1
|
Wang L, Mu Q, Zhang W, Zheng W, Zhu X, Yu Y, Wang Y, Xu W, Lu Z, Han X. Placental targeted drug delivery: a review of recent progress. NANOSCALE 2025; 17:8316-8335. [PMID: 40070242 DOI: 10.1039/d4nr05338a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
The placenta plays a crucial role in mediating nutrient and gas exchange between the mother and fetus during pregnancy. Targeting therapeutic agents to the placenta presents significant opportunities for treating placental disorders and enhancing fetal outcomes. However, the unique structural complexity and selective permeability of the placenta pose substantial challenges for effective drug delivery. This review provides a comprehensive overview of current strategies for placental targeting, including lipid nanoparticle (LNP) delivery systems, targeted peptide modifications, specific antibody targeting of placental receptors, and the use of viral vectors. We critically analyze the advantages and limitations of each approach, emphasizing recent advancements in enhancing targeting specificity and delivery efficiency. By consolidating the latest research developments, this review aims to foster further innovation in placental drug delivery methods and contribute significantly to the advancement of therapeutic strategies for placental disorders, ultimately improving outcomes for both mother and fetus.
Collapse
Affiliation(s)
- Linjian Wang
- Department of Obstetrics, Haining Maternal and Child Health Hospital, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, No. 309, East Shuiyueting Road, Xiashi Street, Haining, Zhejiang, 314400, China
| | - Qiuqiu Mu
- Third Affliated Hospital of Wenzhou Medical University, WanSong Road No. 108, Ruian, Wenzhou, Zhejiang, 325200, China
| | - Wenjing Zhang
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Xueshi Road No. 1, Hangzhou, Zhejiang, 310006, China.
| | - Weiqian Zheng
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Xueshi Road No. 1, Hangzhou, Zhejiang, 310006, China.
| | - Xiaojun Zhu
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Xueshi Road No. 1, Hangzhou, Zhejiang, 310006, China.
| | - Ying Yu
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Xueshi Road No. 1, Hangzhou, Zhejiang, 310006, China.
| | - YuPeng Wang
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Xueshi Road No. 1, Hangzhou, Zhejiang, 310006, China.
| | - Wenli Xu
- Department of Obstetrics, Haining Maternal and Child Health Hospital, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, No. 309, East Shuiyueting Road, Xiashi Street, Haining, Zhejiang, 314400, China
| | - Zhimin Lu
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Xueshi Road No. 1, Hangzhou, Zhejiang, 310006, China.
| | - Xiujun Han
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Xueshi Road No. 1, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
2
|
Pan Y, Hu D, Chen H, Wang M, Dong X, Wan G, Tang H, Wang H, Chen H. PLGA nanocarriers biomimetic of platelet membranes and their interactions with the placental barrier. Int J Pharm 2025; 671:125225. [PMID: 39824267 DOI: 10.1016/j.ijpharm.2025.125225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
This study focuses on the preparation and characterization of platelet membrane biomimetic nanocarriers (P-PLGA NPs) and investigates their interactions with the transplacental barrier. Poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) were coated with platelet membrane (PLTM) to construct P-PLGA NPs. Additionally, fluorinated polyethylenimine (F-PEI) was grafted onto PLGA NPs to prepare F-PEI-PLGA NPs, which were compared with PLGA NPs. In vitro placental barrier cell models using human choriocarcinoma cells (BeWo b30) and in vivo pregnancy animal models using ICR mice were utilized to evaluate the transplacental barrier efficiency of the PLGA NPs with different surface modifications. The results demonstrated that all three types of nanoparticles could accumulate in the uterus and placenta. The transplacental barrier efficiency of F-PEI-PLGA NPs was found to be the highest at 4 h, while P-PLGA NPs exhibited the highest transplacental barrier efficiency at 12 and 24 h. Furthermore, there were no significant effects on the main organs, structure, and quantity of uterine spiral arteries, indicating the safety of the nanoparticles (NPs). P-PLGA NPs are expected to be a safe and effective nano-delivery system for perinatal drug delivery. This study provides insights into the transplacental barrier mechanism of NPs with different surface characteristics.
Collapse
Affiliation(s)
- Yuxue Pan
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Danhui Hu
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Honglei Chen
- The Clinical Laboratory Center of Anyang People's Hospital, Anyang 455000, China
| | - Mengyuan Wang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiaocong Dong
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Guoyun Wan
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Hongbo Tang
- Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing 100026, China.
| | - Haijiao Wang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Hongli Chen
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
3
|
Sun F, Peers de Nieuwburgh M, Hubinont C, Debiève F, Colson A. Gene therapy in preeclampsia: the dawn of a new era. Hypertens Pregnancy 2024; 43:2358761. [PMID: 38817101 DOI: 10.1080/10641955.2024.2358761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
Preeclampsia is a severe complication of pregnancy, affecting an estimated 4 million women annually. It is one of the leading causes of maternal and fetal mortality worldwide, and it has life-long consequences. The maternal multisystemic symptoms are driven by poor placentation, which causes syncytiotrophoblastic stress and the release of factors into the maternal bloodstream. Amongst them, the soluble fms-like tyrosine kinase-1 (sFLT-1) triggers extensive endothelial dysfunction by acting as a decoy receptor for the vascular endothelial growth factor (VEGF) and the placental growth factor (PGF). Current interventions aim to mitigate hypertension and seizures, but the only definite treatment remains induced delivery. Thus, there is a pressing need for novel therapies to remedy this situation. Notably, CBP-4888, a siRNA drug delivered subcutaneously to knock down sFLT1 expression in the placenta, has recently obtained Fast Track approval from the Food and Drug Administration (FDA) and is undergoing a phase 1 clinical trial. Such advance highlights a growing interest and significant potential in gene therapy to manage preeclampsia. This review summarizes the advances and prospects of gene therapy in treating placental dysfunction and illustrates crucial challenges and considerations for these emerging treatments.
Collapse
Affiliation(s)
- Fengxuan Sun
- Department of Reproduction Physiopathology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Maureen Peers de Nieuwburgh
- Department of Reproduction Physiopathology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
- Department of Neonatology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Corinne Hubinont
- Department of Obstetrics, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Frédéric Debiève
- Department of Reproduction Physiopathology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
- Department of Obstetrics, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Arthur Colson
- Department of Reproduction Physiopathology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
- Department of Obstetrics, Cliniques universitaires Saint-Luc, Brussels, Belgium
- Department of Pharmacotherapy and Therapeutics, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
4
|
Abostait A, Abdelkarim M, Bao Z, Miyake Y, Tse WH, Di Ciano-Oliveir C, Buerki-Thurnherr T, Allen C, Keijzer R, Labouta HI. Optimizing lipid nanoparticles for fetal gene delivery in vitro, ex vivo, and aided with machine learning. J Control Release 2024; 376:678-700. [PMID: 39447842 DOI: 10.1016/j.jconrel.2024.10.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/23/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
There is a clinical need to develop lipid nanoparticles (LNPs) to deliver congenital therapies to the fetus during pregnancy. The aim of these therapies is to restore normal fetal development and prevent irreversible conditions after birth. As a first step, LNPs need to be optimized for transplacental transport, safety on the placental barrier and fetal organs and transfection efficiency. We developed and characterized a library of LNPs of varying compositions and used machine learning (ML) models to delineate the determinants of LNP size and zeta potential. Utilizing different in vitro placental models with the help of a Random Forest algorithm, we could identify the top features driving percentage LNP transport and kinetics at 24 h, out of a total of 18 input features represented by 41 LNP formulations and 48 different transport experiments. We further evaluated the LNPs for safety, placental cell uptake, transfection efficiency in placental trophoblasts and fetal lung fibroblasts. To ensure the integrity of the LNPs following transplacental transport, we screened LNPs for transport and transfection using a high-throughput integrated transport-transfection in vitro model. Finally, we assessed toxicity of the LNPs in a tracheal occlusion fetal lung explant model. LNPs showed little to no toxicity to fetal and placental cells. Immunoglobin G (IgG) orientation on the surface of LNPs, PEGylated lipids, and ionizable lipids had significant effects on placental transport. The Random Forest algorithm identified the top features driving LNPs placental transport percentage and kinetics. Zeta potential emerged in the top driving features. Building on the ML model results, we developed new LNP formulations to further optimize the transport leading to 622 % increase in transport at 24 h versus control LNP formulation. To induce preferential siRNA transfection of fetal lung, we further optimized cationic lipid percentage and the lipid-to-siRNA ratio. Studying LNPs in an integrated placental and fetal lung fibroblasts model showed a strong correlation between zeta potential and fetal lung transfection. Finally, we assessed the toxicity of LNPs in a tracheal occlusion lung explant model. The optimized formulations appeared to be safe on ex vivo fetal lungs as indicated by insignificant changes in apoptosis (Caspase-3) and proliferation (Ki67) markers. In conclusion, we have optimized an LNP formulation that is safe, with high transplacental transport and preferential transfection in fetal lung cells. Our research findings represent an important step toward establishing the safety and effectiveness of LNPs for gene delivery to the fetal organs.
