1
|
Tang H, Kan C, Zhang K, Sheng S, Qiu H, Ma Y, Wang Y, Hou N, Zhang J, Sun X. Glycerophospholipid and Sphingosine- 1-phosphate Metabolism in Cardiovascular Disease: Mechanisms and Therapeutic Potential. J Cardiovasc Transl Res 2025:10.1007/s12265-025-10620-3. [PMID: 40227543 DOI: 10.1007/s12265-025-10620-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/07/2025] [Indexed: 04/15/2025]
Abstract
Cardiovascular disease remains a leading cause of mortality worldwide, driven by factors such as dysregulated lipid metabolism, oxidative stress, and inflammation. Recent studies highlight the critical roles of both glycerophospholipid and sphingosine- 1-phosphate metabolism in the pathogenesis of cardiovascular disorders. However, the contributions of glycerophospholipid-derived metabolites remain underappreciated. Glycerophospholipid metabolism generates bioactive molecules that contribute to endothelial dysfunction, lipid accumulation, and cardiac cell injury while also modulating inflammatory and oxidative stress responses. Meanwhile, sphingosine- 1-phosphate is a bioactive lipid mediator that regulates vascular integrity, inflammation, and cardiac remodeling through its G-protein-coupled receptors. The convergence of these pathways presents novel therapeutic opportunities, where dietary interventions such as omega- 3 polyunsaturated fatty acids and pharmacological targeting of sphingosine- 1-phosphate receptors could synergistically mitigate cardiovascular risk. This review underscores the need for further investigation into the interplay between glycerophospholipid metabolism and sphingosine- 1-phosphate signaling to advance targeted therapies for the prevention and management of cardiovascular disease.
Collapse
Affiliation(s)
- Huiru Tang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Sufang Sheng
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Yujie Ma
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Yuqun Wang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, China.
| |
Collapse
|
2
|
Antonic T, Vladimirov S, Ardalic D, Miljkovic-Trailovic M, Saric-Matutinovic M, Gojkovic T, Munjas J, Ivanisevic J, Jovicic S, Vekic J, Zeljkovic A, Mikovic Z, StefanoviÄ A. Unraveling sphingolipid dynamics in late-onset preeclampsia: insights from lipidomic analysis. Biochem Med (Zagreb) 2025; 35:010707. [PMID: 39974194 PMCID: PMC11838718 DOI: 10.11613/bm.2025.010708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 01/13/2025] [Indexed: 02/21/2025] Open
Abstract
Introduction Sphingolipids, essential to trophoblast and endothelial function, may impact inflammation in preeclampsia. However, their specific role in late-onset preeclampsia remains unclear. To address this research gap, we analyzed sphingolipid profiles in pregnancies at high risk for preeclampsia development to identify potential biomarkers and clarify their role in disease pathogenesis. Materials and methods We monitored 90 pregnant women at high risk for preeclampsia development across four gestational points. These women were later categorized into the group of women with high risk who did not develop preeclampsia (HRG) (70 women) or the preeclampsia group (PG) (20 women). Sphingolipids (sphingosine, sphinganine, sphingosine-1-phosphate (S1P), ceramides C16:0/C24:0, and sphingomyelin C16:0) were quantified via liquid chromatography-tandem mass spectrometry. Results Sphingolipid profiles revealed distinct patterns between groups. Concentrations of S1P in the HRG increased from the 1st trimester to delivery (P < 0.001). We did not notice significant changes in S1P during pregnancy in the PG but compared with the HRG we found significantly lower concentrations at each test point from the 2nd trimester until delivery (P = 0.020, P = 0.013, P = 0.011, respectively). Ceramides C16:0 and C24:0 demonstrated significant increases over time in HRG (P < 0.001, both). Sphingomyelin C16:0 increased significantly across pregnancy in both groups (P < 0.001 in HRG and P = 0.006 in PG), with no significant differences between groups. Conclusions We identified S1P as a potential biomarker for late-onset preeclampsia, with lower concentrations observed in PG compared to HRG. Rising sphingomyelin concentrations in both cohorts might serve as a relevant cardiovascular risk indicator in pregnancies at high risk for preeclampsia.
