1
|
Singh P, Arifuddin M, Supuran CT, Nerella SG. Carbonic anhydrase inhibitors: Structural insights and therapeutic potential. Bioorg Chem 2025; 156:108224. [PMID: 39893992 DOI: 10.1016/j.bioorg.2025.108224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/20/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
Carbonic anhydrase inhibitors (CAIs) have garnered significant attention in recent years due to their critical role in managing various diseases, including glaucoma, epilepsy, cancer, and other conditions linked to carbonic anhydrase (CA) isoforms. This review highlights the recent advancements in the design and development of CAIs, focusing on diverse chemical classes such as indoles, sulfocoumarins, 1,2,3-triazoles, urea derivatives, chalcones, quinolines, and pyridines. Each class presents unique structural features and mechanisms of action, contributing to the selective inhibition of specific CA isoforms. The ongoing exploration of these compounds has not only enhanced our understanding of CA inhibition but also opened new avenues for therapeutic applications, paving the way for the development of novel drugs that tackle pressing healthcare challenges.
Collapse
Affiliation(s)
- Priti Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India; Department of Chemistry, Directorate of Distance Education, Maulana Azad National Urdu University, Hyderabad 500 032, India
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Neurofarba Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Sridhar Goud Nerella
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India; Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health (NIH), Bethesda, MD 20892, USA(2).
| |
Collapse
|
2
|
Demir-Yazıcı K, Trawally M, Bua S, Öztürk-Civelek D, Akdemir A, Supuran CT, Güzel-Akdemir Ö. Novel 2-(hydrazinocarbonyl)-3-phenyl-1H-indole-5-sulfonamide based thiosemicarbazides as potent and selective inhibitors of tumor-associated human carbonic anhydrase IX and XII: Synthesis, cytotoxicity, and molecular modelling studies. Bioorg Chem 2024; 144:107096. [PMID: 38290186 DOI: 10.1016/j.bioorg.2024.107096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024]
Abstract
In the pursuit of discovering new selective carbonic anhydrase (CA, EC 4.2.1.1) inhibitors, a small collection of novel thiosemicarbazides (5a-5t) were designed and synthesized starting from 2-(hydrazinocarbonyl)-3-phenyl-1H-indole-5-sulfonamide which was evaluated as a potent inhibitor of different CA isoforms in a previous study. The newly synthesized compounds were examined against four human carbonic anhydrases (hCA), namely transmembrane tumor-related hCA IX/XII and cytosolic widespread off-targets hCA I/II. In enzyme inhibition assays, all nineteen compounds display up to ∼340-fold selectivity for hCA IX/XII over off-target isoforms hCA I/II. Four compounds have enzyme inhibition values (Ki) lower than 10 nM against tumor-associated isoforms hCA IX/XII including two compounds in the subnanomolar range (5r and 5s; hCA XII; Ki: 0.69 and 0.87 nM). The potential binding interactions of the most potent compounds against hCA IX and XII, compounds 5s and 5r, respectively, were investigated using ensemble docking and molecular dynamics studies. Cell viability assays using human colorectal adenocarcinoma cell line HT-29 and healthy skin fibroblasts CCD-86Sk show that compound 5e selectively inhibits HT-29 cancer cell proliferation (IC50: 53.32 ± 7.74 µM for HT-29; IC50: 74.64 ± 14.15 µM for CCD-986Sk). Finally, Western blot assays show that compounds 5e and 5r significantly reduce the expression of hCA XII in HT-29 cells. Moreover, 5e shows better cytotoxic activity in hypoxia compared to normoxic conditions. Altogether, the newly designed compounds show stronger inhibition of the tumor-associated hCA IX and XII isoforms and several tested compounds show selective cytotoxicity as well as downregulation of hCA XII expression.