Collapse
Affiliation(s)
- Amr Abostait
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto M5B 1T8, Canada; College of Pharmacy, University of Manitoba, Winnipeg R3E 0T5, Canada
| | - Mahmoud Abdelkarim
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto M5B 1T8, Canada; Biomedical Engineering, Faculty of Engineering, University of Toronto, Toronto M5S 3G9, Canada
| | - Zeqing Bao
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Yuichiro Miyake
- Department of Surgery, Division of Pediatric Surgery, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba and Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada; Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku, Tokyo 113-8421, Japan
| | - Wai Hei Tse
- Department of Surgery, Division of Pediatric Surgery, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba and Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | | | - Tina Buerki-Thurnherr
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen 9014, Switzerland
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Richard Keijzer
- Department of Surgery, Division of Pediatric Surgery, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba and Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Hagar I Labouta
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto M5B 1T8, Canada; College of Pharmacy, University of Manitoba, Winnipeg R3E 0T5, Canada; Biomedical Engineering, Faculty of Engineering, University of Toronto, Toronto M5S 3G9, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada.
| |
Collapse
|
5
|
Afzal A, Khan M, Gul Z, Asif R, Shahzaman S, Parveen A, Imran M, Khawar MB. Extracellular Vesicles: the Next Frontier in Pregnancy Research. Reprod Sci 2024; 31:1204-1214. [PMID: 38151656 DOI: 10.1007/s43032-023-01434-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
Extracellular vehicles (EVs) have been involved in several aspects of pregnancy, including endometrial receptivity, embryo implantation, and embryo-maternal communication showing them associated with pregnancy disorders, such as preeclampsia, gestational diabetes mellitus, and preterm birth. Further research is warranted to fully comprehend the exact pathophysiological roles of EVs and to develop new therapies targeting EVs thereby improving pregnancy outcomes. Herein, we review the recent knowledge on the multifaceted roles of EVs during pregnancy and address the majority of the molecular interactions between EVs, maternal, and fetal cells with an emphasis on disorders of pregnancy under the influence of EVs. Moreover, we also discuss its applications in clinical trials followed by prospects.
Collapse
Affiliation(s)
- Ali Afzal
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Madeeha Khan
- College of Allied Health Sciences, Akhtar Saeed Medical and Dental College, Lahore, Pakistan
| | - Zaman Gul
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Rameen Asif
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Sara Shahzaman
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Asia Parveen
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Imran
- Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Babar Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.
- Applied Molecular Biology & Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan.
| |
Collapse
|
6
|
Pereira KV, Pacheco CO, Alves IA, Haas SE. A Systematic Patent Review (2008-2023) for Treatment in Pregnancy. Curr Med Chem 2024; 31:6288-6305. [PMID: 38659265 DOI: 10.2174/0109298673296246240410093401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
INTRODUCTION During pregnancy, the woman's body undergoes anatomical and physiological changes, making this period susceptible to maternal-fetal diseases and complications. The consequences of not treating pregnant women include premature birth, low birth weight fetuses, and postnatal behavior disorders. Developing new therapies can accelerate the discovery of safe and effective drugs, contributing to designing novel natural and synthetic products to treat complications the pregnancy. OBJECTIVE This study aimed to carry out a patent review to identify and explore trends in innovation and therapeutic strategies for treating pregnant women. METHODS The Espacenet and WIPO databases were used, with the inclusion criteria being the keywords "pregnancy and drug" and code A61k, from 2008 to 2023, and as exclusion were the access to the patent and focus on human pregnant women. RESULTS After the final screening, 32 patents were selected, with strategies for the treatment of diseases in pregnant women. Of these, 20 patents are on preclinical studies on animals and 12 on pregnant women. It was observed that universities lead the ranking of applications (17/32), and China has the highest number of patents (18/32). Most findings contain herbal medicines and/or the association of natural extracts with synthetic drugs. CONCLUSION From this perspective, new drug administration systems were also developed, which can be a promising source for obtaining new medicines for the treatment of pregnant women; however, research is still limited and shows a gap in stimulating the rapid development of safe drugs that improve the health of pregnant women.
Collapse
Affiliation(s)
- Kélle Velasques Pereira
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, UFSM, Av. Roraima no. 1000, Santa Maria, 97105-900, RS, Brazil
| | - Camila Oliveira Pacheco
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, UFSM, Av. Roraima no. 1000, Santa Maria, 97105-900, RS, Brazil
| | - Izabel Almeida Alves
- Department of Medicines, Faculty of Pharmacy, Federal University of Bahia, UFBA, Salvador, 40170-115, BA, Brazil
| | - Sandra Elisa Haas
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, UFSM, Av. Roraima no. 1000, Santa Maria, 97105-900, RS, Brazil
- Pharmacology and Pharmacometric Laboratory, LABFAR, Federal University of Pampa, Uruguaiana Campus, Brazil
| |
Collapse
|
7
|
Kalashnikova I, Patrikeeva S, Nanovskaya TN, Andreev YA, Ahmed MS, Rytting E. Folate-mediated Transport of Nanoparticles across the Placenta. Pharm Nanotechnol 2024; 12:171-183. [PMID: 37461351 DOI: 10.2174/2211738511666230717122429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/11/2023] [Accepted: 05/31/2023] [Indexed: 05/23/2024]
Abstract
BACKGROUND In this study, a prototype of a targeted nanocarrier for drug delivery for prenatal therapy of the developing fetus was developed and examined in vitro and ex vivo. The folate transport mechanism in the human placenta was utilized as a possible pathway for the transplacental delivery of targeted nanoparticles. METHODS Several types of folic acid-decorated polymeric nanoparticles were synthesized and characterized. During transport studies of targeted and non-targeted fluorescent nanoparticles across the placental barrier, the apparent permeability values, uptake, transfer indices, and distribution in placental tissue were determined. RESULTS The nanoparticles had no effect on BeWo b30 cell viability. In vitro, studies showed significantly higher apparent permeability of the targeted nanoparticles across the cell monolayers as compared to the nontargeted nanoparticles (Pe = 5.92 ± 1.44 ×10-6 cm/s for PLGA-PEG-FA vs. 1.26 ± 0.31 ×10-6 cm/s for PLGA-PEG, P < 0.05), and the transport of the targeted nanoparticles was significantly inhibited by excess folate. Ex vivo placental perfusion showed significantly greater accumulation of the targeted nanoparticles in the placental tissue (4.31 ± 0.91%/g for PLGA-PEG-FA vs. 2.07 ± 0.26%/g for PLGA-PEG). CONCLUSION The data obtained suggested different mechanisms for the uptake and transplacental transfer of targeted versus nontargeted nanoparticles. This targeted nanoformulation may be a promising strategy for fetal drug therapy.
Collapse
Affiliation(s)
- Irina Kalashnikova
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Svetlana Patrikeeva
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Tatiana N Nanovskaya
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yaroslav A Andreev
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Mahmoud S Ahmed
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Erik Rytting
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
8
|
Foster EG, Sillman B, Liu Y, Summerlin M, Kumar V, Sajja BR, Cassidy AR, Edagwa B, Gendelman HE, Bade AN. Long-acting dolutegravir formulations prevent neurodevelopmental impairments in a mouse model. Front Pharmacol 2023; 14:1294579. [PMID: 38149054 PMCID: PMC10750158 DOI: 10.3389/fphar.2023.1294579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023] Open
Abstract
The World Health Organization has recommended dolutegravir (DTG) as a preferred first-line treatment for treatment naive and experienced people living with human immunodeficiency virus type one (PLWHIV). Based on these recommendations 15 million PLWHIV worldwide are expected to be treated with DTG regimens on or before 2025. This includes pregnant women. Current widespread use of DTG is linked to the drug's high potency, barrier to resistance, and cost-effectiveness. Despite such benefits, potential risks of DTG-linked fetal neurodevelopmental toxicity remain a concern. To this end, novel formulation strategies are urgently needed in order to maximize DTG's therapeutic potentials while limiting adverse events. In regard to potential maternal fetal toxicities, we hypothesized that injectable long-acting nanoformulated DTG (NDTG) could provide improved safety by reducing drug fetal exposures compared to orally administered native drug. To test this notion, we treated pregnant C3H/HeJ mice with daily oral native DTG at a human equivalent dosage (5 mg/kg; n = 6) or vehicle (control; n = 8). These were compared against pregnant mice injected with intramuscular (IM) NDTG formulations given at 45 (n = 3) or 25 (n = 4) mg/kg at one or two doses, respectively. Treatment began at gestation day (GD) 0.5. Magnetic resonance imaging scanning of live dams at GD 17.5 was performed to obtain T1 maps of the embryo brain to assess T1 relaxation times of drug-induced oxidative stress. Significantly lower T1 values were noted in daily oral native DTG-treated mice, whereas comparative T1 values were noted between control and NDTG-treated mice. This data reflected prevention of DTG-induced oxidative stress when delivered as NDTG. Proteomic profiling of embryo brain tissues harvested at GD 17.5 demonstrated reductions in oxidative stress, mitochondrial impairments, and amelioration of impaired neurogenesis and synaptogenesis in NDTG-treated mice. Pharmacokinetic (PK) tests determined that both daily oral native DTG and parenteral NDTG achieved clinically equivalent therapeutic plasma DTG levels in dams (4,000-6,500 ng/mL). Importantly, NDTG led to five-fold lower DTG concentrations in embryo brain tissues compared to daily oral administration. Altogether, our preliminary work suggests that long-acting drug delivery can limit DTG-linked neurodevelopmental deficits.
