1
|
Chu LL, Zheng WX, Liu HQ, Sheng XX, Wang QY, Wang Y, Hu CG, Zhang JZ. ACC SYNTHASE4 inhibits gibberellin biosynthesis and FLOWERING LOCUS T expression during citrus flowering. PLANT PHYSIOLOGY 2024; 195:479-501. [PMID: 38227428 DOI: 10.1093/plphys/kiae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024]
Abstract
Flowering is an essential process in fruit trees. Flower number and timing have a substantial impact on the yield and maturity of fruit. Ethylene and gibberellin (GA) play vital roles in flowering, but the mechanism of coordinated regulation of flowering in woody plants by GA and ethylene is still unclear. In this study, a lemon (Citrus limon L. Burm) 1-aminocyclopropane-1-carboxylic acid synthase gene (CiACS4) was overexpressed in Nicotiana tabacum and resulted in late flowering and increased flower number. Further transformation of citrus revealed that ethylene and starch content increased, and soluble sugar content decreased in 35S:CiACS4 lemon. Inhibition of CiACS4 in lemon resulted in effects opposite to that of 35S:CiACS4 in transgenic plants. Overexpression of the CiACS4-interacting protein ETHYLENE RESPONSE FACTOR3 (CiERF3) in N. tabacum resulted in delayed flowering and more flowers. Further experiments revealed that the CiACS4-CiERF3 complex can bind the promoters of FLOWERING LOCUS T (CiFT) and GOLDEN2-LIKE (CiFE) and suppress their expression. Moreover, overexpression of CiFE in N. tabacum led to early flowering and decreased flowers, and ethylene, starch, and soluble sugar contents were opposite to those in 35S:CiACS4 transgenic plants. Interestingly, CiFE also bound the promoter of CiFT. Additionally, GA3 and 1-aminocyclopropanecarboxylic acid (ACC) treatments delayed flowering in adult citrus, and treatment with GA and ethylene inhibitors increased flower number. ACC treatment also inhibited the expression of CiFT and CiFE. This study provides a theoretical basis for the application of ethylene to regulate flower number and mitigate the impacts of extreme weather on citrus yield due to delayed flowering.
Collapse
Affiliation(s)
- Le-Le Chu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei-Xuan Zheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Hai-Qiang Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Xing-Xing Sheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing-Ye Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Yue Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Chun-Gen Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Jin-Zhi Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Zhang SL, Wu Y, Zhang XH, Feng X, Wu HL, Zhou BJ, Zhang YQ, Cao M, Hou ZX. Characterization of the MIKC C-type MADS-box gene family in blueberry and its possible mechanism for regulating flowering in response to the chilling requirement. PLANTA 2024; 259:77. [PMID: 38421445 DOI: 10.1007/s00425-024-04349-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024]
Abstract
MAIN CONCLUSION The expression peak of VcAP1.4, VcAP1.6, VcAP3.1, VcAP3.2, VcAG3, VcFLC2, and VcSVP9 coincided with the endo-dormancy release of flower buds. Additionally, GA4+7 not only increased the expression of these genes but also promoted flower bud endo-dormancy release. The MIKCC-type MADS-box gene family is involved in the regulation of flower development. A total of 109 members of the MIKCC-type MADS-box gene family were identified in blueberry. According to the phylogenetic tree, these 109 MIKCC-type MADS-box proteins were divided into 13 subfamilies, which were distributed across 40 Scaffolds. The results of the conserved motif analysis showed that among 20 motifs, motifs 1, 3, and 9 formed the MADS-box structural domain, while motifs 2, 4, and 6 formed the K-box structural domain. The presence of 66 pairs of fragment duplication events in blueberry suggested that gene duplication events contributed to gene expansion and functional differentiation. Additionally, the presence of cis-acting elements revealed that VcFLC2, VcAG3, and VcSVP9 might have significant roles in the endo-dormancy release of flower buds. Meanwhile, under chilling conditions, VcAP3.1 and VcAG7 might facilitate flower bud dormancy release. VcSEP11 might promote flowering following the release of endo-dormancy, while the elevated expression of VcAP1.7 (DAM) could impede the endo-dormancy release of flower buds. The effect of gibberellin (GA4+7) treatment on the expression pattern of MIKCC-type MADS-box genes revealed that VcAP1.4, VcAP1.6, VcAP3.1, VcAG3, and VcFLC2 might promote flower bud endo-dormancy release, while VcAP3.2, VcSEP11, and VcSVP9 might inhibit its endo-dormancy release. These results indicated that VcAP1.4, VcAP1.6, VcAP1.7 (DAM), VcAP3.1, VcAG3, VcAG7, VcFLC2, and VcSVP9 could be selected as key regulatory promoting genes for controlling the endo-dormancy of blueberry flower buds.
