zhang X. Metabolic Reprogramming Underlying Brain Metastasis of Breast Cancer. Front Mol Biosci 2022; 8:791927. [PMID: 35071325 PMCID: PMC8766845 DOI: 10.3389/fmolb.2021.791927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
The development of brain metastasis is a major cause of death in patients with breast cancer, characterized by rapid progression of the disease and poor prognosis, and lack of effective treatment has existed as an unresolved issue clinically. Extensive research has shown that a variety of metabolic changes associated with cellular metastasis exist in primary breast cancer or brain metastases, therefore to elucidate metabolic characteristics at each step of the metastasis cascade will provide important clues to the efficient treatment. In this review, we discuss the changes in metabolic patterns of breast cancer cells at every step of metastasis for exploring the potential therapeutic target based on metabolic reprogramming, and provide new insights on the design and development of drugs for breast cancer brain metastasis.
Collapse
Affiliation(s)
- Baoyi Liu
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, China
| | - Xin Zhang
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, China.,Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China.,Collaborative Innovation Center for Antitumor Active Substance Research and Development, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
20
|
Dai G, Yang Y, Liu S, Liu H. Hypoxic Breast Cancer Cell-Derived Exosomal SNHG1 Promotes Breast Cancer Growth and Angiogenesis via Regulating miR-216b-5p/JAK2 Axis. Cancer Manag Res 2022; 14:123-133. [PMID: 35027847 PMCID: PMC8751978 DOI: 10.2147/cmar.s327621] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/21/2021] [Indexed: 12/26/2022] Open
Abstract
Background Hypoxia is an important process that involved in the tumor microenvironment. In addition, hypoxic tumor cell-derived exosomes could promote tumor growth and angiogenesis. Thus, we aimed to investigate whether exosomes could regulate tumor development and progression under hypoxia in breast cancer. Methods The level of SNHG1 in hypoxic breast cancer cells and exosomes derived from hypoxic breast cancer cells was determined by real-time qPCR assay. Bioinformatics prediction and dual-luciferase reporter assays were used to determine the interaction between SNHG1, miR-216b-5p and JAK2. Results We found that comparing with exosomes derived from normoxia breast cancer cells, exosomes derived from hypoxic breast cancer cells could promote the proliferation, migration and angiogenesis of human umbilical vein endothelial cells (HUVECs). In addition, SNHG1 level was significantly upregulated in exosomes derived from hypoxic breast cancer cells. Moreover, exosome-mediated delivery of SNHG1 siRNA3 markedly reversed the effects of exosome-mediated delivery of SNHG1 on HUVECs. Mechanically, SNHG1 could increase the level of JAK2 by competitively binding to miR-216b-5p. Additionally, exosome-mediated delivery of SNHG1 was found to promote breast cancer growth in vivo. Conclusion Collectively, our study revealed that exosomal SNHG1 from hypoxic breast cancer cells could promote tumor angiogenesis and growth via regulating miR-216b-5p/JAK2 axis, suggesting that SNHG1 may serve as a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Gaosai Dai
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Yupeng Yang
- Department of Thyroid and Breast Surgery, Jinan Zhangqiu District Hospital of TCM, Jinan, Shandong, 250200, People’s Republic of China
| | - Shuhao Liu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Huantao Liu
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Correspondence: Huantao Liu Department of Breast Surgery, Qilu Hospital of Shandong University, Wenhuaxi Road 107, Jinan, Shandong, 250012, People’s Republic of China Email
| |
Collapse
|
21
|
Yang R, Ma M, Yu S, Li X, Zhang J, Wu S. High Expression of PAMR1 Predicts Favorable Prognosis and Inhibits Proliferation, Invasion, and Migration in Cervical Cancer. Front Oncol 2021; 11:742017. [PMID: 34671559 PMCID: PMC8521121 DOI: 10.3389/fonc.2021.742017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/13/2021] [Indexed: 12/24/2022] Open
Abstract
Peptidase domain containing associated with muscle regeneration 1 (PAMR1) is frequently lost in breast cancer samples and is considered as a tumor suppressor. The roles and mechanisms of PAMR1 in other types of cancers are still unclear. In our present study, we identified PAMR1 as an invasion-related regulator in cervical cancer. Public database and immunohistochemical (IHC) analysis showed that the expression level of PAMR1 in cervical cancer tissues was lower than that in normal cervix tissues and was negatively related to clinicopathologic features. The high expression of PAMR1 also predicted a better prognosis of cervical cancer patients. CCK8, Transwell, and wound-healing assays demonstrated that knockdown of PAMR1 facilitated the proliferation, migration, and invasion of cervical cancer cells. Additionally, gene set enrichment analysis (GSEA) showed a variety of cancer-related pathways potentially activated or suppressed by PAMR1. Moreover, we verified that PAMR1 inhibited MYC target and mTORC1 signaling pathways. In conclusion, our study revealed the suppressor role of PAMR1 in cervical cancer, providing a new insight into the molecular mechanism of cervical cancer progression.