Collapse
Affiliation(s)
- Kübra Demir-Yazıcı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey; Department of Pharmaceutical Chemistry, Institute of Graduate Studies in Health Sciences, Istanbul University, 34126 Istanbul, Turkey
| | - Muhammed Trawally
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey; Department of Pharmaceutical Chemistry, Institute of Graduate Studies in Health Sciences, Istanbul University, 34126 Istanbul, Turkey
| | - Silvia Bua
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50019, Sesto Fiorentino, Florence, Italy
| | - Dilek Öztürk-Civelek
- Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Istanbul, Turkey
| | - Atilla Akdemir
- Department of Pharmacology, Faculty of Pharmacy, Istinye University, 34408 Istanbul, Turkey
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50019, Sesto Fiorentino, Florence, Italy
| | - Özlen Güzel-Akdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey.
| |
Collapse
|
3
|
Trawally M, Demir-Yazıcı K, Angeli A, Kaya K, Akdemir A, Supuran CT, Güzel-Akdemir Ö. Thiosemicarbazone-benzenesulfonamide Derivatives as Human Carbonic Anhydrases Inhibitors: Synthesis, Characterization, and In silico Studies. Anticancer Agents Med Chem 2024; 24:649-667. [PMID: 38367264 DOI: 10.2174/0118715206290722240125112447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/02/2024] [Accepted: 01/06/2024] [Indexed: 02/19/2024]
Abstract
INTRODUCTION Carbonic anhydrases (CAs) are widespread metalloenzymes with the core function of catalyzing the interconversion of CO2 and HCO3 -. Targeting these enzymes using selective inhibitors has emerged as a promising approach for the development of novel therapeutic agents against multiple diseases. METHODS A series of novel thiosemicarbazone-containing derivatives were synthesized, characterized, and tested for their inhibitory activity against pharmaceutically important human CA I (hCA I), II (hCA II), IX (hCA IX), and XII (hCA XII) using the single tail approach. RESULTS The compounds generally inhibited the isoenzymes at low nanomolar concentrations, with compound 6b having Ki values of 7.16, 0.31, 92.5, and 375 nM against hCA I, II, IX and XII, respectively. Compound 6e exhibited Ki values of 27.6, 0.34, 872, and 94.5 nM against hCA I, II, IX and XII, respectively. CONCLUSION To rationalize the inhibition data, molecular docking studies were conducted, providing insight into the binding mechanisms, molecular interactions, and selectivity of the compounds towards the isoenzymes.
Collapse
Affiliation(s)
- Muhammed Trawally
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, Istanbul, Türkiye
| | - Kübra Demir-Yazıcı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, Istanbul, Türkiye
| | - Andrea Angeli
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Kerem Kaya
- Department of Chemistry, Istanbul Technical University, Istanbul, Türkiye
| | - Atilla Akdemir
- Department of Pharmacology, Faculty of Pharmacy, Istinye University, Istanbul, Türkiye
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Özlen Güzel-Akdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, Istanbul, Türkiye
| |
Collapse
|
4
|
Abdoli M, Krasniqi V, Bonardi A, Gütschow M, Supuran CT, Žalubovskis R. 4-Cyanamido-substituted benzenesulfonamides act as dual carbonic anhydrase and cathepsin inhibitors. Bioorg Chem 2023; 139:106725. [PMID: 37442043 DOI: 10.1016/j.bioorg.2023.106725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
A set of novel N-cyano-N-substituted 4-aminobenzenesulfonamide derivatives were synthesized and investigated for their inhibitory activity against four cytosolic carbonic anhydrase (CA, EC 4.2.1.1) isoforms (hCA I, II, VII and XIII) and two cathepsins (S and B). N-alkyl/benzyl-substituted derivatives were revealed to be very potent inhibitors against brain-associated hCA VII, but inactive against both cathepsins. On the other hand, N-acyl-substituted derivatives displayed significant inhibitory activities against cathepsin S, but only moderate to poor inhibitory potency against hCA VII. Both hCA VII and cathepsin S have recently been validated as therapeutic targets in neuropathic pain. This study provided an excellent starting point for further structural optimization of this class of bifunctional compounds to enhance their inhibitory activity and selectivity against hCA VII and cathepsin S and to achieve new compounds with an attractive dual mechanism of action as anti-neuropathic agents.