Collapse
Affiliation(s)
- Tamara Antonic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Sandra Vladimirov
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Daniela Ardalic
- The Obstetrics and Gynecology Clinic âNarodni Frontâ, Belgrade, Serbia
| | | | - Marija Saric-Matutinovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Tamara Gojkovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Jelena Munjas
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Jasmina Ivanisevic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Snezana Jovicic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Jelena Vekic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Zeljkovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Zeljko Mikovic
- The Obstetrics and Gynecology Clinic âNarodni Frontâ, Belgrade, Serbia
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra StefanoviÄ
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Stankovic M, Zeljkovic A, Vekic J, Antonic T, Ardalic D, Miljkovic-Trailovic M, Munjas J, Saric Matutinovic M, Gojkovic T, Jovicic S, Mikovic Z, Stefanovic A. Differences in HDL Remodeling during Healthy Pregnancy and Pregnancy with Cardiometabolic Complications. Antioxidants (Basel) 2024; 13:948. [PMID: 39199194 PMCID: PMC11352027 DOI: 10.3390/antiox13080948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 09/01/2024] Open
Abstract
This study investigated the longitudinal trajectory of changes in antioxidative and anti-inflammatory high-density lipoprotein (HDL) components during healthy pregnancy and pregnancy with cardiometabolic complications. We recruited and longitudinally followed 84 women with healthy pregnancies and 46 pregnant women who developed cardiometabolic pregnancy complications (gestational diabetes mellitus and hypertensive disorders of pregnancy). Their general lipid profiles, oxidative stress status, inflammatory status, and antioxidative and anti-inflammatory HDL components were analyzed. The results of our study confirmed the expected trajectory for the routine lipid parameters. Our study results indicate more intensive oxidative stress and a higher level of inflammation in the group with complications compared with the control group. Sphingosine-1-phosphate (S1P) was significantly lower in the first trimester in the group with complications compared with the control group (p < 0.05). We did not find significant differences in the apolipoprotein A1 (Apo A1) concentrations in the first trimester between the control group and the group with complications, but in the second and third trimesters, the group with complications had significantly higher concentrations (p < 0.001, p < 0.05, respectively). The S1P, paraoxonase 1 (PON1), and serum amyloid A (SAA) concentrations were significantly lower in the group with complications in the first trimester. During the second trimester, only the SAA concentrations were identified as significantly lower in the group with complications compared with the control group, while in the third trimester, the PON1, apolipoprotein M (Apo M), and SAA concentrations were all significantly lower in the group with complications. Through a multivariate binary logistic regression analysis, the S1P concentration in the first trimester was distinguished as an HDL-associated marker independently associated with cardiometabolic pregnancy complications. In conclusion, our study results showed that HDL remodeling differs between healthy pregnancies and pregnancies with maternal cardiometabolic complications, with changed HDL composition and functionality consequently impacting its biological functionality in the latter case.
Collapse
Affiliation(s)
- Marko Stankovic
- Gynecology and Obstetrics Clinic Narodni Front, 11000 Belgrade, Serbia; (M.S.); (D.A.); (Z.M.)
| | - Aleksandra Zeljkovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia; (A.Z.); (J.V.); (T.A.); (M.M.-T.); (J.M.); (M.S.M.); (T.G.); (S.J.)
| | - Jelena Vekic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia; (A.Z.); (J.V.); (T.A.); (M.M.-T.); (J.M.); (M.S.M.); (T.G.); (S.J.)
| | - Tamara Antonic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia; (A.Z.); (J.V.); (T.A.); (M.M.-T.); (J.M.); (M.S.M.); (T.G.); (S.J.)
| | - Daniela Ardalic
- Gynecology and Obstetrics Clinic Narodni Front, 11000 Belgrade, Serbia; (M.S.); (D.A.); (Z.M.)
| | - Milica Miljkovic-Trailovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia; (A.Z.); (J.V.); (T.A.); (M.M.-T.); (J.M.); (M.S.M.); (T.G.); (S.J.)
| | - Jelena Munjas
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia; (A.Z.); (J.V.); (T.A.); (M.M.-T.); (J.M.); (M.S.M.); (T.G.); (S.J.)
| | - Marija Saric Matutinovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia; (A.Z.); (J.V.); (T.A.); (M.M.-T.); (J.M.); (M.S.M.); (T.G.); (S.J.)
| | - Tamara Gojkovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia; (A.Z.); (J.V.); (T.A.); (M.M.-T.); (J.M.); (M.S.M.); (T.G.); (S.J.)
| | - Snezana Jovicic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia; (A.Z.); (J.V.); (T.A.); (M.M.-T.); (J.M.); (M.S.M.); (T.G.); (S.J.)
| | - Zeljko Mikovic
- Gynecology and Obstetrics Clinic Narodni Front, 11000 Belgrade, Serbia; (M.S.); (D.A.); (Z.M.)
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandra Stefanovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia; (A.Z.); (J.V.); (T.A.); (M.M.-T.); (J.M.); (M.S.M.); (T.G.); (S.J.)