Collapse
Affiliation(s)
- Rui Yang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingjun Ma
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sihui Yu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Li
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sufang Wu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Licari E, Sánchez-Del-Campo L, Falletta P. The two faces of the Integrated Stress Response in cancer progression and therapeutic strategies. Int J Biochem Cell Biol 2021; 139:106059. [PMID: 34400318 DOI: 10.1016/j.biocel.2021.106059] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 01/05/2023]
Abstract
In recent years considerable progress has been made in identifying the impact of mRNA translation in tumour progression. Cancer cells hijack the pre-existing translation machinery to thrive under the adverse conditions originating from intrinsic oncogenic programs, that increase their energetic demand, and from the hostile microenvironment. A key translation program frequently dysregulated in cancer is the Integrated Stress Response, that reprograms translation by attenuating global protein synthesis to decrease metabolic demand while increasing translation of specific mRNAs that support survival, migration, immune escape. In this review we provide an overview of the Integrated Stress Response, emphasise its dual role during tumorigenesis and cancer progression, and highlight the therapeutic strategies available to target it.
Collapse
Affiliation(s)
| | - Luis Sánchez-Del-Campo
- Department of Biochemistry and Molecular Biology A, School of Biology, IMIB-University of Murcia, 30100, Spain
| | - Paola Falletta
- Experimental Imaging Center, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
23
|
Ma JY, Liu Q, Liu G, Peng S, Wu G. Identification and validation of a robust autophagy-related molecular model for predicting the prognosis of breast cancer patients. Aging (Albany NY) 2021; 13:16684-16695. [PMID: 34185683 PMCID: PMC8266368 DOI: 10.18632/aging.203187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022]
Abstract
Despite a relatively low mortality rate, high recurrence rates represent a significant problem for breast cancer (BC) patients. Autophagy affects the development, progression, and prognosis of various cancers, including BC. The aim of the present study was to identify candidate autophagy-related genes (ARGs) and construct a molecular-clinicopathological signature to predict recurrence risk in BC. A 10-ARG-based signature was established in a training cohort (GEO-BC dataset GSE25066) with LASSO Cox regression and assessed in an independent validation cohort (GEO-BC GSE22219). Significant differences in recurrence-free survival were observed for high- and low-risk patients segregated based on their signature-based risk score. Time-dependent receiver operating characteristic (tdROC) analysis of signature performance demonstrated satisfactory accuracy and predictive power in both the training and validation cohorts. Moreover, we developed a nomogram to predict 3- and 5-year recurrence-free survival by combining the autophagy-related risk score and clinicopathological data. Both the tdROC and calibration curves indicated high discriminating ability for the nomogram. This study indicates that our ARG-based signature is an independent prognostic classifier for recurrence-free survival in BC. In addition, individualized survival risk assessment and treatment decisions might be effectively improved by implementing the proposed nomogram.
Collapse
Affiliation(s)
- Jian-Ying Ma
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qin Liu
- Department of Breast Surgery, Thyroid Surgery, Huangshi Central Hospital of Edong Healthcare Group, Hubei Polytechnic University, Huangshi, Hubei, China
| | - Gang Liu
- Department of Breast Surgery, Thyroid Surgery, Huangshi Central Hospital of Edong Healthcare Group, Hubei Polytechnic University, Huangshi, Hubei, China
| | - Shasha Peng
- Department of Hepatobiliary Surgery, Huangshi Central Hospital of Edong Healthcare Group, Hubei Polytechnic University, Huangshi, Hubei, China
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
24
|
Welsh M. The Felicitous Success of the Subsection Molecular Oncology of International Journal of Molecular Sciences. Int J Mol Sci 2021; 22:ijms22136939. [PMID: 34203257 PMCID: PMC8268909 DOI: 10.3390/ijms22136939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 11/25/2022] Open
Abstract
The evolvement of the newly started subsection IJMS molecular oncology is discussed. The breadth and depth of the journal articles is alluded to. A bright future for this subsection is anticipated, developing into a top tier cancer journal.