Collapse
Affiliation(s)
- Sui-Lin Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China
| | - Yan Wu
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China
| | - Xiao-Han Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China
| | - Xin Feng
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China
| | - Hui-Ling Wu
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China
| | - Bing-Jie Zhou
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China
| | - Ya-Qian Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China
| | - Man Cao
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China
| | - Zhi-Xia Hou
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China.
| |
Collapse
|
3
|
Song GQ, Liu Z, Zhong GY. Regulatory frameworks involved in the floral induction, formation and developmental programming of woody horticultural plants: a case study on blueberries. FRONTIERS IN PLANT SCIENCE 2024; 15:1336892. [PMID: 38410737 PMCID: PMC10894941 DOI: 10.3389/fpls.2024.1336892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
Flowering represents a crucial stage in the life cycles of plants. Ensuring strong and consistent flowering is vital for maintaining crop production amidst the challenges presented by climate change. In this review, we summarized key recent efforts aimed at unraveling the complexities of plant flowering through genetic, genomic, physiological, and biochemical studies in woody species, with a special focus on the genetic control of floral initiation and activation in woody horticultural species. Key topics covered in the review include major flowering pathway genes in deciduous woody plants, regulation of the phase transition from juvenile to adult stage, the roles of CONSTANS (CO) and CO-like gene and FLOWERING LOCUS T genes in flower induction, the floral regulatory role of GA-DELLA pathway, and the multifunctional roles of MADS-box genes in flowering and dormancy release triggered by chilling. Based on our own research work in blueberries, we highlighted the central roles played by two key flowering pathway genes, FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1, which regulate floral initiation and activation (dormancy release), respectively. Collectively, our survey shows both the conserved and diverse aspects of the flowering pathway in annual and woody plants, providing insights into the potential molecular mechanisms governing woody plants. This paves the way for enhancing the resilience and productivity of fruit-bearing crops in the face of changing climatic conditions, all through the perspective of genetic interventions.
Collapse
Affiliation(s)
- Guo-Qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Zongrang Liu
- USDA Agricultural Research Services, Appalachian Fruit Research Station, Kearneysville, WV, United States
| | - Gan-Yuan Zhong
- USDA Agricultural Research Services, Grape Genetics Research Unit and Plant Genetic Resources Unit, Geneva, NY, United States
| |
Collapse
|
4
|
Song GQ, Carter BB, Zhong GY. Multiple transcriptome comparisons reveal the essential roles of FLOWERING LOCUS T in floral initiation and SOC1 and SVP in floral activation in blueberry. Front Genet 2023; 14:1105519. [PMID: 37091803 PMCID: PMC10113452 DOI: 10.3389/fgene.2023.1105519] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/27/2023] [Indexed: 04/09/2023] Open
Abstract
The flowering mechanisms, especially chilling requirement-regulated flowering, in deciduous woody crops remain to be elucidated. Flower buds of northern highbush blueberry cultivar Aurora require approximately 1,000 chilling hours to bloom. Overexpression of a blueberry FLOWERING LOCUS T (VcFT) enabled precocious flowering of transgenic “Aurora” mainly in non-terminated apical buds during flower bud formation, meanwhile, most of the mature flower buds could not break until they received enough chilling hours. In this study, we highlighted two groups of differentially expressed genes (DEGs) in flower buds caused by VcFT overexpression (VcFT-OX) and full chilling. We compared the two groups of DEGs with a focus on flowering pathway genes. We found: 1) In non-chilled flower buds, VcFT-OX drove a high VcFT expression and repressed expression of a major MADS-box gene, blueberry SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (VcSOC1) resulting an increased VcFT/VcSOC1 expression ratio; 2) In fully chilled flower buds that are ready to break, the chilling upregulated VcSOC1 expression in non-transgenic “Aurora” and repressed VcFT expression in VcFT-OX “Aurora”, and each resulted in a decreased ratio of VcFT to VcSOC1; additionally, expression of a blueberry SHORT VEGETATIVE PHASE (VcSVP) was upregulated in chilled flower buds of both transgenic and non-transgenic’ “Aurora”. Together with additional analysis of VcFT and VcSOC1 in the transcriptome data of other genotypes and tissues, we provide evidence to support that VcFT expression plays a significant role in promoting floral initiation and that VcSOC1 expression is a key floral activator. We thus propose a new hypothesis on blueberry flowering mechanism, of which the ratios of VcFT-to-VcSOC1 at transcript levels in the flowering pathways determine flower bud formation and bud breaking. Generally, an increased VcFT/VcSOC1 ratio or increased VcSOC1 in leaf promotes precocious flowering and flower bud formation, and a decreased VcFT/VcSOC1 ratio with increased VcSOC1 in fully chilled flower buds contributes to flower bud breaking.