| |
Collapse
|
4
|
Al-Jarallah A, Babiker FA. High-Density Lipoprotein Signaling via Sphingosine-1-Phosphate Receptors Safeguards Spontaneously Hypertensive Rats against Myocardial Ischemia/Reperfusion Injury. Pharmaceutics 2024; 16:497. [PMID: 38675158 PMCID: PMC11054943 DOI: 10.3390/pharmaceutics16040497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND High-density lipoprotein (HDL) protects against ischemia/reperfusion (I/R) injury via signaling through scavenger-receptor class B type-I (SR-BI) and sphingosine-1-phosphate receptors (S1PRs). We recently reported that HDL protects the hearts of spontaneously hypertensive rats (SHRs) against I/R injury in an SR-BI-dependent manner. OBJECTIVE In this study, we examined the role of S1PRs in HDL-induced protection against myocardial I/R injury in hypertensive rats. METHODS Hearts from Wistar Kyoto rats (WKYs) and SHRs were subjected to I/R injury using a modified Langendorff system. The hearts were treated with or without HDL in the presence or absence of a receptor- or kinase-specific antagonist. Cardiac hemodynamics and infarct size were measured. Target proteins were analyzed by immunoblotting and ELISA, and nitrite levels were measured using Greis reagent. RESULTS HDL protected the hearts of WKYs and SHRs against I/R injury. HDL, however, was more protective in WKYs. HDL protection in SHRs required lipid uptake via SR-BI and S1PR1 and S1PR3 but not S1PR2. The hearts from SHRs expressed significantly lower levels of S1PR3 than the hearts from WKYs. HDL differentially activated mediators of the SAFE and RISK pathways in WKYs and SHRs and resulted in nitric oxide generation. Blockage of these pathways abrogated HDL effects. CONCLUSIONS HDL protects against myocardial I/R injury in normotensive and hypertensive rats, albeit to varying degrees. HDL protection in hearts from hypertensive rodents involved SR-BI-mediated lipid uptake coupled with signaling through S1PR1 and S1PR3. The extent of HDL-induced cardiac protection is directly proportional to S1PR3 expression levels. Mechanistically, the safeguarding effects of HDL involved activation of the SAFE and RISK pathways and the generation of nitric oxide.
Collapse
Affiliation(s)
- Aishah Al-Jarallah
- Department of Biochemistry, College of Medicine, Kuwait University, Safat 13060, Kuwait
| | - Fawzi A. Babiker
- Department of Physiology, College of Medicine, Kuwait University, Safat 13060, Kuwait;
| |
Collapse
|
5
|
Al-Zadjali J, Al-Lawati A, Al Riyami N, Al Farsi K, Al Jarradi N, Boudaka A, Al Barhoumi A, Al Lawati M, Al Khaifi A, Musleh A, Gebrayel P, Vaulont S, Peyssonnaux C, Edeas M, Saleh J. Reduced HDL-cholesterol in long COVID-19: A key metabolic risk factor tied to disease severity. Clinics (Sao Paulo) 2024; 79:100344. [PMID: 38552385 PMCID: PMC10998035 DOI: 10.1016/j.clinsp.2024.100344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/17/2024] [Accepted: 03/03/2024] [Indexed: 04/09/2024] Open
Abstract
This controlled study investigated metabolic changes in non-vaccinated individuals with Long-COVID-19, along with their connection to the severity of the disease. The study involved 88 patients who experienced varying levels of initial disease severity (mild, moderate, and severe), and a control group of 29 healthy individuals. Metabolic risk markers from fasting blood samples were analyzed, and data regarding disease severity indicators were collected. Findings indicated significant metabolic shifts in severe Long-COVID-19 cases, mainly a marked drop in HDL-C levels and a doubled increase in ferritin levels and insulin resistance compared to the mild cases and controls. HDL-C and ferritin were identified as the leading factors predicted by disease severity. In conclusion, the decline in HDL-C levels and rise in ferritin levels seen in Long-COVID-19 individuals, largely influenced by the severity of the initial infection, could potentially play a role in the persistence and progression of Long-COVID-19. Hence, these markers could be considered as possible therapeutic targets, and help shape preventive strategies to reduce the long-term impacts of the disease.
Collapse
Affiliation(s)
| | | | - Nafila Al Riyami
- Biochemistry Department, College of Medicine, Sultan Qaboos University, Muscat, Oman
| | - Koukab Al Farsi
- Biochemistry Department, College of Medicine, Sultan Qaboos University, Muscat, Oman
| | - Najwa Al Jarradi
- Biochemistry Department, College of Medicine, Sultan Qaboos University, Muscat, Oman
| | - Ammar Boudaka
- Sultan Qaboos University, Muscat, Oman; Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | | | | | | | | | - Sophie Vaulont
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014, Paris, France; Laboratory of Excellence GR-Ex, Paris, France
| | - Carole Peyssonnaux
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014, Paris, France; Laboratory of Excellence GR-Ex, Paris, France
| | - Marvin Edeas
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014, Paris, France; Laboratory of Excellence GR-Ex, Paris, France.
| | - Jumana Saleh
- Biochemistry Department, College of Medicine, Sultan Qaboos University, Muscat, Oman.