Collapse
Affiliation(s)
- Morteza Abdoli
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Vesa Krasniqi
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Alessandro Bonardi
- Neurofarba Department, Universita Degli Studi di Firenze, Florence, Italy
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry University of Bonn, An der Immenburg 4, 53121 Bonn, Germany.
| | - Claudiu T Supuran
- Neurofarba Department, Universita Degli Studi di Firenze, Florence, Italy.
| | - Raivis Žalubovskis
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia; Latvian Institute of Organic Synthesis, Riga, Latvia.
| |
Collapse
|
5
|
Marcelo GA, Montpeyó D, Galhano J, Martínez-Máñez R, Capelo-Martínez JL, Lorenzo J, Lodeiro C, Oliveira E. Development of New Targeted Nanotherapy Combined with Magneto-Fluorescent Nanoparticles against Colorectal Cancer. Int J Mol Sci 2023; 24:ijms24076612. [PMID: 37047582 PMCID: PMC10095016 DOI: 10.3390/ijms24076612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
The need for non-invasive therapies capable of conserving drug efficiency and stability while having specific targetability against colorectal cancer (CRC), has made nanoparticles preferable vehicles and principal building blocks for the development of complex and multi-action anti-tumoral approaches. For that purpose, we herein report the production of a combinatory anti-tumoral nanotherapy using the production of a new targeting towards CRC lines. To do so, Magneto-fluorescent NANO3 nanoparticles were used as nanocarriers for a combination of the drugs doxorubicin (DOX) and ofloxacin (OFLO). NANO3 nanoparticles’ surface was modified with two different targeting agents, a newly synthesized (anti-CA IX acetazolamide derivative (AZM-SH)) and a commercially available (anti-epidermal growth factor receptor (EGFR), Cetuximab). The cytotoxicity revealed that only DOX-containing nanosystems showed significant and even competitive cytotoxicity when compared to that of free DOX. Interestingly, surface modification with AZM-SH promoted an increased cellular uptake in the HCT116 cell line, surpassing even those functionalized with Cetuximab. The results show that the new target has high potential to be used as a nanotherapy agent for CRC cells, surpassing commercial targets. As a proof-of-concept, an oral administration form of NANO3 systems was successfully combined with Eudragit® enteric coating and studied under extreme conditions.
Collapse
Affiliation(s)
- Gonçalo A. Marcelo
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
| | - David Montpeyó
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Joana Galhano
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
| | - José Luis Capelo-Martínez
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2825-182 Caparica, Portugal
| | - Julia Lorenzo
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Carlos Lodeiro
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2825-182 Caparica, Portugal
| | - Elisabete Oliveira
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2825-182 Caparica, Portugal
| |
Collapse
|
6
|
Investigation on Hydrazonobenzenesulfonamides as Human Carbonic Anhydrase I, II, IX and XII Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010091. [PMID: 36615285 PMCID: PMC9822402 DOI: 10.3390/molecules28010091] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
A small series of hydrazonobenzenesulfonamides was designed, synthesized and studied for their human carbonic anhydrase (hCA) inhibitory activity. The synthesized compounds were evaluated against hCA I, II, IX and XII isoforms using acetazolamide (AAZ) as the standard inhibitor. Various hydrazonosulfonamide derivatives showed inhibitory activity at low nanomolar levels with selectivity against the cytosolic hCA II isoform, as well as the transmembrane, tumor-associated enzymes hCA IX and XII. The most potent and selective hydrazones 8, 9, 10, 11, 19 and 24 were docked into isoforms I, II, IX and XII to better understand their activity and selectivity for the different CA isoforms.