Collapse
Affiliation(s)
- Michael Welsh
- Department of Medical Cell Biology, Uppsala University, Husargatan 3, P.O. Box 571, 75123 Uppsala, Sweden
| |
Collapse
|
25
|
Effects of Water Extract of Cynanchum paniculatum (Bge.) Kitag. on Different Breast Cancer Cell Lines. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6665949. [PMID: 34122605 PMCID: PMC8172293 DOI: 10.1155/2021/6665949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/13/2021] [Accepted: 03/10/2021] [Indexed: 11/18/2022]
Abstract
Cynanchum paniculatum (Bge.) Kitag. (CP) is an important medicinal herb used in Chinese herbal medicine, with a variety of biological activities including anticancer property. In this study, we explored the water extract of CP, for its anticancer effects against breast cancer cells with different mutation types. Cells were grouped as untreated (Control); CP direct treatment (dir-CP); Conditioned medium from CP treated (sup-CP), and untreated cells (sup-Control). Effects of dir-CP and sup-CP were compared to corresponding untreated cells on cytotoxicity, cell migration, and protein expression (cleaved caspase-3, caspase-9, and MMP-2 and 9). CP treatment showed time-dependent decrease in cell number of MDA-MB-231 and SK-Br-3 (both ER(−) PR(−)), while the decrease in cell number was not as significant in MCF-7 and ZR-75-1 cells (both ER(+) PR(+)). sup-CP treatment inhibited the cell migration of MDA-MB-231 and MCF-7 (Her2(−)) in a 24 h scratch assay. Our data suggested that ER(−) PR(−) cells are more sensitive to the CP in terms of direct cytotoxicity, which is not regulated by caspase-3. CP inhibited the migration of the two Her2(−) cells, and this correlated with MMP-2 regulation. The migration of ER(−) PR(−) cells was more sensitive to conditioned medium with CP treatment than to direct CP, and this is not regulated by MMP-2. Our data suggested that CP has anticancer potential on various breast cancer cells through different mechanisms and is specifically effective in inhibiting the migration of the triple negative MDA-MB-231. Our data provide insight into the mechanism of CP against breast cancer progression and would benefit the medical practitioners in better management with CP usage.
Collapse
|
26
|
Yan Y, Cheng X, Li L, Zhang R, Zhu Y, Wu Z, Ding K. A Novel Small Molecular Antibody, HER2-Nanobody, Inhibits Tumor Proliferation in HER2-Positive Breast Cancer Cells In Vitro and In Vivo. Front Oncol 2021; 11:669393. [PMID: 34055637 PMCID: PMC8149955 DOI: 10.3389/fonc.2021.669393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/26/2021] [Indexed: 01/01/2023] Open
Abstract
Breast cancer is the most common malignant cancer in women worldwide, especially in developing countries. Herceptin is a monoclonal antibody with an antitumor effect in HER2-positive breast cancer. However, the large molecular weight of Herceptin limited its employment. In this study, we constructed and screened HER2-nanobody and verified its tumor-suppressive effect in HER2-positive breast cancer cells. HER2-nanobody was established, filtrated, purified, and was demonstrated to inhibit cell total number, viability, colony formation and mitosis, and promote cell apoptosis in HER2-positive breast cancer cells in vitro. Treated with HER2-nanobody, tumor growth was significantly inhibited by both intratumor injection and tail intravenous injection in vivo. The phosphorylation of ERK and AKT was restrained by HER2-nanobody in HER2-positive breast cancer cells. RAS-RAF-MAPK and PI3K-AKT-mTOR are two important pathways involved in HER2. It was credible for HER2-nanobody to play the tumor suppressive role by inhibiting the phosphorylation of ERK and AKT. Therefore, HER2-nanobody could be employed as a small molecular antibody to suppress HER2-positive breast cancer.
Collapse
Affiliation(s)
- Yan Yan
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China.,Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Xiao Cheng
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Lin Li
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Rumeng Zhang
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Yong Zhu
- Department of Pathophysiology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Zhengsheng Wu
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China.,Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Keshuo Ding
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China.,Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
27
|
Zhang X, Zhang H, Li J, Ma X, He Z, Liu C, Gao C, Li H, Wang X, Wu J. 6-lncRNA Assessment Model for Monitoring and Prognosis of HER2-Positive Breast Cancer: Based on Transcriptome Data. Pathol Oncol Res 2021; 27:609083. [PMID: 34257572 PMCID: PMC8262145 DOI: 10.3389/pore.2021.609083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/01/2021] [Indexed: 12/20/2022]
Abstract
Background: In view of the high malignancy and poor prognosis of human epidermal growth factor receptor 2 (HER2)-positive breast cancer, we analyzed the RNA expression profiles of HER2-positive breast cancer samples to identify the new prognostic biomarkers. Methods: The linear fitting method was used to identify the differentially expressed RNAs from the HER2-positive breast cancer RNA expression profiles in the Cancer Genome Atlas (TCGA). Then, a series of methods including univariate Cox, Kaplan-Meier, and random forests, were used to identify the core long non-coding RNAs (lncRNAs) with stable prognostic value for HER2-positive breast cancer. A clinical feature analysis was performed, and a competing endogenous RNA network was constructed to explore the role of these core lncRNAs in HER2-positive breast cancer. In addition, a functional analysis of differentially expressed messenger RNAs in HER-2 positive breast cancer also provided us with some enlightening insights. Results: The high expression of four core lncRNAs (AC010595.1, AC046168.1, AC069277.1, and AP000904.1) was associated with worse overall survival, while the low expression of LINC00528 and MIR762HG was associated with worse overall survival. The 6-lncRNA model has an especially good predictive power for overall survival (p < 0.0001) and 3-year survival (the area under the curve = 0.980) in HER2-positive breast cancer patients. Conclusion: This study provides a new efficient prognostic model and biomarkers of HER2-positive breast cancer. Meanwhile, it also provides a new perspective for elucidating the molecular mechanisms underlying HER2-positive breast cancer.