Collapse
Affiliation(s)
- Emma G. Foster
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Brady Sillman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Yutong Liu
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Micah Summerlin
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Vikas Kumar
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Balasrinivasa R. Sajja
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Adam R. Cassidy
- Departments of Psychiatry and Psychology & Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Aditya N. Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
9
|
Tang M, Zhang X, Fei W, Xin Y, Zhang M, Yao Y, Zhao Y, Zheng C, Sun D. Advance in placenta drug delivery: concern for placenta-originated disease therapy. Drug Deliv 2023; 30:2184315. [PMID: 36883905 PMCID: PMC10003143 DOI: 10.1080/10717544.2023.2184315] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
In the therapy of placenta-originated diseases during pregnancy, the main challenges are fetal exposure to drugs, which can pass through the placenta and cause safety concerns for fetal development. The design of placenta-resident drug delivery system is an advantageous method to minimize fetal exposure as well as reduce adverse maternal off-target effects. By utilizing the placenta as a biological barrier, the placenta-resident nanodrugs could be trapped in the local placenta to concentrate on the treatment of this abnormal originated tissue. Therefore, the success of such systems largely depends on the placental retention capacity. This paper expounds on the transport mechanism of nanodrugs in the placenta, analyzes the factors that affect the placental retention of nanodrugs, and summarizes the advantages and concerns of current nanoplatforms in the treatment of placenta-originated diseases. In general, this review aims to provide a theoretical basis for the construction of placenta-resident drug delivery systems, which will potentially enable safe and efficient clinical treatment for placenta-originated diseases in the future.
Collapse
Affiliation(s)
- Miao Tang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiao Zhang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Weidong Fei
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yu Xin
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Meng Zhang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yao Yao
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yunchun Zhao
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Dongli Sun
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| |
Collapse
|
10
|
Hu M, Xu M, Chen Y, Ye Z, Zhu S, Cai J, Zhang M, Zhang C, Huang R, Ye Q, Ao H. Therapeutic potential of toosendanin: Novel applications of an old ascaris repellent as a drug candidate. Biomed Pharmacother 2023; 167:115541. [PMID: 37738795 DOI: 10.1016/j.biopha.2023.115541] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023] Open
Abstract
Toosendanin (TSN), extracted from Melia. toosendan Sieb.et Zucc. and Melia. azedarach L., has been developed into an ascaris repellent in China. However, with the improvement of public health protection, the incidence of ascariasis has been reduced considerably, resulting in limited medical application of TSN. Therefore, it is questionable whether this old ascaris repellent can develop into a drug candidate. Modern studies have shown that TSN has strong pharmacological activities, including anti-tumor, anti-botulinum, anti-viral and anti-parasitic potentials. It also can regulate fat formation and improve inflammation. These researches indicate that TSN has great potential to be developed into a corresponding medical product. In order to better development and application of TSN, the availability, pharmacodynamics, pharmacokinetics and toxicology of TSN are summarized systematically. In addition, this review discusses shortcomings in the current researches and provides useful suggestions about how TSN developed into a drug candidate. Therefore, this paper illustrates the possibility of developing TSN as a medical product, aimed to provide directions for the clinical application and further research of TSN.
Collapse
Affiliation(s)
- Minghao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Min Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Yuchen Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Zhangkai Ye
- Xinjiang Normal University, Urumqi 830017, Xinjiang, China
| | - Shunpeng Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Jia Cai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Mengxue Zhang
- First School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chi Zhang
- School of health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Ruizhen Huang
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Qiang Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.
| |
Collapse
|
11
|
Trac N, Ashraf A, Giblin J, Prakash S, Mitragotri S, Chung EJ. Spotlight on Genetic Kidney Diseases: A Call for Drug Delivery and Nanomedicine Solutions. ACS NANO 2023; 17:6165-6177. [PMID: 36988207 PMCID: PMC10145694 DOI: 10.1021/acsnano.2c12140] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Nanoparticles as drug delivery carriers have benefited diseases, including cancer, since the 1990s, and more recently, their promise to quickly and efficiently be mobilized to fight against global diseases such as in the COVID-19 pandemic have been proven. Despite these success stories, there are limited nanomedicine efforts for chronic kidney diseases (CKDs), which affect 844 million people worldwide and can be linked to a variety of genetic kidney diseases. In this Perspective, we provide a brief overview of the clinical status of genetic kidney diseases, background on kidney physiology and a summary of nanoparticle design that enable kidney access and targeting, and emerging technological strategies that can be applied for genetic kidney diseases, including rare and congenital kidney diseases. Finally, we conclude by discussing gaps in knowledge remaining in both genetic kidney diseases and kidney nanomedicine and collective efforts that are needed to bring together stakeholders from diverse expertise and industries to enable the development of the most relevant drug delivery strategies that can make an impact in the clinic.
Collapse
Affiliation(s)
- Noah Trac
- Department
of Biomedical Engineering, University of
Southern California, Los Angeles, California 90089, United States
| | - Anisa Ashraf
- Department
of Biomedical Engineering, University of
Southern California, Los Angeles, California 90089, United States
| | - Joshua Giblin
- Department
of Biomedical Engineering, University of
Southern California, Los Angeles, California 90089, United States
| | - Supriya Prakash
- John
A. Paulson School of Engineering & Applied Sciences, Harvard University, Allston, Massachusetts 02134, United States
- Wyss
Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, United States
| | - Samir Mitragotri
- John
A. Paulson School of Engineering & Applied Sciences, Harvard University, Allston, Massachusetts 02134, United States
- Wyss
Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, United States
| | - Eun Ji Chung
- Department
of Biomedical Engineering, University of
Southern California, Los Angeles, California 90089, United States
- Division
of Nephrology and Hypertension, Department of Medicine, Keck School
of Medicine, University of Southern California, Los Angeles, California 90033, United States
- Norris
Comprehensive Cancer Center, University
of Southern California, Los Angeles, California 90033, United States
- Eli and Edythe
Broad Center for Regenerative Medicine and Stem Cell Research, Keck
School of Medicine, University of Southern
California, Los Angeles, California 90033, United States
- Division
of Vascular Surgery and Endovascular Therapy, Department of Surgery,
Keck School of Medicine, University of Southern
California, Los Angeles, California 90033, United States
- Mork
Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
12
|
Sood A, Kumar A, Gupta VK, Kim CM, Han SS. Translational Nanomedicines Across Human Reproductive Organs Modeling on Microfluidic Chips: State-of-the-Art and Future Prospects. ACS Biomater Sci Eng 2023; 9:62-84. [PMID: 36541361 DOI: 10.1021/acsbiomaterials.2c01080] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Forecasting the consequence of nanoparticles (NPs) and therapeutically significant molecules before materializing for human clinical trials is a mainstay for drug delivery and screening processes. One of the noteworthy obstacles that has prevented the clinical translation of NP-based drug delivery systems and novel drugs is the lack of effective preclinical platforms. As a revolutionary technology, the organ-on-a-chip (OOC), a coalition of microfluidics and tissue engineering, has surfaced as an alternative to orthodox screening platforms. OOC technology recapitulates the structural and physiological features of human organs along with intercommunications between tissues on a chip. The current review discusses the concept of microfluidics and confers cutting-edge fabrication processes for chip designing. We also outlined the advantages of microfluidics in analyzing NPs in terms of characterization, transport, and degradation in biological systems. The review further elaborates the scope and research on translational nanomedicines in human reproductive organs (testis, placenta, uterus, and menstrual cycle) by taking the advantages offered by microfluidics and shedding light on their potential future implications. Finally, we accentuate the existing challenges for clinical translation and scale-up dynamics for microfluidics chips and emphasize its future perspectives.