Collapse
|
7
|
Tawfik HO, Belal A, Abourehab MAS, Angeli A, Bonardi A, Supuran CT, El-Hamamsy MH. Dependence on linkers' flexibility designed for benzenesulfonamides targeting discovery of novel hCA IX inhibitors as potent anticancer agents. J Enzyme Inhib Med Chem 2022; 37:2765-2785. [PMID: 36210545 PMCID: PMC9559471 DOI: 10.1080/14756366.2022.2130285] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Herein we reported the design and synthesis of two series comprising twenty-two benzenesulfonamides that integrate the s-triazine moiety. Target compounds successfully suppressed the hCA IX, with IC50 ranging from 28.6 to 871 nM. Compounds 5d, 11b, 5b, and 7b were the most active analogues, which inhibited hCA IX isoform in the low nanomolar range (KI = 28.6, 31.9, 33.4, and 36.6 nM, respectively). Furthermore, they were assessed for their cytotoxic activity against a panel of 60 cancer cell lines following US-NCI protocol. According to five-dose assay, 13c showed significant anticancer activity than 5c with GI50-MID values of 25.08 and 189.01 µM, respectively. Additionally, 13c's effects on wound healing, cell cycle disruption, and apoptosis induction in NCI-H460 cancer cells were examined. Further, docking studies combined with molecular dynamic simulation showed a stable complex with high binding affinity of 5d to hCA IX, exploiting a favourable H-bond and lipophilic interactions.HIGHLIGHTSCarbonic anhydrase (CA) inhibitors comprising rigid and flexible linkers were developed.Compound 5d is the most potent CA IX inhibitor in the study (IC50: 28.6 nM).Compounds 5c and 13c displayed the greatest antiproliferative activity towards 60 cell lines.Compound 13c exposed constructive outcomes on normal cell lines, metastasis, and wound healing.Molecular docking and molecular dynamics (MDs) simulation was utilised to study binding mode.
Collapse
Affiliation(s)
- Haytham O. Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt,CONTACT H. O. Tawfik Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Amany Belal
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt,Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia,Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia, Egypt
| | - Andrea Angeli
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy
| | - Alessandro Bonardi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy,C. T. Supuran Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy
| | - Mervat H. El-Hamamsy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
8
|
Design, Synthesis and Biological Assessment of Rhodanine-Linked Benzenesulfonamide Derivatives as Selective and Potent Human Carbonic Anhydrase Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228028. [PMID: 36432129 PMCID: PMC9697818 DOI: 10.3390/molecules27228028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
A novel series of twenty-five rhodamine-linked benzenesulfonamide derivatives (7a-u and 9a-d) were synthesized and screened for their inhibitory action against four physiologically relevant human (h) carbonic anhydrase (CA) isoforms, namely hCA I, hCA II, hCA IX, and hCA XII. All the synthesized molecules showed good to excellent inhibition against all the tested isoforms in the nanomolar range due to the presence of the sulfonamide as a zinc binding group. The target compounds were developed from indol-3-ylchalcone-linked benzenesulfonamide where the indol-3-ylchalcone moiety was replaced with rhodanine-linked aldehydes or isatins to improve the inhibition. Interestingly, the molecules were slightly more selective towards hCA IX and XII compared to hCA I and II. The most potent and efficient ones against hCA I were 7h (KI 22.4 nM) and 9d (KI 35.8 nM) compared to the standard drug AAZ (KI 250.0 nM), whereas in case of hCA II inhibition, the derivatives containing the isatin nucleus as a tail were preferred. Collectively, all compounds were endowed with better inhibition against hCA IX compared to AAZ (KI 25.8 nM) as well as strong potency against hCA XII. Finally, these newly synthesized molecules could be taken as potential leads for the development of isoform selective hCA IX and XII inhibitors.