Collapse
Affiliation(s)
- Xiaoming Zhang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haiyan Zhang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Li
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoran Ma
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhengguo He
- Columbus Technical College, Columbus, GA, United States
| | - Cun Liu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chundi Gao
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huayao Li
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xue Wang
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Jibiao Wu
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
28
|
Cancer-associated fibroblasts-mediated ATF4 expression promotes malignancy and gemcitabine resistance in pancreatic cancer via the TGF-β1/SMAD2/3 pathway and ABCC1 transactivation. Cell Death Dis 2021; 12:334. [PMID: 33782384 PMCID: PMC8007632 DOI: 10.1038/s41419-021-03574-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/18/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
Cancer-associated fibroblasts (CAFs) contribute to malignant progression and chemoresistance in pancreatic ductal adenocarcinoma (PDAC). However, little is known about the underlying mechanism. In this study, we investigated the potential role and mechanisms of activating transcription factor 4 (ATF4) in CAFs-induced malignancy and gemcitabine resistance. We demonstrated that ATF4 is overexpressed in PDAC and associated with a poor prognosis. Silencing ATF4 expression decreased proliferation, colony formation, migration, gemcitabine sensitivity, and sphere formation. Subsequently, we revealed that CAFs secrete TGF-β1 to upregulate the expression of ATF4 in PDAC cells via the SMAD2/3 pathway and induce cancer progression, cancer stemness, and gemcitabine resistance. Furthermore, we demonstrated that ATF4 directly binds to the ABCC1 promoter region to activate transcription. In summary, these data demonstrate that CAFs contribute to malignancy and gemcitabine resistance in PDAC by upregulating the expression of ATF4 via the TGF-β1/SMAD2/3 axis and highlight that ATF4 is an attractive therapeutic target for combating gemcitabine resistance in PDAC.
Collapse
|
29
|
He P, Zhou C, Shen H. Diagnostic value of phosphatidylethanolamine binding protein 4 levels in patients receiving nursing interventions for advanced chronic kidney disease. J Int Med Res 2021; 49:300060521996179. [PMID: 33752499 PMCID: PMC7995466 DOI: 10.1177/0300060521996179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To explore the diagnostic role of phosphatidylethanolamine binding protein 4 (PEBP4) in patients with chronic kidney disease (CKD) receiving nursing interventions. METHODS ELISA was used to evaluate serum PEBP4 levels. Receiver-operating characteristic curve analysis was used to assess diagnostic accuracy. Spearman correlation analysis was used to assess the relationships between PEBP4 levels and biochemical indexes. RESULTS Serum PEBP4 was high in CKD patients compared with healthy individuals. PEBP4 levels were positively correlated with pathological stage in CKD patients. PEBP4 had higher sensitivity for diagnosis of CKD than common indexes including blood urea nitrogen, creatinine and C-reactive protein. Among CKD patients treated with calcium channel blockers, serum PEBP4 levels declined notably and were associated with concentrations of K+, Na+, Cl- and Ca2+. Nursing interventions significantly decreased serum PEBP4 levels. A significant association between serum PEBP4 level and ionic concentration was observed in CKD patients receiving nursing interventions. CONCLUSIONS This prospective study demonstrated that PEBP4 level might represent an effective diagnostic biomarker in CKD patients. PEBP4 also acted as a valuable care compliance factor for determining the necessity for nursing interventions. Nursing interventions restored ion channel function and subsequently resulted in decreased PEBP4 levels and proteinuria.