Collapse
Affiliation(s)
- Ankur Sood
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.,Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College, Edinburgh EH9 3JG, United Kingdom
| | - Chul Min Kim
- Department of Mechatronics Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju, Gyeongsangnam-do 52725, South Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.,Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| |
Collapse
|
13
|
Foster EG, Gendelman HE, Bade AN. HIV-1 Integrase Strand Transfer Inhibitors and Neurodevelopment. Pharmaceuticals (Basel) 2022; 15:1533. [PMID: 36558984 PMCID: PMC9783753 DOI: 10.3390/ph15121533] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Children born to mothers, with or at risk, of human immunodeficiency virus type-1 (HIV-1) infection are on the rise due to affordable access of antiretroviral therapy (ART) to pregnant women or those of childbearing age. Each year, up to 1.3 million HIV-1-infected women on ART have given birth with recorded mother-to-child HIV-1 transmission rates of less than 1%. Despite this benefit, the outcomes of children exposed to antiretroviral drugs during pregnancy, especially pre- and post- natal neurodevelopment remain incompletely understood. This is due, in part, to the fact that pregnant women are underrepresented in clinical trials. This is underscored by any potential risks of neural tube defects (NTDs) linked, in measure, to periconceptional usage of dolutegravir (DTG). A potential association between DTG and NTDs was first described in Botswana in 2018. Incidence studies of neurodevelopmental outcomes associated with DTG, and other integrase strand transfer inhibitors (INSTIs) are limited as widespread use of INSTIs has begun only recently in pregnant women. Therefore, any associations between INSTI use during pregnancy, and neurodevelopmental abnormalities remain to be explored. Herein, United States Food and Drug Administration approved ARVs and their use during pregnancy are discussed. We provide updates on INSTI pharmacokinetics and adverse events during pregnancy together with underlying mechanisms which could affect fetal neurodevelopment. Overall, this review seeks to educate both clinical and basic scientists on potential consequences of INSTIs on fetal outcomes as a foundation for future scientific investigations.
Collapse
Affiliation(s)
- Emma G. Foster
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Aditya N. Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
14
|
Functionally integrating nanoparticles alleviate deep vein thrombosis in pregnancy and rescue intrauterine growth restriction. Nat Commun 2022; 13:7166. [PMID: 36418325 PMCID: PMC9684510 DOI: 10.1038/s41467-022-34878-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
There is still unmet demand for effective, safe, and patient-friendly anti-thrombotics to treat deep vein thrombosis (DVT) during pregnancy. Here we first engineer a bioactive amphiphile (TLH) by simultaneously conjugating Tempol and linoleic acid onto low molecular weight heparin (LMWH), which can assemble into multifunctional nanoparticles (TLH NP). In pregnant rats with DVT, TLH NP can target and dissolve thrombi, recanalize vessel occlusion, and eradicate the recurrence of thromboembolism, thereby reversing DVT-mediated intrauterine growth restriction and delayed development of fetuses. Mechanistically, therapeutic effects of TLH NP are realized by inhibiting platelet aggregation, facilitating thrombolysis, reducing local inflammation, attenuating oxidative stress, promoting endothelial repair, and increasing bioavailability. By decorating with a fibrin-binding peptide, targeting efficiency and therapeutic benefits of TLH NP are considerably improved. Importantly, LMWH nanotherapies show no toxicities to the mother and fetus at the dose 10-time higher than the examined therapeutic dosage.
Collapse
|
15
|
Abstract
Pregnancy complications affect millions of women each year. Some of these diseases have high morbidity and mortality such as preeclampsia. At present, there is no safe and effective treatment for pregnancy complications, so it is still a difficult clinical problem. As many pregnancy complications are closely related to placental dysplasia, placenta-specific therapy, as an important method, is expected to be a safe, effective, and specific therapeutic strategy. This review explains in detail the placenta physiological structure, characteristics, and action mechanism of some biomolecules and signaling pathways that play roles in normal development and disorders of the development of the placenta, and how to use these biomolecules as therapeutic targets when the placenta disorder causes disease, combining the latest progress in the field of nanodelivery systems, so as to lay a foundation for the development of placenta-specific therapy of pregnancy complications.
Collapse
Affiliation(s)
- Yang Liu
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100, Kexue Avenue, Zhengzhou, 450001, China
| | - Xingli Gao
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100, Kexue Avenue, Zhengzhou, 450001, China
| | - Songwei Gao
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100, Kexue Avenue, Zhengzhou, 450001, China.,Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yu Song
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yongran Guo
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100, Kexue Avenue, Zhengzhou, 450001, China
| | - Jing Cao
- Department of Pathology, The Third Affiliated Hospital of Zhenzhou University, Zhengzhou, 450001, China
| |
Collapse
|
16
|
Zhang X, Chen Y, Sun D, Zhu X, Ying X, Yao Y, Fei W, Zheng C. Emerging pharmacologic interventions for pre-eclampsia treatment. Expert Opin Ther Targets 2022; 26:739-759. [PMID: 36223503 DOI: 10.1080/14728222.2022.2134779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Pre-eclampsia is a serious pregnancy complication and a major global concern for the mortality of both mother and fetus. Existing symptomatic treatments do not delay disease progression; thus, timely delivery of the baby is the most effective measure. However, the risk of various maternal and fetal injuries remains. AREAS COVERED In this review, we summarize the potential strategies for pharmacologic interventions in pre-eclamptic therapy. Specifically, we discuss the pathophysiological process of various effective candidate therapeutics that act on potential pathways and molecular targets to inhibit key stages of the disease. We refer to this pathogenesis-focused drug discovery model as a pathogenesis-target-drug (P-T-D) strategy. Finally, we discuss the introduction of nanotechnologies to improve the safety and efficacy of therapeutics via their specific placental targeting ability and placental retention effects. EXPERT OPINION Despite the active development of novel pharmacological treatments based on our current knowledge of pre-eclamptic pathogenesis, investigations are still in the early phase. Thus, further exploration of the pathological mechanisms, integrated with the P-T-D strategy and novel nanosystems, could encourage the development of more effective and safer strategies. Such advances could lead to a shift from expectant management to mechanistic-based therapy for pre-eclampsia.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yue Chen
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Dongli Sun
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xiaojun Zhu
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xia Ying
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yao Yao
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Weidong Fei
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| |
Collapse
|
17
|
Size-dependent placental retention effect of liposomes in ICR pregnant mice: Potential superiority in placenta-derived disease therapy. Int J Pharm 2022; 625:122121. [PMID: 35987320 DOI: 10.1016/j.ijpharm.2022.122121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 11/23/2022]
Abstract
The great challenge in developing safe medications for placenta-derived diseases is to reduce or eliminate fetal drug exposure while still providing the necessary therapeutic effect. Rapid advances in nanotechnology have brought opportunities for the therapy of placenta-derived disease through accumulating the drug in the placenta while reducing its placental penetration. Among various nanocarriers, liposomes are regarded as an ideal type of carrier for placental drug delivery due to their biosafety and biodegradability. However, their placental retention effect with different particle sizes has not been studied. This research aimed to explore a suitable size of liposomes for placenta drug delivery. Cy 5 dye was chosen as a model molecule for tracing the distribution of three different-sized liposomes (∼80 nm, 200 nm, and 500 nm) in ICR pregnant mice. The stability, cytotoxicity, and cellular uptake study of Cy 5-loaded liposomes were performed. The in vivo fluorescence studies on ICR pregnant mice suggested that the particle size of liposomes was positively correlated with the degree of liposome aggregation in the placenta. The ratio of fluorescence in the placenta and fetus section (P/F value) was proposed to evaluate the placental retention effect of different-sized liposomes. The results showed that the liposomes with 500 nm had the highest P/F value and thus exhibited the strongest placental retention effect and the weakest placental penetration ability. Moreover, liquid chromatography-mass spectrometry analysis confirmed the reliability of the fluorescence section analysis in exploring the placental retention effect of nanovehicles. In general, this study introduced a simple and intuitive method to evaluate the placental retention effect of nanoplatforms and defined a suitable size of liposomes for placenta-derived disease drug delivery.