| |
Collapse
|
6
|
Alkafaas SS, Elsalahaty MI, Ismail DF, Radwan MA, Elkafas SS, Loutfy SA, Elshazli RM, Baazaoui N, Ahmed AE, Hafez W, Diab M, Sakran M, El-Saadony MT, El-Tarabily KA, Kamal HK, Hessien M. The emerging roles of sphingosine 1-phosphate and SphK1 in cancer resistance: a promising therapeutic target. Cancer Cell Int 2024; 24:89. [PMID: 38419070 PMCID: PMC10903003 DOI: 10.1186/s12935-024-03221-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/09/2024] [Indexed: 03/02/2024] Open
Abstract
Cancer chemoresistance is a problematic dilemma that significantly restrains numerous cancer management protocols. It can promote cancer recurrence, spreading of cancer, and finally, mortality. Accordingly, enhancing the responsiveness of cancer cells towards chemotherapies could be a vital approach to overcoming cancer chemoresistance. Tumour cells express a high level of sphingosine kinase-1 (SphK1), which acts as a protooncogenic factor and is responsible for the synthesis of sphingosine-1 phosphate (S1P). S1P is released through a Human ATP-binding cassette (ABC) transporter to interact with other phosphosphingolipids components in the interstitial fluid in the tumor microenvironment (TME), provoking communication, progression, invasion, and tumor metastasis. Also, S1P is associated with several impacts, including anti-apoptotic behavior, metastasis, mesenchymal transition (EMT), angiogenesis, and chemotherapy resistance. Recent reports addressed high levels of S1P in several carcinomas, including ovarian, prostate, colorectal, breast, and HCC. Therefore, targeting the S1P/SphK signaling pathway is an emerging therapeutic approach to efficiently attenuate chemoresistance. In this review, we comprehensively discussed S1P functions, metabolism, transport, and signaling. Also, through a bioinformatic framework, we pointed out the alterations of SphK1 gene expression within different cancers with their impact on patient survival, and we demonstrated the protein-protein network of SphK1, elaborating its sparse roles. Furthermore, we made emphasis on different machineries of cancer resistance and the tight link with S1P. We evaluated all publicly available SphK1 inhibitors and their inhibition activity using molecular docking and how SphK1 inhibitors reduce the production of S1P and might reduce chemoresistance, an approach that might be vital in the course of cancer treatment and prognosis.
Collapse
Affiliation(s)
- Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Mohamed I Elsalahaty
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Doha F Ismail
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mustafa Ali Radwan
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt
- Faculty of Control System and Robotics, ITMO University, Saint-Petersburg, 197101, Russia
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Nanotechnology Research Center, British University, Cairo, Egypt
| | - Rami M Elshazli
- Biochemistry and Molecular Genetics Unit, Department of Basic Sciences, Faculty of Physical Therapy, Horus University-Egypt, New Damietta, 34517, Egypt
| | - Narjes Baazaoui
- Biology Department, College of Sciences and Arts Muhayil Assir, King Khalid University, Abha 61421, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Wael Hafez
- NMC Royal Hospital, 16th Street, 35233, Khalifa, Abu Dhabi, United Arab Emirates
- Medical Research Division, Department of Internal Medicine, The National Research Centre, Cairo 11511, Egypt
| | - Mohanad Diab
- Burjeel Hospital Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Mohamed Sakran
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Hani K Kamal
- Anatomy and Histology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed Hessien
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
7
|
Juliån MT, Pérez-Montes de Oca A, Julve J, Alonso N. The double burden: type 1 diabetes and heart failure-a comprehensive review. Cardiovasc Diabetol 2024; 23:65. [PMID: 38347569 PMCID: PMC10863220 DOI: 10.1186/s12933-024-02136-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Heart failure (HF) is increasing at an alarming rate, primary due to the rising in aging, obesity and diabetes. Notably, individuals with type 1 diabetes (T1D) face a significantly elevated risk of HF, leading to more hospitalizations and increased case fatality rates. Several risk factors contribute to HF in T1D, including poor glycemic control, female gender, smoking, hypertension, elevated BMI, and albuminuria. However, early and intensive glycemic control can mitigate the long-term risk of HF in individuals with T1D. The pathophysiology of diabetes-associated HF is complex and multifactorial, and the underlying mechanisms in T1D remain incompletely elucidated. In terms of treatment, much of the evidence comes from type 2 diabetes (T2D) populations, so applying it to T1D requires caution. Sodium-glucose cotransporter 2 inhibitors have shown benefits in HF outcomes, even in non-diabetic populations. However, most of the information about HF and the evidence from cardiovascular safety trials related to glucose lowering medications refer to T2D. Glycemic control is key, but the link between hypoglycemia and HF hospitalization risk requires further study. Glycemic variability, common in T1D, is an independent HF risk factor. Technological advances offer the potential to improve glycemic control, including glycemic variability, and may play a role in preventing HF. In summary, HF in T1D is a complex challenge with unique dimensions. This review focuses on HF in individuals with T1D, exploring its epidemiology, risk factors, pathophysiology, diagnosis and treatment, which is crucial for developing tailored prevention and management strategies for this population.
