1
|
Ortiz-Ramírez P, Hernández-Ochoa B, Ortega-Cuellar D, González-Valdez A, Martínez-Rosas V, Morales-Luna L, Arreguin-Espinosa R, Castillo-Rodríguez RA, Canseco-Ávila LM, Cárdenas-Rodríguez N, Pérez de la Cruz V, Montiel-González AM, Gómez-Chávez F, Gómez-Manzo S. Biochemical and Kinetic Characterization of the Glucose-6-Phosphate Dehydrogenase from Helicobacter pylori Strain 29CaP. Microorganisms 2022; 10:microorganisms10071359. [PMID: 35889079 PMCID: PMC9323780 DOI: 10.3390/microorganisms10071359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) has been proposed as the foremost risk factor for the development of gastric cancer. We found that H. pylori express the enzyme glucose-6-phosphate dehydrogenase (HpG6PD), which participates in glucose metabolism via the pentose phosphate pathway. Thus, we hypothesized that if the biochemical and physicochemical characteristics of HpG6PD contrast with the host G6PD (human G6PD, HsG6PD), HpG6PD becomes a potential target for novel drugs against H. pylori. In this work, we characterized the biochemical properties of the HpG6PD from the H.pylori strain 29CaP and expressed the active recombinant protein, to analyze its steady-state kinetics, thermostability, and biophysical aspects. In addition, we analyzed the HpG6PD in silico structural properties to compare them with those of the HsG6PD. The optimal pH for enzyme activity was 7.5, with a T1/2 of 46.6 °C, at an optimum stability temperature of 37 °C. The apparent Km values calculated for G6P and NADP+ were 75.0 and 12.8 µM, respectively. G6P does not protect HpG6PD from trypsin digestion, but NADP+ does protect the enzyme from trypsin and guanidine hydrochloride (Gdn-HCl). The biochemical characterization of HpG6PD contributes to knowledge regarding H. pylori metabolism and opens up the possibility of using this enzyme as a potential target for specific and efficient treatment against this pathogen; structural alignment indicates that the three-dimensional (3D) homodimer model of the G6PD protein from H. pylori is different from the 3D G6PD of Homo sapiens.
Collapse
Affiliation(s)
- Paulina Ortiz-Ramírez
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (P.O.-R.); (V.M.-R.); (L.M.-L.)
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City 06720, Mexico;
- Programa de Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Daniel Ortega-Cuellar
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico;
| | - Abigail González-Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Víctor Martínez-Rosas
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (P.O.-R.); (V.M.-R.); (L.M.-L.)
- Programa de Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Laura Morales-Luna
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (P.O.-R.); (V.M.-R.); (L.M.-L.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Roberto Arreguin-Espinosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Rosa Angélica Castillo-Rodríguez
- Programa Investigadoras e Investigadores por México, CONACYT-Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico;
| | - Luis Miguel Canseco-Ávila
- Facultad de Ciencias Químicas, Campus IV, Universidad Autónoma de Chiapas, Tapachula City 30580, Mexico;
| | - Noemi Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico;
| | - Verónica Pérez de la Cruz
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico;
| | - Alba Mónica Montiel-González
- Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Aut. San Martín Texmelucan-Tlaxcala Km 10.5, San Felipe Ixtacuixtla, Tlaxcala 90120, Mexico;
| | - Fernando Gómez-Chávez
- Laboratorio de Enfermedades Osteoarticulares e Inmunológicas, Sección de Estudios de Posgrado e Investigación, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico;
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (P.O.-R.); (V.M.-R.); (L.M.-L.)
- Correspondence: ; Tel.: +52-55-1084-0900 (ext. 1442)
| |
Collapse
|
2
|
Hernández-Ochoa B, Navarrete-Vázquez G, Aguayo-Ortiz R, Ortiz-Ramírez P, Morales-Luna L, Martínez-Rosas V, González-Valdez A, Gómez-Chávez F, Enríquez-Flores S, Wong-Baeza C, Baeza-Ramírez I, Pérez de la Cruz V, Gómez-Manzo S. Identification and In Silico Characterization of Novel Helicobacter pylori Glucose-6-Phosphate Dehydrogenase Inhibitors. Molecules 2021; 26:molecules26164955. [PMID: 34443540 PMCID: PMC8401736 DOI: 10.3390/molecules26164955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/24/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a pathogen that can remain in the stomach of an infected person for their entire life. As a result, this leads to the development of severe gastric diseases such as gastric cancer. In addition, current therapies have several problems including antibiotics resistance. Therefore, new practical options to eliminate this bacterium, and its induced affections, are required to avoid morbidity and mortality worldwide. One strategy in the search for new drugs is to detect compounds that inhibit a limiting step in a central metabolic pathway of the pathogen of interest. In this work, we tested 55 compounds to gain insights into their possible use as new inhibitory drugs of H. pylori glucose-6-phosphate dehydrogenase (HpG6PD) activity. The compounds YGC-1; MGD-1, MGD-2; TDA-1; and JMM-3 with their respective scaffold 1,3-thiazolidine-2,4-dione; 1H-benzimidazole; 1,3-benzoxazole, morpholine, and biphenylcarbonitrile showed the best inhibitory activity (IC50 = 310, 465, 340, 204 and 304 μM, respectively). We then modeled the HpG6PD protein by homology modeling to conduct an in silico study of the chemical compounds and discovers its possible interactions with the HpG6PD enzyme. We found that compounds can be internalized at the NADP+ catalytic binding site. Hence, they probably exert a competitive inhibitory effect with NADP+ and a non-competitive or uncompetitive effect with G6P, that of the compounds binding far from the enzyme’s active site. Based on these findings, the tested compounds inhibiting HpG6PD represent promising novel drug candidates against H. pylori.