Collapse
|
18
|
Bertozzi S, Corradetti B, Seriau L, Diaz Ñañez JA, Cedolini C, Fruscalzo A, Cesselli D, Cagnacci A, Londero AP. Nanotechnologies in Obstetrics and Cancer during Pregnancy: A Narrative Review. J Pers Med 2022; 12:jpm12081324. [PMID: 36013273 PMCID: PMC9410527 DOI: 10.3390/jpm12081324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/01/2022] [Accepted: 08/14/2022] [Indexed: 11/30/2022] Open
Abstract
Nanotechnology, the art of engineering structures on a molecular level, offers the opportunity to implement new strategies for the diagnosis and management of pregnancy-related disorders. This review aims to summarize the current state of nanotechnology in obstetrics and cancer in pregnancy, focusing on existing and potential applications, and provides insights on safety and future directions. A systematic and comprehensive literature assessment was performed, querying the following databases: PubMed/Medline, Scopus, and Endbase. The databases were searched from their inception to 22 March 2022. Five independent reviewers screened the items and extracted those which were more pertinent within the scope of this review. Although nanotechnology has been on the bench for many years, most of the studies in obstetrics are preclinical. Ongoing research spans from the development of diagnostic tools, including optimized strategies to selectively confine contrast agents in the maternal bloodstream and approaches to improve diagnostics tests to be used in obstetrics, to the synthesis of innovative delivery nanosystems for therapeutic interventions. Using nanotechnology to achieve spatial and temporal control over the delivery of therapeutic agents (e.g., commonly used drugs, more recently defined formulations, or gene therapy-based approaches) offers significant advantages, including the possibility to target specific cells/tissues of interest (e.g., the maternal bloodstream, uterus wall, or fetal compartment). This characteristic of nanotechnology-driven therapy reduces side effects and the amount of therapeutic agent used. However, nanotoxicology appears to be a significant obstacle to adopting these technologies in clinical therapeutic praxis. Further research is needed in order to improve these techniques, as they have tremendous potential to improve the accuracy of the tests applied in clinical praxis. This review showed the increasing interest in nanotechnology applications in obstetrics disorders and pregnancy-related pathologies to improve the diagnostic algorithms, monitor pregnancy-related diseases, and implement new treatment strategies.
Collapse
Affiliation(s)
- Serena Bertozzi
- Breast Unit, Department of Surgery, DAME, University Hospital of “Santa Maria della Misericordia”, 33100 Udine, Italy
- Ennergi Research (Non-Profit Organisation), 33050 Lestizza, Italy
| | - Bruna Corradetti
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Luca Seriau
- Breast Unit, Department of Surgery, DAME, University Hospital of “Santa Maria della Misericordia”, 33100 Udine, Italy
| | - José Andrés Diaz Ñañez
- Breast Unit, Department of Surgery, DAME, University Hospital of “Santa Maria della Misericordia”, 33100 Udine, Italy
- Ennergi Research (Non-Profit Organisation), 33050 Lestizza, Italy
| | - Carla Cedolini
- Breast Unit, Department of Surgery, DAME, University Hospital of “Santa Maria della Misericordia”, 33100 Udine, Italy
- Ennergi Research (Non-Profit Organisation), 33050 Lestizza, Italy
| | - Arrigo Fruscalzo
- Clinic of Obstetrics and Gynecology, University Hospital of Fribourg, 1752 Fribourg, Switzerland
| | - Daniela Cesselli
- Institute of Pathology, DAME, University of Udine, University Hospital of Udine, 33100 Udine, Italy
| | - Angelo Cagnacci
- Academic Unit of Obstetrics and Gynaecology, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Infant Health, University of Genoa, 16132 Genova, Italy
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Ambrogio P. Londero
- Ennergi Research (Non-Profit Organisation), 33050 Lestizza, Italy
- Academic Unit of Obstetrics and Gynaecology, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Infant Health, University of Genoa, 16132 Genova, Italy
- Correspondence: or
| |
Collapse
|
19
|
Khalili L, Dehghan G, Sheibani N, Khataee A. Smart active-targeting of lipid-polymer hybrid nanoparticles for therapeutic applications: Recent advances and challenges. Int J Biol Macromol 2022; 213:166-194. [PMID: 35644315 DOI: 10.1016/j.ijbiomac.2022.05.156] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 12/24/2022]
Abstract
The advances in producing multifunctional lipid-polymer hybrid nanoparticles (LPHNs) by combining the biomimetic behavior of liposomes and architectural advantages of polymers have provided great opportunities for selective and efficient therapeutics delivery. The constructed LPHNs exhibit different therapeutic efficacies for special uses based on characteristics of different excipients. However, the high mechanical/structural stability of hybrid nano-systems could be viewed as both a negative property and a positive feature, where the concomitant release of drug molecules in a controllable manner is required. In addition, difficulties in scaling up the LPHNs production, due to involvement of several criteria, limit their application for biomedical fields, especially in monitoring, bioimaging, and drug delivery. To address these challenges bio-modifications have exhibited enormous potential to prepare reproducible LPHNs for site-specific therapeutics delivery, diagnostic and preventative applications. The ever-growing surface bio-functionality has provided continuous vitality to this biotechnology and has also posed desirable biosafety to nanoparticles (NPs). As a proof-of-concept, this manuscript provides a crucial review of coated lipid and polymer NPs displaying excellent surface functionality and architectural advantages. We also provide a description of structural classifications and production methodologies, as well as the biomedical possibilities and translational obstacles in the development of surface modified nanocarrier technology.
Collapse
Affiliation(s)
- Leila Khalili
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran.
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, Cell and Regenerative Biology, and Biomedical Engineering, University of Wisconsin School of Medicine, Madison, WI, USA
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, Mersin 10, Turkey.
| |
Collapse
|
20
|
The Update of Fetal Growth Restriction Associated with Biomarkers. MATERNAL-FETAL MEDICINE 2022. [DOI: 10.1097/fm9.0000000000000156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
21
|
Ma D, Lu Y, Liang Y, Ruan T, Li J, Zhao C, Wang Y, Jiang G. A Critical Review on Transplacental Transfer of Per- and Polyfluoroalkyl Substances: Prenatal Exposure Levels, Characteristics, and Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6014-6026. [PMID: 34142548 DOI: 10.1021/acs.est.1c01057] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Prenatal exposure to perfluoroalkyl and polyfluoroalkyl substances (PFASs) has aroused public concerns as it can pose multiple health threats to pregnant women and cause adverse birth outcomes for fetuses. In previous studies, the prenatal exposure levels and transplacental transfer efficiencies (TTE) of PFASs have been reported and discussed. Specifically, the binding affinities between PFASs and some transporters were determined, demonstrating that the TTE values of PFASs are highly dependent on their binding behaviors. To summarize primary findings of previous studies and propose potential guidance for future research, this article provides a systematic overview on levels and characteristics of prenatal exposure to PFASs worldwide, summarizes relationships between TTE values and structures of PFASs, and discusses possible transplacental transfer mechanisms, especially for the combination between PFASs and transporters. Given the critical roles of transporters in the transplacental transfer of PFASs, we conducted molecular docking to further clarify the binding behaviors between PFASs and the selected transporters. We proposed that the machine learning can be a superior method to predict and reveal behaviors and mechanisms of the transplacental transfer of PFASs. In total, this is the first review providing a comprehensive overview on the prenatal exposure levels and transplacental transfer mechanisms of PFASs.
Collapse
Affiliation(s)
- Donghui Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Juan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chunyan Zhao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Fliedel L, Alhareth K, Mignet N, Fournier T, Andrieux K. Placental Models for Evaluation of Nanocarriers as Drug Delivery Systems for Pregnancy Associated Disorders. Biomedicines 2022; 10:936. [PMID: 35625672 PMCID: PMC9138319 DOI: 10.3390/biomedicines10050936] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/06/2022] [Accepted: 04/18/2022] [Indexed: 12/12/2022] Open
Abstract
Pregnancy-associated disorders affect around 20% of pregnancies each year around the world. The risk associated with pregnancy therapeutic management categorizes pregnant women as "drug orphan" patients. In the last few decades, nanocarriers have demonstrated relevant properties for controlled drug delivery, which have been studied for pregnancy-associated disorders. To develop new drug dosage forms it is mandatory to have access to the right evaluation models to ensure their usage safety and efficacy. This review exposes the various placental-based models suitable for nanocarrier evaluation for pregnancy-associated therapies. We first review the current knowledge about nanocarriers as drug delivery systems and how placenta can be used as an evaluation model. Models are divided into three categories: in vivo, in vitro, and ex vivo placental models. We then examine the recent studies using those models to evaluate nanocarriers behavior towards the placental barrier and which information can be gathered from these results. Finally, we propose a flow chart on the usage and the combination of models regarding the nanocarriers and nanoparticles studied and the intended therapeutic strategy.