Collapse
Affiliation(s)
- Peipei He
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, P.R. China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province Institute of Nephrology, Zhejiang University, Zhejiang, P.R. China
| | - Congli Zhou
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Huajuan Shen
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Zhejiang, P.R. China
- People’s Hospital of Hangzhou Medical College, Zhejiang, P.R. China
| |
Collapse
|
30
|
Hinz N, Baranowsky A, Horn M, Kriegs M, Sibbertsen F, Smit DJ, Clezardin P, Lange T, Schinke T, Jücker M. Knockdown of AKT3 Activates HER2 and DDR Kinases in Bone-Seeking Breast Cancer Cells, Promotes Metastasis In Vivo and Attenuates the TGFβ/CTGF Axis. Cells 2021; 10:cells10020430. [PMID: 33670586 PMCID: PMC7922044 DOI: 10.3390/cells10020430] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Bone metastases frequently occur in breast cancer patients and lack appropriate treatment options. Hence, understanding the molecular mechanisms involved in the multistep process of breast cancer bone metastasis and tumor-induced osteolysis is of paramount interest. The serine/threonine kinase AKT plays a crucial role in breast cancer bone metastasis but the effect of individual AKT isoforms remains unclear. Therefore, AKT isoform-specific knockdowns were generated on the bone-seeking MDA-MB-231 BO subline and the effect on proliferation, migration, invasion, and chemotaxis was analyzed by live-cell imaging. Kinome profiling and Western blot analysis of the TGFβ/CTGF axis were conducted and metastasis was evaluated by intracardiac inoculation of tumor cells into NOD scid gamma (NSG) mice. MDA-MB-231 BO cells exhibited an elevated AKT3 kinase activity in vitro and responded to combined treatment with AKT- and mTOR-inhibitors. Knockdown of AKT3 significantly increased migration, invasion, and chemotaxis in vitro and metastasis to bone but did not significantly enhance osteolysis. Furthermore, knockdown of AKT3 increased the activity and phosphorylation of pro-metastatic HER2 and DDR1/2 but lowered protein levels of CTGF after TGFβ-stimulation, an axis involved in tumor-induced osteolysis. We demonstrated that AKT3 plays a crucial role in bone-seeking breast cancer cells by promoting metastatic potential without facilitating tumor-induced osteolysis.
Collapse
Affiliation(s)
- Nico Hinz
- Center for Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.H.); (F.S.); (D.J.S.)
| | - Anke Baranowsky
- Center for Experimental Medicine, Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (A.B.); (T.S.)
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Michael Horn
- University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
- Mildred Scheel Cancer Career Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Malte Kriegs
- Department of Radiotherapy & Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
- UCCH Kinomics Core Facility, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Freya Sibbertsen
- Center for Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.H.); (F.S.); (D.J.S.)
| | - Daniel J. Smit
- Center for Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.H.); (F.S.); (D.J.S.)
| | - Philippe Clezardin
- INSERM, Research Unit UMR S1033, LyOS, Faculty of Medicine Lyon-Est, University of Lyon 1, 69372 Lyon, France;
| | - Tobias Lange
- Center for Experimental Medicine, Department of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Thorsten Schinke
- Center for Experimental Medicine, Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (A.B.); (T.S.)
| | - Manfred Jücker
- Center for Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.H.); (F.S.); (D.J.S.)
- Correspondence: ; Tel.: +49-(0)-40-7410-56339
| |
Collapse
|
31
|
Wang X, Guo J, Yu P, Guo L, Mao X, Wang J, Miao S, Sun J. The roles of extracellular vesicles in the development, microenvironment, anticancer drug resistance, and therapy of head and neck squamous cell carcinoma. J Exp Clin Cancer Res 2021; 40:35. [PMID: 33478586 PMCID: PMC7819156 DOI: 10.1186/s13046-021-01840-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the main malignant tumours affecting human health, mainly due to delayed diagnosis and high invasiveness. Extracellular vehicles (EVs) are membranous vesicles released by cells into the extracellular matrix that carry important signalling molecules and stably and widely exist in various body fluids, such as plasma, saliva, cerebrospinal fluid, breast milk, urine, semen, lymphatic fluid, synovial fluid, amniotic fluid, and sputum. EVs transport almost all types of bioactive molecules (DNA, mRNAs, microRNAs (miRNAs), proteins, metabolites, and even pharmacological compounds). These "cargoes" can act on recipient cells, reshaping the surrounding microenvironment and altering distant targets, ultimately affecting their biological behaviour. The extensive exploration of EVs has deepened our comprehensive understanding of HNSCC biology. In this review, we not only summarized the effect of HNSCC-derived EVs on the tumour microenvironment but also described the role of microenvironment-derived EVs in HNSCC and discussed how the "mutual dialogue" between the tumour and microenvironment mediates the growth, metastasis, angiogenesis, immune escape, and drug resistance of tumours. Finally, the clinical application of EVS in HNSCC was assessed.
Collapse
Affiliation(s)
- Xueying Wang
- Department of Head and Neck Tumors, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, 150000, Harbin, Heilongjiang, People's Republic of China
| | - Junnan Guo
- The First Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, 150000, Harbin, Heilongjiang, People's Republic of China
| | - Pingyang Yu
- Department of Head and Neck Tumors, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, 150000, Harbin, Heilongjiang, People's Republic of China
| | - Lunhua Guo
- Department of Head and Neck Tumors, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, 150000, Harbin, Heilongjiang, People's Republic of China
| | - Xionghui Mao
- Department of Head and Neck Tumors, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, 150000, Harbin, Heilongjiang, People's Republic of China
| | - Junrong Wang
- Department of Head and Neck Tumors, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, 150000, Harbin, Heilongjiang, People's Republic of China
| | - Susheng Miao
- Department of Head and Neck Tumors, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, 150000, Harbin, Heilongjiang, People's Republic of China.