Collapse
Affiliation(s)
- Beatriz Hernández-Ochoa
- Programa de Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (B.H.-O.); (V.M.-R.)
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Ciudad de México 06720, Mexico
| | - Gabriel Navarrete-Vázquez
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, Cuernavaca, Morelos 62209, Mexico;
| | - Rodrigo Aguayo-Ortiz
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Paulina Ortiz-Ramírez
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico; (P.O.-R.); (L.M.-L.)
| | - Laura Morales-Luna
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico; (P.O.-R.); (L.M.-L.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Víctor Martínez-Rosas
- Programa de Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (B.H.-O.); (V.M.-R.)
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico; (P.O.-R.); (L.M.-L.)
| | - Abigail González-Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Fernando Gómez-Chávez
- Laboratorio de Inmunología Experimental, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
- Cátedras CONACyT-Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico
- Departamento de Formación Básica Disciplinaria, Escuela Nacional de Medicina y Homeopatía del Instituto Politécnico Nacional, Ciudad de México 07320, Mexico
| | - Sergio Enríquez-Flores
- Laboratorio de EIMyT, Grupo de Investigación en Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico;
| | - Carlos Wong-Baeza
- Laboratorio de Biomembranas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (C.W.-B.); (I.B.-R.)
| | - Isabel Baeza-Ramírez
- Laboratorio de Biomembranas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (C.W.-B.); (I.B.-R.)
| | - Verónica Pérez de la Cruz
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Ciudad de México 14269, Mexico;
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico; (P.O.-R.); (L.M.-L.)
- Correspondence: ; Tel.: +52-55-1084-0900 (ext. 1442)
| |
Collapse
|
3
|
Glucose-6-Phosphate Dehydrogenase::6-Phosphogluconolactonase from the Parasite Giardia lamblia. A Molecular and Biochemical Perspective of a Fused Enzyme. Microorganisms 2021; 9:microorganisms9081678. [PMID: 34442758 PMCID: PMC8399836 DOI: 10.3390/microorganisms9081678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
Giardia lamblia is a single-celled eukaryotic parasite with a small genome and is considered an early divergent eukaryote. The pentose phosphate pathway (PPP) plays an essential role in the oxidative stress defense of the parasite and the production of ribose-5-phosphate. In this parasite, the glucose-6-phosphate dehydrogenase (G6PD) is fused with the 6-phosphogluconolactonase (6PGL) enzyme, generating the enzyme named G6PD::6PGL that catalyzes the first two steps of the PPP. Here, we report that the G6PD::6PGL is a bifunctional enzyme with two catalytically active sites. We performed the kinetic characterization of both domains in the fused G6PD::6PGL enzyme, as well as the individual cloned G6PD. The results suggest that the catalytic activity of G6PD and 6PGL domains in the G6PD::6PGL enzyme are more efficient than the individual proteins. Additionally, using enzymatic and mass spectrometry assays, we found that the final metabolites of the catalytic reaction of the G6PD::6PGL are 6-phosphoglucono-δ-lactone and 6-phosphogluconate. Finally, we propose the reaction mechanism in which the G6PD domain performs the catalysis, releasing 6-phosphoglucono-δ-lactone to the reaction medium. Then, this metabolite binds to the 6PGL domain catalyzing the hydrolysis reaction and generating 6-phosphogluconate. The structural difference between the G. lamblia fused enzyme G6PD::6PGL with the human G6PD indicate that the G6PD::6PGL is a potential drug target for the rational synthesis of novels anti-Giardia drugs.