Collapse
Affiliation(s)
- Guo-qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI, United States
- *Correspondence: Guo-qing Song,
| | - Benjamin B. Carter
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Gan-Yuan Zhong
- Grape Genetics Research Unit, USDA-Agricultural Research Service, Geneva, NY, United States
| |
Collapse
|
5
|
Wang H, Yan Y, Pathak JL, Hong W, Zeng J, Qian D, Hao B, Li H, Gu J, Jaspers RT, Wu G, Shao M, Peng G, Lan H. Quercetin prevents osteoarthritis progression possibly via regulation of local and systemic inflammatory cascades. J Cell Mol Med 2023; 27:515-528. [PMID: 36722313 PMCID: PMC9930437 DOI: 10.1111/jcmm.17672] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 02/02/2023] Open
Abstract
Due to the lack of effective treatments, osteoarthritis (OA) remains a challenge for clinicians. Quercetin, a bioflavonoid, has shown potent anti-inflammatory effects. However, its effect on preventing OA progression and the underlying mechanisms are still unclear. In this study, Sprague-Dawley male rats were divided into five groups: control group, OA group (monosodium iodoacetate intra-articular injection), and three quercetin-treated groups. Quercetin-treated groups were treated with intragastric quercetin once a day for 28 days. Gross observation and histopathological analysis showed cartilage degradation and matrix loss in the OA group. High-dose quercetin-group joints showed failure in OA progression. High-dose quercetin inhibited the OA-induced expression of MMP-3, MMP-13, ADAMTS4, and ADAMTS5 and promoted the OA-reduced expression of aggrecan and collagen II. Levels of most inflammatory cytokines and growth factors tested in synovial fluid and serum were upregulated in the OA group and these increases were reversed by high-dose quercetin. Similarly, subchondral trabecular bone was degraded in the OA group and this effect was reversed in the high-dose quercetin group. Our findings indicate that quercetin has a protective effect against OA development and progression possibly via maintaining the inflammatory cascade homeostasis. Therefore, quercetin could be a potential therapeutic agent to prevent OA progression in risk groups.
Collapse
Affiliation(s)
- Haiyan Wang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina,Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement SciencesVrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
| | - Yongyong Yan
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina,Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement SciencesVrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
| | - Janak L. Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Wei Hong
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina,GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Jing Zeng
- Liwan Central Hospital of GuangzhouGuangzhouChina
| | - Dongyang Qian
- Department of Orthopaedics, The First Affiliated HospitalGuangzhou Medical University/Guangdong Key Laboratory of Orthopaedic Technology and Implant MaterialsGuangzhouChina
| | - Binwei Hao
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina,Department of Pulmonary and Critical Care Medicine, Shanxi Bethune HospitalShanxi Academy of Medical SciencesTaiyuanChina
| | - Haiqing Li
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Jinlan Gu
- GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Richard T. Jaspers
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina,Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement SciencesVrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA)Vrije Universiteit Amsterdam, Amsterdam Movement ScienceAmsterdamThe Netherlands
| | - Ming Shao
- Department of Orthopaedic SurgeryThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Gongyong Peng
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Haifeng Lan
- Department of Orthopaedic SurgeryThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
6
|
Chen W, Tamada Y, Yamane H, Matsushita M, Osako Y, Gao-Takai M, Luo Z, Tao R. H3K4me3 plays a key role in establishing permissive chromatin states during bud dormancy and bud break in apple. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1015-1031. [PMID: 35699670 DOI: 10.1111/tpj.15868] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Bud dormancy helps woody perennials survive winter and activate robust plant development in the spring. For apple (Malus × domestica), short-term chilling induces bud dormancy in autumn, then prolonged chilling leads to dormancy release and a shift to a quiescent state in winter, with subsequent warm periods promoting bud break in spring. Epigenetic regulation contributes to seasonal responses such as vernalization. However, how histone modifications integrate seasonal cues and internal signals during bud dormancy in woody perennials remains largely unknown. Here, we show that H3K4me3 plays a key role in establishing permissive chromatin states during bud dormancy and bud break in apple. The global changes in gene expression strongly correlated with changes in H3K4me3, but not H3K27me3. High expression of DORMANCY-ASSOCIATED MADS-box (DAM) genes, key regulators of dormancy, in autumn was associated with high H3K4me3 levels. In addition, known DAM/SHORT VEGETATIVE PHASE (SVP) target genes significantly overlapped with H3K4me3-modified genes as bud dormancy progressed. These data suggest that H3K4me3 contributes to the central dormancy circuit, consisting of DAM/SVP and abscisic acid (ABA), in autumn. In winter, the lower expression and H3K4me3 levels at DAMs and gibberellin metabolism genes control chilling-induced release of dormancy. Warming conditions in spring facilitate the expression of genes related to phytohormones, the cell cycle, and cell wall modification by increasing H3K4me3 toward bud break. Our study also revealed that activation of auxin and repression of ABA sensitivity in spring are conditioned at least partly through temperature-mediated epigenetic regulation in winter.
Collapse
Affiliation(s)
- Wenxing Chen
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, China
| | - Yosuke Tamada
- School of Engineering, Utsunomiya University, Utsunomiya, Japan
- National Institute for Basic Biology, Okazaki, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Miura-gun, Japan
| | - Hisayo Yamane
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Yutaro Osako
- Faculty of Agriculture, Shinshu University, Kamiina-gun, Japan
| | - Mei Gao-Takai
- Agricultural Experimental Station, Ishikawa Prefectural University, Nonoichi, Japan
| | - Zhengrong Luo
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, China
| | - Ryutaro Tao
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Zhang W, Wang Y, Zhang T, Zhang J, Shen L, Zhang B, Ding C, Su X. Transcriptomic Analysis of Mature Transgenic Poplar Expressing the Transcription Factor JERF36 Gene in Two Different Environments. Front Bioeng Biotechnol 2022; 10:929681. [PMID: 35774064 PMCID: PMC9237257 DOI: 10.3389/fbioe.2022.929681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
During the last several decades, a number of transgenic or genetically modified tree varieties with enhanced characteristics and new traits have been produced. These trees have become associated with generally unsubstantiated concerns over health and environmental safety. We conducted transcriptome sequencing of transgenic Populus alba × P. berolinensis expressing the transcription factor JERF36 gene (ABJ01) and the non-transgenic progenitor line (9#) to compare the transcriptional changes in the apical buds. We found that 0.77% and 1.31% of the total expressed genes were significant differentially expressed in ABJ01 at the Daqing and Qiqihar sites, respectively. Among them, 30%–50% of the DEGs contained cis-elements recognized by JERF36. Approximately 5% of the total number of expressed genes showed significant differential expression between Daqing and Qiqihar in both ABJ01 and 9#. 10 DEGs resulting from foreign gene introduction, 394 DEGs that resulted solely from the environmental differences, and 47 DEGs that resulted from the combination of foreign gene introduction and the environment were identified. The number of DEGs resulting from environmental factors was significantly greater than that resulting from foreign gene introduction, and the combined effect of the environmental effects with foreign gene introduction was significantly greater than resulting from the introduction of JERF36 alone. GO and KEGG annotation showed that the DEGs mainly participate in the photosynthesis, oxidative phosphorylation, plant hormone signaling, ribosome, endocytosis, and plant-pathogen interaction pathways, which play important roles in the responses to biotic and abiotic stresses ins plant. To enhance its adaptability to salt-alkali stress, the transgenic poplar line may regulate the expression of genes that participate in the photosynthesis, oxidative phosphorylation, MAPK, and plant hormone signaling pathways. The crosstalk between biotic and abiotic stress responses by plant hormones may improve the ability of both transgenic and non-transgenic poplars to defend against pathogens. The results of our study provide a basis for further studies on the molecular mechanisms behind improved stress resistance and the unexpected effects of transgenic gene expression in poplars, which will be significant for improving the biosafety evaluation of transgenic trees and accelerating the breeding of new varieties of forest trees resistant to environmental stresses.