Collapse
|
9
|
Trending strategies for the synthesis of quinolinones and isoquinolinones. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
A decade of tail-approach based design of selective as well as potent tumor associated carbonic anhydrase inhibitors. Bioorg Chem 2022; 126:105920. [DOI: 10.1016/j.bioorg.2022.105920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/22/2022] [Accepted: 05/28/2022] [Indexed: 12/24/2022]
|
11
|
Yamali C, Sakagami H, Satoh K, Bandow K, Uesawa Y, Bua S, Angeli A, Supuran CT, Inci Gul H. Investigation of carbonic anhydrase inhibitory effects and cytotoxicities of pyrazole-based hybrids carrying hydrazone linker and zinc-binding benzenesulfonamide pharmacophores. Bioorg Chem 2022; 127:105969. [DOI: 10.1016/j.bioorg.2022.105969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/07/2022] [Accepted: 06/12/2022] [Indexed: 11/02/2022]
|
12
|
Elkamhawy A, Woo J, Nada H, Angeli A, Bedair TM, Supuran CT, Lee K. Identification of Novel and Potent Indole-Based Benzenesulfonamides as Selective Human Carbonic Anhydrase II Inhibitors: Design, Synthesis, In Vitro, and In Silico Studies. Int J Mol Sci 2022; 23:ijms23052540. [PMID: 35269684 PMCID: PMC8910009 DOI: 10.3390/ijms23052540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 11/28/2022] Open
Abstract
In recent decades, human carbonic anhydrase inhibitors (hCAIs) have emerged as an important therapeutic class with various applications including antiglaucoma, anticonvulsants, and anticancer agents. Herein, a novel series of indole-based benzenesulfonamides were designed, synthesized, and biologically evaluated as potential hCAIs. A regioisomerism of the sulfonamide moiety was carried out to afford a total of fifteen indole-based benzenesulfonamides possessing different amide linkers that enable the ligands to be flexible and develop potential H-bond interaction(s) with the target protein. The activity of the synthesized compounds was evaluated against four hCA isoforms (I, II, IX and, XII). Compounds 2b, 2c, 2d, 2f, 2h and 2o exhibited potent and selective profiles over the hCA II isoform with Ki values of 7.3, 9.0, 7.1, 16.0, 8.6 and 7.5 nM, respectively. Among all, compound 2a demonstrated the most potent inhibition against the hCA II isoform with an inhibitory constant (Ki) of 5.9 nM, with 13-, 34-, and 9-fold selectivity for hCA II over I, IX and XII isoforms, respectively. Structure–activity relationship data attained for various substitutions were rationalized. Furthermore, a molecular docking study gave insights into both inhibitory activity and selectivity of the target compounds. Accordingly, this report presents a successful scaffold hoping approach that reveals compound 2a as a highly potent and selective indole-based hCA II inhibitor worthy of further investigation.
Collapse
Affiliation(s)
- Ahmed Elkamhawy
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (A.E.); (J.W.); (H.N.)
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Jiyu Woo
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (A.E.); (J.W.); (H.N.)
| | - Hossam Nada
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (A.E.); (J.W.); (H.N.)
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University, Cairo 11829, Egypt
| | - Andrea Angeli
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy;
| | - Tarek M. Bedair
- Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt;
| | - Claudiu T. Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy;
- Correspondence: (C.T.S.); (K.L.)
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (A.E.); (J.W.); (H.N.)
- Correspondence: (C.T.S.); (K.L.)
| |
Collapse
|
13
|
Tawfik HO, Petreni A, Supuran CT, El-Hamamsy MH. Discovery of new carbonic anhydrase IX inhibitors as anticancer agents by toning the hydrophobic and hydrophilic rims of the active site to encounter the dual-tail approach. Eur J Med Chem 2022; 232:114190. [PMID: 35182815 DOI: 10.1016/j.ejmech.2022.114190] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/19/2022] [Accepted: 02/06/2022] [Indexed: 12/13/2022]
Abstract
The hydrophobic and the hydrophilic rims in the active site of human carbonic anhydrase IX (hCA IX) which as well contains a zinc ion as part of the catalytic core, were simultaneously matched to design and synthesize potent and selective inhibitors using a dual-tail approach. Seventeen new compounds, 5a-q, were designed to have the benzenesulfonamide moiety as a zinc binding group. In addition, N-substituted hydrazone and N-phenyl fragments were chosen as the hydrophilic and hydrophobic parts, respectively to achieve favorable interactions with the corresponding halves of the active site. All synthesized compounds successfully suppressed the CA IX, with IC50 values in nanomolar range from 13.3 to 259 nM. Compounds, 5h, 5c, 5m, 5e, and 5k were the top-five compounds efficiently inhibited the tumor-related CA IX isoform in the low nanomolar range (KI = 13.3, 22.6, 25.8, 26.9 and 27.2 nM, respectively). The target compounds 5a-q developed remarkable selectivity toward the tumor-associated isoforms (hCA IX and XII) over the off-target isoforms (hCA I and II). Furthermore, they were assessed for their anti-proliferative activity, according to US-NCI protocol, against a panel of fifty-nine cancer cell lines. Compounds 5d, 5k and 5o were passed the criteria for activity and scheduled automatically for evaluation at five concentrations with 10-fold dilutions. Compound 5k exhibited significant in vitro anticancer activity with GI50-MID; 8.68 μM compared to compounds 5d and 5o with GI50-MID; 25.76 μM and 34.97 μM respectively. The most selective compounds 5h and 5k were further screened for their in vitro cytotoxic activity against SK-MEL-5, HCC-2998 and RXF 393 cancer cell lines under hypoxic conditions. Furthermore, 5k was screened for cell cycle disturbance, apoptosis induction and intracellular reactive oxygen species (ROS) production in SK-MEL-5 cancer cells. Finally, molecular docking studies were performed to gain insights for the plausible binding interactions and affinities for selected compounds within hCA IX active site.