Collapse
|
4
|
Morales-Luna L, Hernández-Ochoa B, Ramírez-Nava EJ, Martínez-Rosas V, Ortiz-Ramírez P, Fernández-Rosario F, González-Valdez A, Cárdenas-Rodríguez N, Serrano-Posada H, Centeno-Leija S, Arreguin-Espinosa R, Cuevas-Cruz M, Ortega-Cuellar D, Pérez de la Cruz V, Rocha-Ramírez LM, Sierra-Palacios E, Castillo-Rodríguez RA, Vega-García V, Rufino-González Y, Marcial-Quino J, Gómez-Manzo S. Characterizing the Fused TvG6PD::6PGL Protein from the Protozoan Trichomonas vaginalis, and Effects of the NADP + Molecule on Enzyme Stability. Int J Mol Sci 2020; 21:E4831. [PMID: 32650494 PMCID: PMC7402283 DOI: 10.3390/ijms21144831] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/30/2022] Open
Abstract
This report describes a functional and structural analysis of fused glucose-6-phosphate dehydrogenase dehydrogenase-phosphogluconolactonase protein from the protozoan Trichomonas vaginalis (T. vaginalis). The glucose-6-phosphate dehydrogenase (g6pd) gene from T. vaginalis was isolated by PCR and the sequence of the product showed that is fused with 6pgl gene. The fused Tvg6pd::6pgl gene was cloned and overexpressed in a heterologous system. The recombinant protein was purified by affinity chromatography, and the oligomeric state of the TvG6PD::6PGL protein was found as tetramer, with an optimal pH of 8.0. The kinetic parameters for the G6PD domain were determined using glucose-6-phosphate (G6P) and nicotinamide adenine dinucleotide phosphate (NADP+) as substrates. Biochemical assays as the effects of temperature, susceptibility to trypsin digestion, and analysis of hydrochloride of guanidine on protein stability in the presence or absence of NADP+ were performed. These results revealed that the protein becomes more stable in the presence of the NADP+. In addition, we determined the dissociation constant for the binding (Kd) of NADP+ in the protein and suggests the possible structural site in the fused TvG6PD::6PGL protein. Finally, computational modeling studies were performed to obtain an approximation of the structure of TvG6PD::6PGL. The generated model showed differences with the GlG6PD::6PGL protein (even more so with human G6PD) despite both being fused.
Collapse
Affiliation(s)
- Laura Morales-Luna
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, 04530 Ciudad de México, Mexico; (L.M.-L.); (E.J.R.-N.); (V.M.-R.); (P.O.-R.); (F.F.-R.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, 06720 Ciudad de México, Mexico;
- Programa de Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 Ciudad de México, Mexico
| | - Edson Jiovany Ramírez-Nava
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, 04530 Ciudad de México, Mexico; (L.M.-L.); (E.J.R.-N.); (V.M.-R.); (P.O.-R.); (F.F.-R.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Víctor Martínez-Rosas
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, 04530 Ciudad de México, Mexico; (L.M.-L.); (E.J.R.-N.); (V.M.-R.); (P.O.-R.); (F.F.-R.)
- Programa de Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 Ciudad de México, Mexico
| | - Paulina Ortiz-Ramírez
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, 04530 Ciudad de México, Mexico; (L.M.-L.); (E.J.R.-N.); (V.M.-R.); (P.O.-R.); (F.F.-R.)
| | - Fabiola Fernández-Rosario
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, 04530 Ciudad de México, Mexico; (L.M.-L.); (E.J.R.-N.); (V.M.-R.); (P.O.-R.); (F.F.-R.)
| | - Abigail González-Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico;
| | - Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, 04530 Ciudad de México, Mexico;
| | - Hugo Serrano-Posada
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Laboratorio de Agrobiotecnología, Tecnoparque CLQ, Universidad de Colima, Carretera los Limones-Loma de Juárez, 28629 Colima, Mexico; (H.S.-P.); (S.C.-L.)
| | - Sara Centeno-Leija
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Laboratorio de Agrobiotecnología, Tecnoparque CLQ, Universidad de Colima, Carretera los Limones-Loma de Juárez, 28629 Colima, Mexico; (H.S.-P.); (S.C.-L.)
| | - Roberto Arreguin-Espinosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico; (R.A.-E.); (M.C.-C.)
| | - Miguel Cuevas-Cruz
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico; (R.A.-E.); (M.C.-C.)
| | - Daniel Ortega-Cuellar
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, 04530 Secretaría de Salud, Mexico;
| | - Verónica Pérez de la Cruz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Secretaria de Salud, 14269 Ciudad de México, Mexico;
| | - Luz María Rocha-Ramírez
- Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, 06720 Delegación Cuauhtémoc, Mexico;
| | - Edgar Sierra-Palacios
- Colegio de Ciencias y Humanidades, Plantel Casa Libertad, Universidad Autónoma de la Ciudad de México, 09620 Ciudad de México, Mexico;
| | - Rosa Angélica Castillo-Rodríguez
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Instituto Nacional de Pediatría, Secretaría de Salud, 04530 Ciudad de México, Mexico;
| | - Vanesa Vega-García
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico;
| | - Yadira Rufino-González
- Laboratorio de Parasitología Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, 04530 Ciudad de México, Mexico;
| | - Jaime Marcial-Quino
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Instituto Nacional de Pediatría, Secretaría de Salud, 04530 Ciudad de México, Mexico;
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, 04530 Ciudad de México, Mexico; (L.M.-L.); (E.J.R.-N.); (V.M.-R.); (P.O.-R.); (F.F.-R.)
| |
Collapse
|