Collapse
Affiliation(s)
- Weixi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Beijing, China
| | - Yanbo Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Beijing, China
- Nanchang Institute of Technology, Nanchang, China
| | - Tengqian Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Beijing, China
| | - Jing Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Beijing, China
| | - Le Shen
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Beijing, China
| | - Bingyu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Beijing, China
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Beijing, China
- *Correspondence: Changjun Ding, ; Xiaohua Su,
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- *Correspondence: Changjun Ding, ; Xiaohua Su,
| |
Collapse
|
8
|
Voogd C, Brian LA, Wu R, Wang T, Allan AC, Varkonyi-Gasic E. A MADS-box gene with similarity to FLC is induced by cold and correlated with epigenetic changes to control budbreak in kiwifruit. THE NEW PHYTOLOGIST 2022; 233:2111-2126. [PMID: 34907541 DOI: 10.1111/nph.17916] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Temperate perennials require exposure to chilling temperatures to resume growth in the following spring. Growth and dormancy cycles are controlled by complex genetic regulatory networks and are governed by epigenetic mechanisms, but the specific genes and mechanisms remain poorly understood. To understand how seasonal changes and chilling regulate dormancy and growth in the woody perennial vine kiwifruit (Ac, Actinidia chinensis), a transcriptome study of kiwifruit buds in the field and controlled conditions was performed. A MADS-box gene with homology to Arabidopsis FLOWERING LOCUS C (FLC) was identified and characterized. Elevated expression of AcFLC-like (AcFLCL) was detected during bud dormancy and chilling. A long noncoding (lnc) antisense transcript with an expression pattern opposite to AcFLCL and shorter sense noncoding RNAs were identified. Chilling induced an increase in trimethylation of lysine-4 of histone H3 (H3K4me3) in the 5' end of the gene, indicating multiple layers of epigenetic regulation in response to cold. Overexpression of AcFLCL in kiwifruit gave rise to plants with earlier budbreak, whilst gene editing using CRISPR-Cas9 resulted in transgenic lines with substantially delayed budbreak, suggesting a role in activation of growth. These results have implications for the future management and breeding of perennials for resilience to changing climate.
Collapse
Affiliation(s)
- Charlotte Voogd
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Lara A Brian
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Rongmei Wu
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Tianchi Wang
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Andrew C Allan
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| |
Collapse
|
9
|
Wang J, Liu X, Sun W, Xu Y, Sabir IA, Abdullah M, Wang S, Jiu S, Zhang C. Cold induced genes (CIGs) regulate flower development and dormancy in Prunus avium L. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111061. [PMID: 34763854 DOI: 10.1016/j.plantsci.2021.111061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/30/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The flower buds continue to develop during the whole winter in tree fruit species, which is affected by environmental factors and hormones. However, little is known about the molecular mechanism of flower development during dormancy phase of sweet cherry in response to light, temperature and ABA. Therefore, we identified two cold induced gene (CIG) PavCIG1 and PavCIG2 from sweet cherry, which were closely to PpCBF and PyDREB from Prunus persica and Prunus yedoensis by using phylogenetic analysis, suggesting conserved functions with these evolutionarily closer DREB subfamily genes. Subcellular localization analysis indicated that, PavCIG1 and PavCIG2 were both localized in the nucleus. The seasonal expression levels of PavCIG1 and PavCIG2 were higher at the stage of endodormancy in winter, and induced by low temperature. Ectopic expression of PavCIG1 and PavCIG2 resulted in a delayed flowering in Arabidopsis. Furthermore, PavCIG2 increased light-responsive gene PavHY5 transcriptional activity by binding to its promoter, meanwhile, PavHY5-mediated positive feedback regulated PavCIG2. Moreover, ABA-responsive protein PavABI5-like could also increase transcriptional activity of PavCIG and PavCIG2. In addition, PavCIG and PavCIG2 target gene PavCAL-like was involved in floral initiation, demonstrated by ectopic expression in Arabidopsis. These findings provide evidences to better understand the molecular mechanism of CIG-mediated flower development and dormancy in fruit species, including sweet cherry.