Collapse
Affiliation(s)
- Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Andrea Petreni
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Mervat H El-Hamamsy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
14
|
Singh P, Choli A, Swain B, Angeli A, Sahoo SK, Yaddanapudi VM, Supuran CT, Arifuddin M. Design and development of novel series of indole-3-sulfonamide ureido derivatives as selective carbonic anhydrase II inhibitors. Arch Pharm (Weinheim) 2021; 355:e2100333. [PMID: 34694638 DOI: 10.1002/ardp.202100333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 02/05/2023]
Abstract
Indole is a privileged moiety with a wide range of bioactivities, making it a popular scaffold in drug design and development studies as well as in synthetic chemistry. Here, novel urea derivatives of indole, containing sulfonamide at position-3 of indole, were synthesized using a well-known tail approach, as carbonic anhydrases (CAs; EC 4.2.1.1) inhibitors. All the newly synthesized molecules were screened for their CA-inhibitory activity against four clinically relevant isoforms of human-origin carbonic anhydrase (hCA), that is, hCA I, hCA II, hCA IX, and hCA XII. These compounds were specifically active against hCA II, more than against hCA I, hCA IX, and hCA XII. Derivative 6l was found to be most active, with a Ki value of 7.7 µM against hCA II.
Collapse
Affiliation(s)
- Priti Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Abhishek Choli
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Baijayantimala Swain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Andrea Angeli
- Neurofarba Department, Sezione di ScienzeFarmaceutiche e Nutraceutiche, Fiorentino, Università degl iStudi di Firenze, Florence, Italy
| | - Santosh K Sahoo
- Process Chemistry Process Technology, Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Venkata M Yaddanapudi
- Process Chemistry Process Technology, Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di ScienzeFarmaceutiche e Nutraceutiche, Fiorentino, Università degl iStudi di Firenze, Florence, Italy
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
15
|
Yamali C, Sakagami H, Uesawa Y, Kurosaki K, Satoh K, Masuda Y, Yokose S, Ece A, Bua S, Angeli A, Supuran CT, Gul HI. Comprehensive study on potent and selective carbonic anhydrase inhibitors: Synthesis, bioactivities and molecular modelling studies of 4-(3-(2-arylidenehydrazine-1-carbonyl)-5-(thiophen-2-yl)-1H-pyrazole-1-yl) benzenesulfonamides. Eur J Med Chem 2021; 217:113351. [PMID: 33744685 DOI: 10.1016/j.ejmech.2021.113351] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/21/2021] [Accepted: 02/27/2021] [Indexed: 12/14/2022]
Abstract
In this research, rational design, synthesis, carbonic anhydrases (CAs) inhibitory effects, and cytotoxicities of the 4-(3-(2-arylidenehydrazine-1-carbonyl)-5-(thiophen-2-yl)-1H-pyrazole-1-yl)benzenesulfonamides 1-20 were reported. Compound 18 (Ki = 7.0 nM) was approximately 127 times more selective cancer-associated hCA IX inhibitor over hCA I, while compound 17 (Ki = 10.6 nM) was 47 times more selective inhibitor of hCA XI over hCA II compared to the acetazolamide. Compounds 11 (CC50 = 5.2 μM) and 20 (CC50 = 1.6 μM) showed comparative tumor-specificity (TS= > 38.5; >128.2) with doxorubicin (TS > 43.0) towards HSC-2 cancer cell line. Western blot analysis demonstrated that 11 induced slightly apoptosis whereas 20 did not induce detectable apoptosis. A preliminary analysis showed that some correlation of tumor-specificity of 1-20 with the chemical descriptors that reflect hydrophobic volume, dipole moment, lowest hydrophilic energy, and topological structure. Molecular docking simulations were applied to the synthesized ligands to elucidate the predicted binding mode and selectivity profiles towards hCA I, hCA II, and hCA IX.