| | - Ji Sun
- Department of Head and Neck Tumors, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, 150000, Harbin, Heilongjiang, People's Republic of China.
| |
Collapse
|
32
|
Du J, Liu H, Mao X, Qin Y, Fan C. ATF4 promotes lung cancer cell proliferation and invasion partially through regulating Wnt/β-catenin signaling. Int J Med Sci 2021; 18:1442-1448. [PMID: 33628101 PMCID: PMC7893563 DOI: 10.7150/ijms.43167] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Activating transcription factor 4 (ATF4) is a member of the cAMP response element binding (CREB) protein family and has been reported to participate in cancer progression; however, its molecular mechanism is not fully understood. In this study, we investigated the function of ATF4 in non-small cell lung cancer and its molecular regulation. We detected cytoplasmic and nuclear ATF4 expression in lung cancer A549, H1299, and LK2 cells, and the total expression of ATF4 was higher than that in HBE cells (p < 0.05). Higher nuclear ATF4 expression was detected in all these cells compared to cytoplasmic ATF4 expression (p < 0.05). Overexpression of ATF4 in A549 cells significantly promoted cancer cell growth and invasion (p < 0.05). Expression of Wnt signaling molecules, including β-catenin, MMP7, and cyclin D1, and the activity of canonical Wnt signaling were also significantly promoted by ATF4 (p < 0.05). ICG001, a canonical Wnt signaling inhibitor that selectively inhibits β-catenin/ cyclic adenosine monophosphate response element binding protein (CBP) interaction, significantly inhibited cancer cell invasion and Wnt signaling. The function of ATF4 was also significantly inhibited by ICG001 (p < 0.05). However, compared to treatment with ICG001, the invasion ability of cancer cells treated with both ICG001 and ATF4 cDNA significantly increased (p < 0.05), which indicates that the function of ATF4 was not dependent only on Wnt/β-catenin signaling. The function of ATF4 in the regulation of β-catenin expression was not significantly affected by ICG001 (p > 0.05). The function of ATF4 to promote the activity of Wnt/β-catenin signaling in cancer cells was abolished by treatment with ICG001 (p > 0.05). These results indicate that ATF4 may contribute to lung cancer progression at least partly by regulating Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Jiang Du
- Department of Pathology, First affiliated hospital and College of Basic Medical Sciences of China Medical University, 110001, Shenyang, China
| | - Haifeng Liu
- Department of Pathology, First affiliated hospital and College of Basic Medical Sciences of China Medical University, 110001, Shenyang, China
| | - Xiaoyun Mao
- Department of Breast Surgery, Department of Surgical Oncology, Research Unit of General Surgery, the First Affiliated Hospital of China Medical University, 110001, Shenyang, China
| | - Yanan Qin
- Department of Pathology, First affiliated hospital and College of Basic Medical Sciences of China Medical University, 110001, Shenyang, China
| | - Chuifeng Fan
- Department of Pathology, First affiliated hospital and College of Basic Medical Sciences of China Medical University, 110001, Shenyang, China
| |
Collapse
|
33
|
Wang T, Li LY, Chen YF, Fu SW, Wu ZW, Du BB, Yang XF, Zhang WS, Hao XY, Guo TK. Ribosome assembly factor URB1 contributes to colorectal cancer proliferation through transcriptional activation of ATF4. Cancer Sci 2020; 112:101-116. [PMID: 32888357 PMCID: PMC7780016 DOI: 10.1111/cas.14643] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Ribosome assembly factor URB1 is essential for ribosome biogenesis. However, its latent role in cancer remains unclear. Analysis of The Cancer Genome Atlas database and clinical tissue microarray staining showed that URB1 expression was upregulated in colorectal cancer (CRC) and prominently related to clinicopathological characteristics. Silencing of URB1 hampered human CRC cell proliferation and growth in vitro and in vivo. Microarray screening, ingenuity pathway analysis, and JASPAR assessment indicated that activating transcription factor 4 (ATF4) and X‐box binding protein 1 (XBP1) are potential downstream targets of URB1 and could transcriptionally interact through direct binding. Silencing of URB1 significantly decreased ATF4 and cyclin A2 (CCNA2) expression in vivo and in vitro. Restoration of ATF4 effectively reversed the malignant proliferation phenotype of URB1‐silenced CRC cells. Dual‐luciferase reporter and ChIP assays indicated that XBP1 transcriptionally activated ATF4 by binding with its promoter region. X‐box binding protein 1 colocalized with ATF4 in the nuclei of RKO cells, and ATF4 mRNA expression was positively regulated by XBP1. This study shows that URB1 contributes to oncogenesis and CRC growth through XBP1‐mediated transcriptional activation of ATF4. Therefore, URB1 could be a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Tao Wang
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China.,The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Lai-Yuan Li
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Yi-Feng Chen
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Si-Wu Fu
- The School of Medical College, Northwest Minzu University, Lanzhou, China
| | - Zhi-Wei Wu
- The School of Preclinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Bin-Bin Du
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Xiong-Fei Yang