Collapse
Affiliation(s)
- Jiyuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Xunju Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Wanxia Sun
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Yan Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Irfan Ali Sabir
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Muhammad Abdullah
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| |
Collapse
|
10
|
Savadi S, Mangalassery S, Sandesh MS. Advances in genomics and genome editing for breeding next generation of fruit and nut crops. Genomics 2021; 113:3718-3734. [PMID: 34517092 DOI: 10.1016/j.ygeno.2021.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/21/2021] [Accepted: 09/02/2021] [Indexed: 12/18/2022]
Abstract
Fruit tree crops are an essential part of the food production systems and are key to achieve food and nutrition security. Genetic improvement of fruit trees by conventional breeding has been slow due to the long juvenile phase. Advancements in genomics and molecular biology have paved the way for devising novel genetic improvement tools like genome editing, which can accelerate the breeding of these perennial crops to a great extent. In this article, advancements in genomics of fruit trees covering genome sequencing, transcriptome sequencing, genome editing technologies (GET), CRISPR-Cas system based genome editing, potential applications of CRISPR-Cas9 in fruit tree crops improvement, the factors influencing the CRISPR-Cas editing efficiency and the challenges for CRISPR-Cas9 applications in fruit tree crops improvement are reviewed. Besides, base editing, a recently emerging more precise editing system, and the future perspectives of genome editing in the improvement of fruit and nut crops are covered.
Collapse
Affiliation(s)
- Siddanna Savadi
- ICAR- Directorate of Cashew Research (DCR), Puttur 574 202, Dakshina Kannada, Karnataka, India.
| | | | - M S Sandesh
- ICAR- Directorate of Cashew Research (DCR), Puttur 574 202, Dakshina Kannada, Karnataka, India
| |
Collapse
|
11
|
Kagaya H, Ito N, Shibuya T, Komori S, Kato K, Kanayama Y. Characterization of FLOWERING LOCUS C Homologs in Apple as a Model for Fruit Trees. Int J Mol Sci 2020; 21:ijms21124562. [PMID: 32604952 PMCID: PMC7348945 DOI: 10.3390/ijms21124562] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/29/2022] Open
Abstract
To elucidate the molecular mechanism of juvenility and annual flowering of fruit trees, FLOWERING LOCUS C (FLC), an integrator of flowering signals, was investigated in apple as a model. We performed sequence and expression analyses and transgenic experiments related to juvenility with annual flowering to characterize the apple FLC homologs MdFLC. The phylogenetic tree analysis, which included other MADS-box genes, showed that both MdFLC1 and MdFLC3 belong to the same FLC group. MdFLC1c from one of the MdFLC1 splice variants and MdFLC3 contain the four conserved motives of an MIKC-type MADS protein. The mRNA of variants MdFLC1a and MdFLC1b contain intron sequences, and their deduced amino acid sequences lack K- and C-domains. The expression levels of MdFLC1a, MdFLC1b, and MdFLC1c decreased during the flowering induction period in a seasonal expression pattern in the adult trees, whereas the expression level of MdFLC3 did not decrease during that period. This suggests that MdFLC1 is involved in flowering induction in the annual growth cycle of adult trees. In apple seedlings, because phase change can be observed in individuals, seedlings can be used for analysis of expression during phase transition. The expression levels of MdFLC1b, MdFLC1c, and MdFLC3 were high during the juvenile phase and low during the transitional and adult phases. Because the expression pattern of MdFLC3 suggests that it plays a specific role in juvenility, MdFLC3 was subjected to functional analysis by transformation of Arabidopsis. The results revealed the function of MdFLC3 as a floral repressor. In addition, MdFT had CArG box-like sequences, putative targets for the suppression of flowering by MdFLC binding, in the introns and promoter regions. These results indicate that apple homologs of FLC, which might play a role upstream of the flowering signals, could be involved in juvenility as well as in annual flowering. Apples with sufficient genome-related information are useful as a model for studying phenomena unique to woody plants such as juvenility and annual flowering.
Collapse
Affiliation(s)
- Hidenao Kagaya
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai 980-8572, Japan; (H.K.); (N.I.)
| | - Naoko Ito
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai 980-8572, Japan; (H.K.); (N.I.)
| | - Tomoki Shibuya
- Faculty of Life and Environmental Science, Shimane University, Matsue 690-8504, Japan;
| | - Sadao Komori
- Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan;
| | - Kazuhisa Kato
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai 980-8572, Japan; (H.K.); (N.I.)
- Correspondence: (K.K.); (Y.K.)
| | - Yoshinori Kanayama
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai 980-8572, Japan; (H.K.); (N.I.)
- Correspondence: (K.K.); (Y.K.)
| |
Collapse
|