Collapse
Affiliation(s)
- Louise Fliedel
- Unité de Technologies Chimiques et Biologiques Pour la Santé (UTCBS), Inserm U1267, CNRS UMR8258, Faculté de Pharmacie, Université de Paris Cité, 75006 Paris, France; (L.F.); (K.A.); (N.M.)
- Pathophysiology and Pharmacotoxicology of the Human Placenta, Pre and Postnatal Microbiota Unit (3PHM), Inserm U1139, Faculté de Pharmacie, Université de Paris Cité, 75006 Paris, France;
| | - Khair Alhareth
- Unité de Technologies Chimiques et Biologiques Pour la Santé (UTCBS), Inserm U1267, CNRS UMR8258, Faculté de Pharmacie, Université de Paris Cité, 75006 Paris, France; (L.F.); (K.A.); (N.M.)
| | - Nathalie Mignet
- Unité de Technologies Chimiques et Biologiques Pour la Santé (UTCBS), Inserm U1267, CNRS UMR8258, Faculté de Pharmacie, Université de Paris Cité, 75006 Paris, France; (L.F.); (K.A.); (N.M.)
| | - Thierry Fournier
- Pathophysiology and Pharmacotoxicology of the Human Placenta, Pre and Postnatal Microbiota Unit (3PHM), Inserm U1139, Faculté de Pharmacie, Université de Paris Cité, 75006 Paris, France;
| | - Karine Andrieux
- Unité de Technologies Chimiques et Biologiques Pour la Santé (UTCBS), Inserm U1267, CNRS UMR8258, Faculté de Pharmacie, Université de Paris Cité, 75006 Paris, France; (L.F.); (K.A.); (N.M.)
| |
Collapse
|
23
|
The theranostic roles of extracellular vesicles in pregnancy disorders. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2022. [DOI: 10.12750/jarb.37.1.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
24
|
How Could Nanomedicine Improve the Safety of Contrast Agents for MRI during Pregnancy? SCI 2022. [DOI: 10.3390/sci4010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pregnancy is a delicate state, during which timely investigation of possible physiological anomalies is essential to reduce the risk of maternal and fetal complications. Medical imaging encompasses different technologies to image the human body for the diagnosis, course of treatment management, and follow-up of diseases. Ultrasound (US) is currently the imaging system of choice for pregnant patients. However, sonographic evaluations can be non-effective or give ambiguous results. Therefore, magnetic resonance imaging (MRI), due to its excellent tissue penetration, the possibility of acquisition of three-dimensional anatomical information, and its high spatial resolution, is considered a valid diagnostical alternative. Nevertheless, currently employed contrast agents to improve the MRI image quality are harmful to the fetus. Because of their ability to cross the placenta, their use on pregnant patients is avoided. This review will firstly recapitulate the most common non-obstetrical, obstetrical, and fetal indications for magnetic resonance imaging on pregnant women. Fetal safety risks, due to the use of strong magnetic fields and exogenous contrast agents, will be presented. Then, possible advantages of nanostructured contrast agents compared to current molecular ones are explored. Nanosystems’ characteristics affecting contrast efficiency, and their potential for improving contrast-enhanced MRI’s safety in pregnant women, are discussed. Lastly, promising examples of nanoparticles as safer alternatives to current MRI contrast agents in pregnancy are discussed.
Collapse
|
25
|
Lane MKM, Garedew M, Deary EC, Coleman CN, Ahrens-Víquez MM, Erythropel HC, Zimmerman JB, Anastas PT. What to Expect When Expecting in Lab: A Review of Unique Risks and Resources for Pregnant Researchers in the Chemical Laboratory. Chem Res Toxicol 2022; 35:163-198. [PMID: 35130693 PMCID: PMC8864617 DOI: 10.1021/acs.chemrestox.1c00380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Pregnancy presents a unique risk
to chemical researchers due to
their occupational exposures to chemical, equipment, and physical
hazards in chemical research laboratories across science, engineering,
and technology disciplines. Understanding “risk” as
a function of hazard, exposure, and vulnerability, this review aims
to critically examine the state of the science for the risks and associated
recommendations (or lack thereof) for pregnant researchers in chemical
laboratories (labs). Commonly encountered hazards for pregnant lab
workers include chemical hazards (organic solvents, heavy metals,
engineered nanomaterials, and endocrine disruptors), radiation hazards
(ionizing radiation producing equipment and materials and nonionizing
radiation producing equipment), and other hazards related to the lab
environment (excessive noise, excessive heat, psychosocial stress,
strenuous physical work, and/or abnormal working hours). Lab relevant
doses and routes of exposure in the chemical lab environment along
with literature and governmental recommendations or resources for
exposure mitigation are critically assessed. The specific windows
of vulnerability based on stage of pregnancy are described for each
hazard, if available. Finally, policy gaps for further scientific
research are detailed to enhance future guidance to protect pregnant
lab workers.
Collapse
Affiliation(s)
- Mary Kate M Lane
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States.,Center for Green Chemistry and Green Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Mahlet Garedew
- Center for Green Chemistry and Green Engineering, Yale University, New Haven, Connecticut 06511, United States.,School of the Environment, Yale University, New Haven, Connecticut 06511, United States
| | - Emma C Deary
- Department of Anthropology, Wellesley College, Wellesley, Massachusetts 02481, United States
| | - Cherish N Coleman
- Department of Biology, University of Detroit Mercy, Detroit, Michigan 48221, United States
| | - Melissa M Ahrens-Víquez
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Hanno C Erythropel
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States.,Center for Green Chemistry and Green Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Julie B Zimmerman
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States.,Center for Green Chemistry and Green Engineering, Yale University, New Haven, Connecticut 06511, United States.,School of the Environment, Yale University, New Haven, Connecticut 06511, United States
| | - Paul T Anastas
- Center for Green Chemistry and Green Engineering, Yale University, New Haven, Connecticut 06511, United States.,School of the Environment, Yale University, New Haven, Connecticut 06511, United States.,School of Public Health, Yale University, New Haven, Connecticut 06510, United States
| |
Collapse
|
26
|
Patel SK, Valicherla GR, Micklo AC, Rohan LC. Drug delivery strategies for management of women's health issues in the upper genital tract. Adv Drug Deliv Rev 2021; 177:113955. [PMID: 34481034 DOI: 10.1016/j.addr.2021.113955] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/23/2021] [Accepted: 08/28/2021] [Indexed: 02/08/2023]
Abstract
The female upper genital tract (UGT) hosts important reproductive organs including the cervix, uterus, fallopian tubes, and ovaries. Several pathologies affect these organ systems such as infections, reproductive issues, structural abnormalities, cancer, and inflammatory diseases that could have significant impact on women's overall health. Effective disease management is constrained by the multifaceted nature of the UGT, complex anatomy and a dynamic physiological environment. Development of drug delivery strategies that can overcome mucosal and safety barriers are needed for effective disease management. This review introduces the anatomy, physiology, and mucosal properties of the UGT and describes drug delivery barriers, advances in drug delivery technologies, and opportunities available for new technologies that target the UGT.
Collapse
|
27
|
Pepe GJ, Albrecht ED. Novel Technologies for Target Delivery of Therapeutics to the Placenta during Pregnancy: A Review. Genes (Basel) 2021; 12:1255. [PMID: 34440429 PMCID: PMC8392549 DOI: 10.3390/genes12081255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
Uterine spiral artery remodeling is essential for placental perfusion and fetal growth and, when impaired, results in placental ischemia and pregnancy complications, e.g., fetal growth restriction, preeclampsia, premature birth. Despite the high incidence of adverse pregnancies, current treatment options are limited. Accordingly, research has shifted to the development of gene therapy technologies that provide targeted delivery of "payloads" to the placenta while limiting maternal and fetal exposure. This review describes the current strategies, including placental targeting peptide-bound liposomes, nanoparticle or adenovirus constructs decorated with specific peptide sequences and placental gene promoters delivered via maternal IV injection, directly into the placenta or the uterine artery, as well as noninvasive site-selective targeting of regulating genes conjugated with microbubbles via contrast-enhanced ultrasound. The review also provides a perspective on the effectiveness of these technologies in various animal models and their practicability and potential use for targeted placental delivery of therapeutics and genes in adverse human pregnancies affected by placental dysfunction.