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Wei-Sheng Zhang
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Xiang-Yong Hao
- Department of General Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Tian-Kang Guo
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Department of General Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| |
Collapse
|
34
|
Autenschlyus AI, Bernado AV, Davletova KI, Arkhipov SA, Zhurakovsky IP, Mikhailova ES, Proskura AV, Bogachuk AP, Lipkin VM, Lyakhovich VV. [Proteins and immunohistochemical markers of breast diseases]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2020; 66:167-173. [PMID: 32420899 DOI: 10.18097/pbmc20206602167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this work, we have compared malignant and non-malignant diseases of the mammary gland using 8 proteins: HRG, MUC1, PAI-1, HSP90αA1, CDH1, ERα, PGR and IL-12. Their concentrations in the supernatants of blood cells and breast biopsies were compared in terms of spontaneous production, induced by a polyclonal activator and after exposure to biopsy samples of the HLDF differentiation factor, as well as the indices of the effect of the polyclonal activator and HLDF on the protein production. In addition, the correlation relationships of the above indicators with the expression of markers of the epithelial-mesenchymal transition: collagen type II (CII), β-1 integrin (CD29) and cadherin-E (CDH1) were studied. The study revealed statistically significant differences in the concentration of HRG in the supernatant of blood cells, IL-12 during spontaneous production by biopsy specimens, PGR production of biopsy specimens induced by the polyclonal activator, CDH1 and IL-12 production biopsy specimens exposed to HLDF. According to the influence index of the polyclonal activator and HLDF, statistically significant differences were found for CDH1production. Comparison of non-specific invasive carcinoma biopsy specimens and non-malignant breast diseases by means of the markers of the epithelial-mesenchymal transition revealed statistically significant differences in CD29 expression and the lack of differences in the expression of CDH1 and CII. This indicates the presence of cell atypia in samples of non-malignant breast diseases; it is confirmed by the recognized correlation between the production of certain proteins and the expression of the epithelial-mesenchymal transition markers.
Collapse
Affiliation(s)
- A I Autenschlyus
- Novosibirsk State Medical University, Novosibirsk, Russia; Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| | - A V Bernado
- Novosibirsk State Medical University, Novosibirsk, Russia
| | - K I Davletova
- Novosibirsk State Medical University, Novosibirsk, Russia
| | - S A Arkhipov
- Novosibirsk State Medical University, Novosibirsk, Russia; Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| | - I P Zhurakovsky
- Novosibirsk State Medical University, Novosibirsk, Russia; Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| | - E S Mikhailova
- Novosibirsk State Medical University, Novosibirsk, Russia; Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| | - A V Proskura
- Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| | - A P Bogachuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - V M Lipkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - V V Lyakhovich
- Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| |
Collapse
|
35
|
Jiang X, Li D, Wang G, Liu J, Su X, Yu W, Wang Y, Zhai C, Liu Y, Zhao Z. Thapsigargin promotes colorectal cancer cell migration through upregulation of lncRNA MALAT1. Oncol Rep 2020; 43:1245-1255. [PMID: 32323831 PMCID: PMC7057937 DOI: 10.3892/or.2020.7502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common tumor in the world; however, the role and mechanism of endoplasmic reticulum (ER) stress in CRC metastasis remains largely unclear. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a long non-coding RNA (lncRNA), which has previously been associated with CRC metastasis. It has been suggested that ER stress pathways regulate lncRNA expression; however, the effect of ER stress on MALAT1 expression in cancer is unknown. The present study aimed to investigate the relationship between ER stress pathways, MALAT1 expression and cell migration in CRC cells. ER stress was induced by thapsigargin (TG); low dose TG induced the migration of HT29 and HCT116 cells, but not SW1116 and SW620 cells. This effect was associated with increased expression levels of MALAT1, as the knockdown of MALAT1 prevented TG-induced cell migration. TG-induced MALAT1 expression was associated with inositol-requiring enzyme 1 (IRE1) expression and activation of the protein kinase R (PKR)-like ER kinase (PERK) signaling pathway. X-box-binding protein 1 (XBP1) and activating transcription factor 4 (ATF4) binding sites were predicted to be located in the MALAT1 gene promoter regions and the expression of MALAT1 was positively associated with XBP1 and ATF4 expression levels in CRC tissue samples. Thus, these findings indicated that ER stress may promote the migration of CRC cells and contribute to the progression of CRC through the activation of the IRE1/XBP1 and PERK/eIF2α/ATF4 signaling pathways. In conclusion, to the best of our knowledge, this study is the first report that lncRNA MALAT1 expression is regulated by the IRE1/XBP1 pathway in CRC.