Collapse
Affiliation(s)
- MarĂa Teresa JuliĂĄn
- Department of Endocrinology and Nutrition, Hospital Germans Trias i Pujol, Badalona, Spain.
- Department of Medicine, Universitat AutĂČnoma de Barcelona, Barcelona, Spain.
| | - Alejandra Pérez-Montes de Oca
- Department of Endocrinology and Nutrition, Hospital Germans Trias i Pujol, Badalona, Spain
- Department of Medicine, Universitat AutĂČnoma de Barcelona, Barcelona, Spain
| | - Josep Julve
- Institut d'InvestigaciĂł BiomĂšdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Center for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Nuria Alonso
- Department of Endocrinology and Nutrition, Hospital Germans Trias i Pujol, Badalona, Spain.
- Department of Medicine, Universitat AutĂČnoma de Barcelona, Barcelona, Spain.
- Center for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
8
|
Lin LC, Liu ZY, Yang JJ, Zhao JY, Tao H. Lipid metabolism reprogramming in cardiac fibrosis. Trends Endocrinol Metab 2024; 35:164-175. [PMID: 37949734 DOI: 10.1016/j.tem.2023.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
Cardiac fibrosis is a critical pathophysiological process that occurs with diverse types of cardiac injury. Lipids are the most important bioenergy substrates for maintaining optimal heart performance and act as second messengers to transduce signals within cardiac cells. However, lipid metabolism reprogramming is a double-edged sword in the regulation of cardiomyocyte homeostasis and heart function. Moreover, lipids can exert diverse effects on cardiac fibrosis through different signaling pathways. In this review, we provide a brief overview of aberrant cardiac lipid metabolism and recent progress in pharmacological research targeting lipid metabolism alterations in cardiac fibrosis.
Collapse
Affiliation(s)
- Li-Chan Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
9
|
Gaggini M, Fenizia S, Vassalle C. Sphingolipid Levels and Signaling via Resveratrol and Antioxidant Actions in Cardiometabolic Risk and Disease. Antioxidants (Basel) 2023; 12:antiox12051102. [PMID: 37237968 DOI: 10.3390/antiox12051102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Resveratrol (RSV) is a phenolic compound with strong antioxidant activity, which is generally associated with the beneficial effects of wine on human health. All resveratrol-mediated benefits exerted on different systems and pathophysiological conditions are possible through resveratrol's interactions with different biological targets, along with its involvement in several key cellular pathways affecting cardiometabolic (CM) health. With regard to its role in oxidative stress, RSV exerts its antioxidant activity not only as a free radical scavenger but also by increasing the activity of antioxidant enzymes and regulating redox genes, nitric oxide bioavailability and mitochondrial function. Moreover, several studies have demonstrated that some RSV effects are mediated by changes in sphingolipids, a class of biolipids involved in a number of cellular functions (e.g., apoptosis, cell proliferation, oxidative stress and inflammation) that have attracted interest as emerging critical determinants of CM risk and disease. Accordingly, this review aimed to discuss the available data regarding the effects of RSV on sphingolipid metabolism and signaling in CM risk and disease, focusing on oxidative stress/inflammatory-related aspects, and the clinical implications of this relationship.
Collapse
Affiliation(s)
- Melania Gaggini
- Institute of Clinical Physiology, National Research Council of Italy (CNR), Via Moruzzi 1, I-56124 Pisa, Italy
| | - Simona Fenizia
- Institute of Clinical Physiology, National Research Council of Italy (CNR), Via Moruzzi 1, I-56124 Pisa, Italy
| | - Cristina Vassalle
- Fondazione G. Monasterio CNR-Regione Toscana, Via Moruzzi 1, I-56124 Pisa, Italy
| |
Collapse
|
10
|
Inoue A, Piao L, Yue X, Huang Z, Hu L, Wu H, Meng X, Xu W, Yu C, Sasaki T, Itakura K, Umegaki H, Kuzuya M, Cheng XW. Young bone marrow transplantation prevents aging-related muscle atrophy in a senescence-accelerated mouse prone 10 model. J Cachexia Sarcopenia Muscle 2022; 13:3078-3090. [PMID: 36058630 PMCID: PMC9745469 DOI: 10.1002/jcsm.13058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 06/22/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Young bone marrow transplantation (YBMT) has been shown to stimulate vascular regeneration in pathological conditions, including ageing. Here, we investigated the benefits and mechanisms of the preventive effects of YBMT on loss of muscle mass and function in a senescence-associated mouse prone 10 (SAMP10) model, with a special focus on the role of growth differentiation factor 11 (GDF-11). METHODS Nine-week-old male SAMP10 mice were randomly assigned to a non-YBMT group (n = 6) and a YBMT group (n = 7) that received the bone marrow of 8-week-old C57BL/6 mice. RESULTS Compared to the non-YBMT mice, the YBMT mice showed the following significant increases (all P < 0.05 in 6-7 mice): endurance capacity (>61.3%); grip strength (>37.9%), percentage of slow myosin heavy chain fibres (>14.9-15.9%). The YBMT also increased the amounts of proteins or mRNAs for insulin receptor substrate 1, p-Akt, p-extracellular signal-regulated protein kinase1/2, p-mammalian target of rapamycin, Bcl-2, peroxisom proliferator-activated receptor-γ coactivator (PGC-1α), plus cytochrome c oxidase IV and the numbers of proliferating cells (n = 5-7, P < 0.05) and CD34+/integrin-α7+ muscle stem cells (n = 5-6, P < 0.05). The YMBT significantly decreased the levels of gp91phox, caspase-9 proteins and apoptotic cells (n = 5-7, P < 0.05) in both muscles; these beneficial changes were diminished by the blocking of GDF-11 (n = 5-6, P < 0.05). An administration of mouse recombinant GDF-11 improved the YBMT-mediated muscle benefits (n = 5-6, P < 0.05). Cell therapy with young bone marrow from green fluorescent protein (GFP) transgenic mice exhibited GFP+ myofibres in aged muscle tissues. CONCLUSIONS These findings suggest that YBMT can prevent muscle wasting and dysfunction by mitigating apoptosis and proliferation via a modulation of GDF-11 signalling and mitochondrial dysfunction in SAMP10 mice.