Collapse
Affiliation(s)
- Gerald J. Pepe
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA;
| | - Eugene D. Albrecht
- Departments of Obstetrics/Gynecology/Reproductive Sciences and Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
28
|
Role of Extracellular Vesicles in Placental Inflammation and Local Immune Balance. Mediators Inflamm 2021; 2021:5558048. [PMID: 34239366 PMCID: PMC8235987 DOI: 10.1155/2021/5558048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/26/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
Background Pregnancy maintenance depends on the formation of normal placentas accompanied by trophoblast invasion and vascular remodeling. Various types of cells, such as trophoblasts, endothelial cells, immune cells, mesenchymal stem cells (MSCs), and adipocytes, mediate cell-to-cell interactions through soluble factors to maintain normal placental development. Extracellular vesicles (EVs) are diverse nanosized to microsized membrane-bound particles released from various cells. EVs contain tens to thousands of different RNA, proteins, small molecules, DNA fragments, and bioactive lipids. EV-derived microRNAs (miRNAs) and proteins regulate inflammation and trophoblast invasion in the placental microenvironment. Maternal-fetal communication through EV can regulate the key signaling pathways involved in pregnancy maintenance, from implantation to immune regulation. Therefore, EVs and the encapsulating factors play important roles in pregnancy, some of which might be potential biomarkers. Conclusion In this review, we have summarized published studies about the EVs in the placentation and pregnancy-related diseases. By summarizing the role of EVs and their delivering active molecules in pregnancy-related diseases, it provides novel insight into the diagnosis and treatment of diseases.
Collapse
|
29
|
Colson A, Sonveaux P, Debiève F, Sferruzzi-Perri AN. Adaptations of the human placenta to hypoxia: opportunities for interventions in fetal growth restriction. Hum Reprod Update 2020; 27:531-569. [PMID: 33377492 DOI: 10.1093/humupd/dmaa053] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The placenta is the functional interface between the mother and the fetus during pregnancy, and a critical determinant of fetal growth and life-long health. In the first trimester, it develops under a low-oxygen environment, which is essential for the conceptus who has little defense against reactive oxygen species produced during oxidative metabolism. However, failure of invasive trophoblasts to sufficiently remodel uterine arteries toward dilated vessels by the end of the first trimester can lead to reduced/intermittent blood flow, persistent hypoxia and oxidative stress in the placenta with consequences for fetal growth. Fetal growth restriction (FGR) is observed in ∼10% of pregnancies and is frequently seen in association with other pregnancy complications, such as preeclampsia (PE). FGR is one of the main challenges for obstetricians and pediatricians, as smaller fetuses have greater perinatal risks of morbidity and mortality and postnatal risks of neurodevelopmental and cardio-metabolic disorders. OBJECTIVE AND RATIONALE The aim of this review was to examine the importance of placental responses to changing oxygen environments during abnormal pregnancy in terms of cellular, molecular and functional changes in order to highlight new therapeutic pathways, and to pinpoint approaches aimed at enhancing oxygen supply and/or mitigating oxidative stress in the placenta as a mean of optimizing fetal growth. SEARCH METHODS An extensive online search of peer-reviewed articles using PubMed was performed with combinations of search terms including pregnancy, placenta, trophoblast, oxygen, hypoxia, high altitude, FGR and PE (last updated in May 2020). OUTCOMES Trophoblast differentiation and placental establishment are governed by oxygen availability/hypoxia in early pregnancy. The placental response to late gestational hypoxia includes changes in syncytialization, mitochondrial functions, endoplasmic reticulum stress, hormone production, nutrient handling and angiogenic factor secretion. The nature of these changes depends on the extent of hypoxia, with some responses appearing adaptive and others appearing detrimental to the placental support of fetal growth. Emerging approaches that aim to increase placental oxygen supply and/or reduce the impacts of excessive oxidative stress are promising for their potential to prevent/treat FGR. WIDER IMPLICATIONS There are many risks and challenges of intervening during pregnancy that must be considered. The establishment of human trophoblast stem cell lines and organoids will allow further mechanistic studies of the effects of hypoxia and may lead to advanced screening of drugs for use in pregnancies complicated by placental insufficiency/hypoxia. Since no treatments are currently available, a better understanding of placental adaptations to hypoxia would help to develop therapies or repurpose drugs to optimize placental function and fetal growth, with life-long benefits to human health.
Collapse
Affiliation(s)
- Arthur Colson
- Pole of Obstetrics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium.,Pole of Pharmacology & Therapeutics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium.,Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology & Therapeutics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Frédéric Debiève
- Pole of Obstetrics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium.,Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
30
|
Aengenheister L, Favaro RR, Morales-Prieto DM, Furer LA, Gruber M, Wadsack C, Markert UR, Buerki-Thurnherr T. Research on nanoparticles in human perfused placenta: State of the art and perspectives. Placenta 2020; 104:199-207. [PMID: 33418345 DOI: 10.1016/j.placenta.2020.12.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/27/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022]
Abstract
Increasing human exposure to nanoparticles (NPs) from various sources raises concerns for public health, especially for vulnerable risk groups like pregnant women and their developing fetuses. However, nanomedicine and the prospect of creating safe and effective NP-based formulations of drugs hold great promise to revolutionize treatment during pregnancy. With maternal and fetal health at stake, risks and opportunities of NPs in pregnancy need to be carefully investigated. Importantly, a comprehensive understanding of NP transport and effects at the placenta is urgently needed considering the central position of the placenta at the maternal-fetal interface and its many essential functions to enable successful pregnancy. The perfusion of human placental tissue provides a great opportunity to achieve predictive human relevant insights, circumventing uncertainties due to considerable differences in placental structure and function across species. Here, we have reviewed the current literature on the ex vivo human placenta perfusion of NPs. From 16 available studies, it was evident that placental uptake and transfer of NPs are highly dependent on their characteristics like size and surface modifications, which is in line with previous observations from in vitro and animal transport studies. These studies further revealed that special considerations apply for the perfusion of NPs and we identified relevant controls that should be implemented in future perfusion studies. While current studies mostly focused on placental transfer of NPs to conclude on potential fetal exposure, the ex vivo placental perfusion model has considerable potential to reveal novel insights on NP effects on placental tissue functionality and signaling that could indirectly affect maternal-fetal health.
Collapse
Affiliation(s)
- Leonie Aengenheister
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland; Placenta Lab, Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Rodolfo R Favaro
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Diana M Morales-Prieto
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Lea A Furer
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Michael Gruber
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036, Graz, Austria
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036, Graz, Austria
| | - Udo R Markert
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Tina Buerki-Thurnherr
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland.
| |
Collapse
|
31
|
Real-time Assessment of the Development and Function of the Placenta Across Gestation to Support Therapeutics in Pregnancy. Clin Ther 2020; 43:279-286. [PMID: 33246660 DOI: 10.1016/j.clinthera.2020.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022]
Abstract
The placenta is vital to the health and development of the fetus, serving to deliver oxygen and nutrients, facilitate the removal of waste products, and provide a barrier to pathogens and other harmful substances present in the maternal circulation. When these processes fail to operate normally, they can lead to complications of pregnancy such as preeclampsia or fetal growth restriction. The development of novel therapeutics for the mother, fetus, or placenta requires a mechanistic understanding of the development and functions of the placenta. For the obstetric clinician, being able to monitor the placenta throughout the pregnancy and to measure the impact of any treatment modality on the mother and the developing fetus are essential for providing the best possible care. The Eunice Kennedy Shriver National Institute of Child Health and Human Development at the National Institutes of Health has been a longtime supporter of research on the placenta. In 2014, the Human Placenta Project was initiated to help to drive an understanding of the biology of the human placenta and to facilitate the development of novel tools and approaches to allow for safe, noninvasive, real-time assessment of the placenta across pregnancy. Those efforts, along with others from around the globe, are showing promise. Although not yet ready for clinical application, these advances are moving the field forward and are certain to have a tremendous impact on the development and assessment of therapeutics designed for treating conditions of pregnancy.
Collapse
|
32
|
Bongaerts E, Nawrot TS, Van Pee T, Ameloot M, Bové H. Translocation of (ultra)fine particles and nanoparticles across the placenta; a systematic review on the evidence of in vitro, ex vivo, and in vivo studies. Part Fibre Toxicol 2020; 17:56. [PMID: 33138843 PMCID: PMC7607677 DOI: 10.1186/s12989-020-00386-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
Fetal development is a crucial window of susceptibility in which exposure may lead to detrimental health outcomes at birth and later in life. The placenta serves as a gatekeeper between mother and fetus. Knowledge regarding the barrier capacity of the placenta for nanoparticles is limited, mostly due to technical obstacles and ethical issues. We systematically summarize and discuss the current evidence and define knowledge gaps concerning the maternal-fetal transport and fetoplacental accumulation of (ultra)fine particles and nanoparticles. We included 73 studies on placental translocation of particles, of which 21 in vitro/ex vivo studies, 50 animal studies, and 2 human studies on transplacental particle transfer. This systematic review shows that (i) (ultra)fine particles and engineered nanoparticles can bypass the placenta and reach fetal units as observed for all the applied models irrespective of the species origin (i.e., rodent, rabbit, or human) or the complexity (i.e., in vitro, ex vivo, or in vivo), (ii) particle size, particle material, dose, particle dissolution, gestational stage of the model, and surface composition influence maternal-fetal translocation, and (iii) no simple, standardized method for nanoparticle detection and/or quantification in biological matrices is available to date. Existing evidence, research gaps, and perspectives of maternal-fetal particle transfer are highlighted.