Collapse
Affiliation(s)
- Cem Yamali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey; Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Cukurova University, Adana, Turkey
| | - Hiroshi Sakagami
- Research Institute of Odontology (M-RIO), Meikai University, Saitama, Japan
| | - Yoshihiro Uesawa
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Tokyo, Japan
| | - Kota Kurosaki
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Tokyo, Japan
| | - Keitaro Satoh
- Division of Pharmacology, Meikai University School of Dentistry, Saitama, Japan
| | - Yoshiko Masuda
- Department of Operative Dentistry, Matsumoto Dental University, Nagano, Japan
| | - Satoshi Yokose
- Division of Endodontics and Operative Dentistry, Meikai University School of Dentistry, Sakado, Saitama, Japan
| | - Abdulilah Ece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, Istanbul, Turkey
| | - Silvia Bua
- Neurofarba Department, Sezione di Scienza Farmaceutiche e Nutraceutiche, Universita Degli Studi di Firenze, Via U. Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Andrea Angeli
- Neurofarba Department, Sezione di Scienza Farmaceutiche e Nutraceutiche, Universita Degli Studi di Firenze, Via U. Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Scienza Farmaceutiche e Nutraceutiche, Universita Degli Studi di Firenze, Via U. Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Halise Inci Gul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey.
| |
Collapse
|
16
|
Singh P, Purnachander Yadav P, Swain B, Thacker PS, Angeli A, Supuran CT, Arifuddin M. Discovery of a novel series of indolylchalcone-benzenesulfonamide hybrids acting as selective carbonic anhydrase II inhibitors. Bioorg Chem 2021; 108:104647. [PMID: 33530019 DOI: 10.1016/j.bioorg.2021.104647] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/11/2020] [Accepted: 01/06/2021] [Indexed: 01/12/2023]
Abstract
The primary sulfonamide group is one of the most efficient zinc binding group (ZBG) for designing carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. In the present study primary sulfonamide linked with indolylchalcone were designed. The newly synthesized molecules (5a-r) were examined against four human (h) CA isoforms (hCA I, hCA II, hCA IX and hCA XIII). These sulfonamides showed good inhibition activity against isoforms hCA I, hCA II and hCA XIII. Compound 5i (2.3 nM), 5m (2.4 nM), 5o (3.6 nM) and 5q (7.0 nM) were more potent than standard drug AAZ (12.1 nM) against isoform hCA II, respectively. Most of the other compounds in the present series inhibited hCA XIII and hCA IX in the range of 50 nM - 100 nM.
Collapse
Affiliation(s)
- Priti Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Parvatha Purnachander Yadav
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Baijayantimala Swain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Pavitra S Thacker
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Andrea Angeli
- UniversitàdegliStudi di Firenze, Neurofarba Dept, Sezione di ScienzeFarmaceutiche e, Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- UniversitàdegliStudi di Firenze, Neurofarba Dept, Sezione di ScienzeFarmaceutiche e, Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India; Department of Chemistry, Anwarul Uloom College, 11-3-918, New Malleypally, Hyderabad-500001, T. S, India.