Collapse
Affiliation(s)
- Aiko Inoue
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, Japan.,Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, Japan
| | - Limei Piao
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, PR China
| | - Xueling Yue
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, PR China
| | - Zhe Huang
- Department of Human Cord Applied Cell Therapy, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, Japan
| | - Lina Hu
- Department of Public Health, Guilin Medical College, Guilin, Guangxi, PR China
| | - Hongxian Wu
- Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Xiangkun Meng
- Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, Japan
| | - Wenhu Xu
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, PR China
| | - Chenglin Yu
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, PR China
| | - Takeshi Sasaki
- Department of Anatomy and Neuroscience, Hamamatsu University School of Medicine, Hamamatsu, Shizuokaken, Japan
| | - Kohji Itakura
- Division for Medical Research Engineering, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, Japan
| | - Hiroyuki Umegaki
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, Japan.,Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, Japan
| | - Masafumi Kuzuya
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, Japan.,Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, Japan
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, PR China
| |
Collapse
|
11
|
Baker NL, Hammad SM, Hunt KJ, Semler A, Klein RL, Lopes-Virella MF. Plasma apoM Levels and Progression to Kidney Dysfunction in Patients With Type 1 Diabetes. Diabetes 2022; 71:1795-1799. [PMID: 35554520 PMCID: PMC9490352 DOI: 10.2337/db21-0920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/30/2022] [Indexed: 11/13/2022]
Abstract
Apolipoprotein M (apoM), primarily carried by HDL, has been associated with several conditions, including cardiovascular disease and diabetic nephropathy. This study proposes to examine whether plasma apoM levels are associated with the development of diabetic kidney disease, assessed as progression to macroalbuminuria (MA) and chronic kidney disease (CKD). Plasma apoM was measured using an enzyme immunoassay in 386 subjects from the Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) cohort at DCCT entry and closeout and the concentrations used to determine the association with risk of progression to kidney dysfunction from the time of measurement through 18 years of EDIC follow-up. apoM levels, at DCCT baseline, were higher in patients who developed CKD than in those who retained normal renal function. At DCCT closeout, participants who progressed to MA, CKD, or both MA and CKD also had significantly higher apoM levels than those who remained normal, and increased levels of apoM were associated with increased risk of progression to both MA (risk ratio [RR] 1.30 [95% CI 1.01, 1.66]) and CKD (RR 1.69 [95% CI 1.18, 2.44]). Our results strongly suggest that alterations in apoM and therefore in the composition and function of HDL in type 1 diabetes are present early in the disease process and are associated with the development of nephropathy.
Collapse
Affiliation(s)
- Nathaniel L. Baker
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| | - Samar M. Hammad
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC
| | - Kelly J. Hunt
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| | - Andrea Semler
- Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC
| | - Richard L. Klein
- Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC
- Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, SC
| | - Maria F. Lopes-Virella
- Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC
- Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, SC
- Corresponding author: Maria F. Lopes-Virella,
| |
Collapse
|
12
|
Spampinato SF, Sortino MA, Salomone S. Sphingosine-1-phosphate and Sphingosine-1-phosphate receptors in the cardiovascular system: pharmacology and clinical implications. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 94:95-139. [PMID: 35659378 DOI: 10.1016/bs.apha.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a lipid that binds and activates five distinct receptor subtypes, S1P1, S1P2, S1P3, S1P4, S1P5, widely expressed in different cells, tissues and organs. In the cardiovascular system these receptors have been extensively studied, but no drug acting on them has been approved so far for treating cardiovascular diseases. In contrast, a number of S1P receptor agonists are approved as immunomodulators, mainly for multiple sclerosis, because of their action on lymphocyte trafficking. This chapter summarizes the available information on S1P receptors in the cardiovascular system and discusses their potential for treating cardiovascular conditions and/or their role on the clinical pharmacology of drugs so far approved for non-cardiovascular conditions. Basic research has recently produced data useful to understand the molecular pharmacology of S1P and S1P receptors, regarding biased agonism, S1P storage, release and vehiculation and chaperoning by lipoproteins, paracrine actions, intracellular non-receptorial S1P actions. On the other hand, the approval of fingolimod and newer generation S1P receptor ligands as immunomodulators, provides information on a number of clinical observations on the impact of these drugs on cardiovascular system which need to be integrated with preclinical data. S1P receptors are potential targets for prevention and treatment of major cardiovascular conditions, including hypertension, myocardial infarction, heart failure and stroke.