Collapse
Affiliation(s)
- Eva Bongaerts
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
- Department of Public Health and Primary Care, KU Leuven, Herestraat 49, Box 703, 3000, Leuven, Belgium
| | - Thessa Van Pee
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Marcel Ameloot
- Biomedical Research Institute, Hasselt University, Agoralaan Building C, 3590, Diepenbeek, Belgium
| | - Hannelore Bové
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium.
- Biomedical Research Institute, Hasselt University, Agoralaan Building C, 3590, Diepenbeek, Belgium.
| |
Collapse
|
33
|
Pereira KV, Giacomeli R, Gomes de Gomes M, Haas SE. The challenge of using nanotherapy during pregnancy: Technological aspects and biomedical implications. Placenta 2020; 100:75-80. [PMID: 32862059 PMCID: PMC7431318 DOI: 10.1016/j.placenta.2020.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/05/2020] [Indexed: 01/08/2023]
Abstract
During the period of pregnancy, several processes and physiological adaptations occur in the body and metabolism of pregnant woman. These physiological adaptations in pregnant woman end up leading to a suppression in immune system favoring obstetric complications to the mother, fetus and placental tissue. An effective pharmacological therapy for these complications is still a challenge, since some drugs during pregnancy can have deleterious and teratogenic effects. An emerging alternative to pharmacological therapy during pregnancy is drugs encapsulated in nanoparticles (NP), recent area called nano-obstetrics. NP have the advantage of drug targeting and reduction of side effects. Then, maternal, placental or fetal uptake can be expected, depending on the characteristics of NP. Inorganic NP, crossing placental barrier effectively, but have several nanotoxicological effects. While organic NP appear to have a better targeting capacity and have few toxicological effects, but the studies are still scarce. Thus, in this review, were examined questions related to use and impact of physicochemical aspects of inorganic and organic NP during pregnancy.
Collapse
Affiliation(s)
- Kelle Velasques Pereira
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, UFSM, Av. Roraima n.1000, 97105-900, Santa Maria, RS, Brazil
| | - Renata Giacomeli
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Pampa, UNIPAMPA, Campus Uruguaiana, BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil
| | - Marcelo Gomes de Gomes
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Pampa, UNIPAMPA, Campus Uruguaiana, BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil
| | - Sandra Elisa Haas
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Pampa, UNIPAMPA, Campus Uruguaiana, BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil; Postgraduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, UFSM, Av. Roraima n.1000, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
34
|
Nobile S, Nobile L. Nanotechnology and Early Human Development. APPLIED SCIENCES 2020; 10:4323. [DOI: 10.3390/app10124323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The application of nanotechnology, molecular biotechnologies, and nano-sciences for medical purposes has been termed nanomedicine, a promising growing area of medical research. The aim of this paper is to provide an overview of and discuss nanotechnology applications in the early epochs of life, from transplacental transfer to neonatal/pediatric conditions. Diagnostic and therapeutic applications, mainly related to the respiratory tract, the neurosensory system, and infections, are explored and discussed. Preclinical studies show promising results for a variety of conditions, including for the treatment of pregnancy complications and fetal, neonatal, and pediatric diseases. However, given the complexity of the functions and interactions between the placenta and the fetus, and the complex and incompletely understood determinants of tissue growth and differentiation during early life, there is a need for much more data to confirm the safety and efficacy of nanotechnology in this field.
Collapse
Affiliation(s)
- Stefano Nobile
- Department of Woman, Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Lucio Nobile
- DICAM Department, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
35
|
State-of-the-Art and Prospective of Nanotechnologies for Smart Reproductive Management of Farm Animals. Animals (Basel) 2020; 10:ani10050840. [PMID: 32414174 PMCID: PMC7278443 DOI: 10.3390/ani10050840] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022] Open
Abstract
Many biotechnological assisted reproductive techniques (ART) are currently used to control the reproductive processes of farm animals. Nowadays, smart ART that considers technique efficiency, animal welfare, cost efficiency and environmental health are developed. Recently, the nanotechnology revolution has pervaded all scientific fields including the reproduction of farm animals, facilitating certain improvements in this field. Nanotechnology could be used to improve and overcome many technical obstacles that face different ART. For example, semen purification and semen preservation processes have been developed using different nanomaterials and techniques, to obtain semen doses with high sperm quality. Additionally, nanodrugs delivery could be applied to fabricate several sex hormones (steroids or gonadotrophins) used in the manipulation of the reproductive cycle. Nanofabricated hormones have new specific biological properties, increasing their bioavailability. Applying nanodrugs delivery techniques allow a reduction in hormone dose and improves hormone kinetics in animal body, because of protection from natural biological barriers (e.g., enzymatic degradation). Additionally, biodegradable nanomaterials could be used to fabricate hormone-loaded devices that are made from non-degradable materials, such as silicon and polyvinyl chloride-based matrixes, which negatively impact environmental health. This review discusses the role of nanotechnology in developing some ART outcomes applied in the livestock sector, meeting the concept of smart production.
Collapse
|
36
|
Editorial of Special Issue "Surface-Functionalized Nanoparticles as Drug Carriers". Int J Mol Sci 2019; 20:ijms20246352. [PMID: 31861113 PMCID: PMC6941103 DOI: 10.3390/ijms20246352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 12/15/2022] Open
Abstract
Safe and effective delivery of therapeutics at the target site is the key to successful therapy. Nanocarriers can offer significant advantages over conventional dosage forms. Over the decades, nanoparticles have been extensively used to increase bioavailability, improve solubility and stability, reduce toxicities, and facilitate the controlled release of therapeutics. Further, nanoparticles have often been surface-functionalized with a variety of ligands to enhance circulation half-life and increase target-specificity. Although nanotechnology has shown significant therapeutic benefits for multiple biomedical applications, limited nanoparticle-based formulations have progressed to clinical trials, and only a few have reached the pharmaceutical market. This editorial is an introduction to the special issue entitled Surface-Functionalized Nanoparticles as Drug Carriers. We outline the scope of the special issue, summarize the results and conclusions of the nine articles published in this issue, and provide perspective on the application of surface-functionalized nanoparticles in the drug delivery field.
Collapse
|
37
|
Nakamura S, Watanabe S, Ando N, Ishihara M, Sato M. Transplacental Gene Delivery (TPGD) as a Noninvasive Tool for Fetal Gene Manipulation in Mice. Int J Mol Sci 2019; 20:ijms20235926. [PMID: 31775372 PMCID: PMC6928727 DOI: 10.3390/ijms20235926] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/14/2019] [Accepted: 11/22/2019] [Indexed: 12/18/2022] Open
Abstract
Transplacental gene delivery (TPGD) is a technique for delivering nucleic acids to fetal tissues via tail-vein injections in pregnant mice. After transplacental transport, administered nucleic acids enter fetal circulation and are distributed among fetal tissues. TPGD was established in 1995 by Tsukamoto et al., and its mechanisms, and potential applications have been further characterized since. Recently, discoveries of sequence specific nucleases, such as zinc-finger nuclease (ZFN), transcription activator-like effector nucleases (TALEN), and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) (CRISPR/Cas9), have revolutionized genome editing. In 2019, we demonstrated that intravenous injection of plasmid DNA containing CRISPR/Cas9 produced indels in fetal myocardial cells, which are comparatively amenable to transfection with exogenous DNA. In the future, this unique technique will allow manipulation of fetal cell functions in basic studies of fetal gene therapy. In this review, we describe developments of TPGD and discuss their applications to the manipulation of fetal cells.
Collapse
Affiliation(s)
- Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan; (N.A.); (M.I.)
- Correspondence: ; Tel.: +81-4-2995-1211
| | - Satoshi Watanabe
- Animal Genome Unit, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-0901, Japan;
| | - Naoko Ando
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan; (N.A.); (M.I.)
| | - Masayuki Ishihara
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan; (N.A.); (M.I.)
| | - Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima 890-8544, Japan;
| |
Collapse
|