| |
Collapse
|
17
|
Güzel-Akdemir Ö, Trawally M, Özbek-Babuç M, Özbek-Çelik B, Ermut G, Özdemir H. Synthesis and antibacterial activity of new hybrid derivatives of 5-sulfamoyl-1H-indole and 4-thiazolidinone groups. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02664-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Chinchilli KK, Angeli A, Thacker PS, Korra LN, Biswas R, Arifuddin M, Supuran CT. Design, Synthesis, and Biological Evaluation of 1,2,3-Triazole-Linked Triazino[5,6-B]Indole-Benzene Sulfonamide Conjugates as Potent Carbonic Anhydrase I, II, IX, and XIII Inhibitors. Metabolites 2020; 10:metabo10050200. [PMID: 32429261 PMCID: PMC7281265 DOI: 10.3390/metabo10050200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 01/09/2023] Open
Abstract
A series of 1,2,3-triazole-linked triazino[5,6-b]indole-benzene sulfonamide hybrids (6a-6o) was synthesized and evaluated for carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity against the human (h) isoforms hCA I, II, XIII (cytosolic isoforms), and hCA IX (transmembrane tumor-associated isoform). The results revealed that the compounds 6a-6o exhibited Ki values in the low to medium nanomolar range against hCA II and hCA IX (Kis ranging from 7.7 nM to 41.3 nM) and higher Ki values against hCA I and hCA XIII. Compound 6i showed potent inhibition of hCA II (Ki = 7.7nM), being more effective compared to the standard inhibitor acetazolamide (AAZ) (Ki = 12.1 nM). Compounds 6b and 6d showed moderate activity against hCA XIII (Ki= 69.8 and 65.8 nM). Hence, compound 6i could be consider as potential lead candidate for the design of potent and selective hCA II inhibitors.
Collapse
Affiliation(s)
- Krishna Kartheek Chinchilli
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India; (K.K.C.); (P.S.T.); (L.N.K.); (R.B.)
| | - Andrea Angeli
- Neurofarba Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy;
| | - Pavitra S. Thacker
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India; (K.K.C.); (P.S.T.); (L.N.K.); (R.B.)
| | - Laxman Naik Korra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India; (K.K.C.); (P.S.T.); (L.N.K.); (R.B.)
| | - Rashmita Biswas
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India; (K.K.C.); (P.S.T.); (L.N.K.); (R.B.)
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India; (K.K.C.); (P.S.T.); (L.N.K.); (R.B.)
- Department of Chemistry, Anwarul Uloom College, 11-3-918, New Malleypally, Hyderabad 500001, India
- Correspondence: (M.A.); (C.T.S.)
| | - Claudiu T. Supuran
- Neurofarba Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy;
- Correspondence: (M.A.); (C.T.S.)
| |
Collapse
|
19
|
Demir-Yazıcı K, Güzel-Akdemir Ö, Angeli A, Supuran CT, Akdemir A. Novel Indole-Based Hydrazones as Potent Inhibitors of the α-class Carbonic Anhydrase from Pathogenic Bacterium Vibrio cholerae. Int J Mol Sci 2020; 21:ijms21093131. [PMID: 32365482 PMCID: PMC7247680 DOI: 10.3390/ijms21093131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 11/16/2022] Open
Abstract
Due to the increasing resistance of currently used antimicrobial drugs, there is an urgent problem for the treatment of cholera disease, selective inhibition of the α-class carbonic anhydrases (CA, EC 4.2.1.1) from the pathogenic bacterium Vibrio cholerae (VcCA) presents an alternative therapeutic target. In this study, a series of hydrazone derivatives, carrying the 2-(hydrazinocarbonyl)-3-phenyl-1H-indole-5-sulfonamide scaffold, have been evaluated as inhibitors of the VcCA with molecular modeling studies. The results suggest that these compounds may bind to the active site of VcCA. To verify this, VcCA enzyme inhibition studies were performed and as predicted most of the tested compounds displayed potent inhibitory activities against VcCA with three compounds showing KI values lower than 30 nM. In addition, all these compounds showed selectivity for VcCA and the off-targets hCA I and II.
Collapse
Affiliation(s)
- Kübra Demir-Yazıcı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, Beyazit, 34116 Istanbul, Turkey
| | - Özlen Güzel-Akdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, Beyazit, 34116 Istanbul, Turkey
| | - Andrea Angeli
- Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences, Università degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Claudiu T. Supuran
- Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences, Università degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Atilla Akdemir
- Computer-aided Drug Discovery Laboratory, Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, Fatih, 34093 Istanbul, Turkey
- Correspondence: ; Tel.: +90-212-523-2288 (ext. 3142)
| |
Collapse
|