Collapse
Affiliation(s)
| | - Maria Angela Sortino
- Department of Biomedical and Biotechnological Science, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Science, University of Catania, Catania, Italy.
| |
Collapse
|
13
|
Zocchi M, Della Porta M, Lombardoni F, Scrimieri R, Zuccotti GV, Maier JA, Cazzola R. A Potential Interplay between HDLs and Adiponectin in Promoting Endothelial Dysfunction in Obesity. Biomedicines 2022; 10:1344. [PMID: 35740366 PMCID: PMC9220412 DOI: 10.3390/biomedicines10061344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 12/11/2022] Open
Abstract
Obesity is an epidemic public health problem that has progressively worsened in recent decades and is associated with low-grade chronic inflammation (LGCI) in metabolic tissues and an increased risk of several diseases. In particular, LGCI alters metabolism and increases cardiovascular risk by impairing endothelial function and altering the functions of adiponectin and high-density lipoproteins (HDLs). Adiponectin is an adipokine involved in regulating energy metabolism and body composition. Serum adiponectin levels are reduced in obese individuals and negatively correlate with chronic sub-clinical inflammatory markers. HDLs are a heterogeneous and complex class of lipoproteins that can be dysfunctional in obesity. Adiponectin and HDLs are strictly interdependent, and the maintenance of their interplay is essential for vascular function. Since such a complex network of interactions is still overlooked in clinical settings, this review aims to highlight the mechanisms involved in the impairment of the HDLs/adiponectin axis in obese patients to predict the risk of cardiovascular diseases and activate preventive countermeasures. Here, we provide a narrative review of the role of LGCI in altering HDLs, adiponectin and endothelial functions in obesity to encourage new studies about their synergic effects on cardiovascular health and disease.
Collapse
Affiliation(s)
- Monica Zocchi
- Department of Biomedical and Clinical Sciences, UniversitĂ degli Studi di Milano, 20157 Milan, Italy; (M.Z.); (M.D.P.); (F.L.); (R.S.); (G.V.Z.); (J.A.M.)
| | - Matteo Della Porta
- Department of Biomedical and Clinical Sciences, UniversitĂ degli Studi di Milano, 20157 Milan, Italy; (M.Z.); (M.D.P.); (F.L.); (R.S.); (G.V.Z.); (J.A.M.)
| | - Federico Lombardoni
- Department of Biomedical and Clinical Sciences, UniversitĂ degli Studi di Milano, 20157 Milan, Italy; (M.Z.); (M.D.P.); (F.L.); (R.S.); (G.V.Z.); (J.A.M.)
| | - Roberta Scrimieri
- Department of Biomedical and Clinical Sciences, UniversitĂ degli Studi di Milano, 20157 Milan, Italy; (M.Z.); (M.D.P.); (F.L.); (R.S.); (G.V.Z.); (J.A.M.)
| | - Gian Vincenzo Zuccotti
- Department of Biomedical and Clinical Sciences, UniversitĂ degli Studi di Milano, 20157 Milan, Italy; (M.Z.); (M.D.P.); (F.L.); (R.S.); (G.V.Z.); (J.A.M.)
- Department of Pediatrics, Ospedale dei Bambini, 20154 Milan, Italy
| | - Jeanette A. Maier
- Department of Biomedical and Clinical Sciences, UniversitĂ degli Studi di Milano, 20157 Milan, Italy; (M.Z.); (M.D.P.); (F.L.); (R.S.); (G.V.Z.); (J.A.M.)
| | - Roberta Cazzola
- Department of Biomedical and Clinical Sciences, UniversitĂ degli Studi di Milano, 20157 Milan, Italy; (M.Z.); (M.D.P.); (F.L.); (R.S.); (G.V.Z.); (J.A.M.)