Collapse
Affiliation(s)
- Xia Jiang
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Dongyun Li
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Guiqi Wang
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Jue Liu
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Xingkai Su
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Weifang Yu
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Yuanyuan Wang
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Congjie Zhai
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Yuegeng Liu
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Zengren Zhao
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| |
Collapse
|
36
|
Cho HJ, Kim JT, Baek KE, Kim BY, Lee HG. Regulation of Rho GTPases by RhoGDIs in Human Cancers. Cells 2019; 8:cells8091037. [PMID: 31492019 PMCID: PMC6769525 DOI: 10.3390/cells8091037] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
Rho GDP dissociation inhibitors (RhoGDIs) play important roles in various cellular processes, including cell migration, adhesion, and proliferation, by regulating the functions of the Rho GTPase family. Dissociation of Rho GTPases from RhoGDIs is necessary for their spatiotemporal activation and is dynamically regulated by several mechanisms, such as phosphorylation, sumoylation, and protein interaction. The expression of RhoGDIs has changed in many human cancers and become associated with the malignant phenotype, including migration, invasion, metastasis, and resistance to anticancer agents. Here, we review how RhoGDIs control the function of Rho GTPases by regulating their spatiotemporal activity and describe the regulatory mechanisms of the dissociation of Rho GTPases from RhoGDIs. We also discuss the role of RhoGDIs in cancer progression and their potential uses for therapeutic intervention.
Collapse
Affiliation(s)
- Hee Jun Cho
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
| | - Jong-Tae Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
| | - Kyoung Eun Baek
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
| | - Bo-Yeon Kim
- Anticancer Cancer Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea.
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
- Department of Biomolecular Science, University of Science and Technology (UST), Daejeon 34141, Korea.
| |
Collapse
|
37
|
Nishikawa S, Itoh Y, Tokugawa M, Inoue Y, Nakashima KI, Hori Y, Miyajima C, Yoshida K, Morishita D, Ohoka N, Inoue M, Mizukami H, Makino T, Hayashi H. Kurarinone from Sophora Flavescens Roots Triggers ATF4 Activation and Cytostatic Effects Through PERK Phosphorylation. Molecules 2019; 24:E3110. [PMID: 31461933 PMCID: PMC6749437 DOI: 10.3390/molecules24173110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 01/28/2023] Open
Abstract
In response to cellular stresses, activating transcriptional factor 4 (ATF4) regulates the expression of both stress-relieving genes and apoptosis-inducing genes, eliciting cell fate determination. Since pharmacological activation of ATF4 exerts potent anti-tumor effects, modulators of ATF4 activation may have potential in cancer therapy. We herein attempted to identify small molecules that activate ATF4. A cell-based screening to monitor TRB3 promoter activation was performed using crude drugs used in traditional Japanese Kampo medicine. We found that an extract from Sophora flavescens roots exhibited potent TRB3 promoter activation. The activity-guided fractionation revealed that kurarinone was identified as the active ingredient. Intriguingly, ATF4 activation in response to kurarinone required PKR-like endoplasmic reticulum kinase (PERK). Moreover, kurarinone induced the cyclin-dependent kinase inhibitor p21 as well as cytostasis in cancer cells. Importantly, the cytostatic effect of kurarinone was reduced by pharmacological inhibition of PERK. These results indicate that kurarinone triggers ATF4 activation through PERK and exerts cytostatic effects on cancer cells. Taken together, our results suggest that modulation of the PERK-ATF4 pathway with kurarinone has potential as a cancer treatment.
Collapse
Affiliation(s)
- Sakiko Nishikawa
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences and Nagoya City University, Nagoya 467-8603, Japan
| | - Yuka Itoh
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences and Nagoya City University, Nagoya 467-8603, Japan
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Muneshige Tokugawa
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences and Nagoya City University, Nagoya 467-8603, Japan
| | - Yasumichi Inoue
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences and Nagoya City University, Nagoya 467-8603, Japan.
- Department of Innovative Therapeutic Sciences, Cooperative Major in Nanopharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan.
| | - Ken-Ichi Nakashima
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Yuka Hori
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences and Nagoya City University, Nagoya 467-8603, Japan
| | - Chiharu Miyajima
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences and Nagoya City University, Nagoya 467-8603, Japan
- Department of Innovative Therapeutic Sciences, Cooperative Major in Nanopharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Kou Yoshida
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences and Nagoya City University, Nagoya 467-8603, Japan
| | - Daisuke Morishita
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences and Nagoya City University, Nagoya 467-8603, Japan
| | - Nobumichi Ohoka
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kanagawa 210-9501, Japan
| | - Makoto Inoue
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Hajime Mizukami
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Toshiaki Makino
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Hidetoshi Hayashi
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences and Nagoya City University, Nagoya 467-8603, Japan.
- Department of Innovative Therapeutic Sciences, Cooperative Major in Nanopharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan.
| |
Collapse
|