| |
Collapse
|
14
|
Duan M, Gao P, Chen SX, NovĂĄk P, Yin K, Zhu X. Sphingosine-1-phosphate in mitochondrial function and metabolic diseases. Obes Rev 2022; 23:e13426. [PMID: 35122459 DOI: 10.1111/obr.13426] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/02/2022] [Accepted: 01/02/2022] [Indexed: 01/23/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite. The past decade has witnessed exponential growth in the field of S1P research, partly attributed to drugs targeting its receptors or kinases. Accumulating evidence indicates that changes in the S1P axis (i.e., S1P production, transport, and receptors) may modify metabolism and eventually mediate metabolic diseases. Dysfunction of the mitochondria on a master monitor of cellular metabolism is considered the leading cause of metabolic diseases, with aberrations typically induced by abnormal biogenesis, respiratory chain complex disorders, reactive oxygen species overproduction, calcium deposition, and mitophagy impairment. Accordingly, we discuss decades of investigation into changes in the S1P axis and how it controls mitochondrial function. Furthermore, we summarize recent scientific advances in disorders associated with the S1P axis and their involvement in the pathogenesis of metabolic diseases in humans, including type 2 diabetes mellitus and cardiovascular disease, from the perspective of mitochondrial function. Finally, we review potential challenges and prospects for S1P axis application to the regulation of mitochondrial function and metabolic diseases; these data may provide theoretical guidance for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Meng Duan
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Pan Gao
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Sheng-Xi Chen
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Petr NovĂĄk
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Kai Yin
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China.,Department of Cardiology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Xiao Zhu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| |
Collapse
|
15
|
Therond P, Chapman MJ. Sphingosine-1-phosphate: metabolism, transport, atheroprotection and effect of statin treatment. Curr Opin Lipidol 2022; 33:199-207. [PMID: 35695616 DOI: 10.1097/mol.0000000000000825] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW To better define the metabolism of sphingosine-1-phosphate (S1P), its transport in plasma and its interactions with S1P receptors on vascular cells, and to evaluate the effect of statin treatment on the subnormal plasma levels of high-density lipoprotein (HDL)-bound S1P characteristic of the atherogenic dyslipidemia of metabolic syndrome (MetS). RECENT FINDINGS Neither clinical intervention trials targeted to raising high-density lipoprotein-cholesterol (HDL-C) levels nor human genome-wide association studies (GWAS) studies have provided evidence to support an atheroprotective role of HDL. Recently however a large monogenic univariable Mendelian randomization on the N396S mutation in the gene encoding endothelial lipase revealed a causal protective effect of elevated HDL-C on coronary artery disease conferred by reduced enzyme activity. Given the complexity of the HDL lipidome and proteome, components of HDL other than cholesterol may in all likelihood contribute to such a protective effect. Among HDL lipids, S1P is a bioactive sphingolipid present in a small proportion of HDL particles (about 5%); indeed, S1P is preferentially enriched in small dense HDL3. As S1P is bound to apolipoprotein (apo) M in HDL, such enrichment is consistent with the elevated apoM concentration in HDL3. When HDL/apoM-bound S1P acts on S1P1 or S1P3 receptors in endothelial cells, potent antiatherogenic and vasculoprotective effects are exerted; those exerted by albumin-bound S1P at these receptors are typically weaker. When HDL/apoM-bound S1P binds to S1P2 receptors, proatherogenic effects may potentially be induced. Subnormal plasma levels of HDL-associated S1P are typical of dyslipidemic individuals at high cardiovascular risk and in patients with coronary heart disease. International Guidelines recommend statin treatment as first-line lipid lowering therapy in these groups. The cardiovascular benefits of statin therapy are derived primarily from reduction in low-density lipoprotein (LDL)-cholesterol, although minor contributions from pleiotropic actions cannot be excluded. Might statin treatment therefore normalize, directly or indirectly, the subnormal levels of S1P in dyslipidemic subjects at high cardiovascular risk? Our unpublished findings in the CAPITAIN study (ClinicalTrials.gov: NCT01595828), involving a cohort of obese, hypertriglyceridemic subjects (nâ=â12) exhibiting the MetS, showed that pitavastatin calcium (4âmg/day) treatment for 180days was without effect on either total plasma or HDL-associated S1P levels, suggesting that statin-mediated improvement of endothelial function is not due to normalization of HDL-bound S1P. Statins may however induce the expression of S1P1 receptors in endothelial cells, thereby potentiating increase in endothelial nitric oxide synthase response to HDL-bound S1P, with beneficial downstream vasculoprotective effects. SUMMARY Current evidence indicates that S1P in small dense HDL3 containing apoM exerts antiatherogenic effects and that statins exert vasculoprotective effects through activation of endothelial cell S1P1 receptors in response to HDL/apoM-bound S1P.
Collapse
Affiliation(s)
- Patrice Therond
- AP-HP, CHU BicĂȘtre, Laboratory of Biochemistry, Le Kremlin-BicĂȘtre Hospital, Le Kremlin-Bicetre
- EA7357, Paris Saclay University, ChĂąte- nay-Malabry
| | - M John Chapman
- Faculty of Medicine, Sorbonne University
- Endocrinology and Cardiovascular Disease Prevention, Pitie-Salpetriere University Hospital
- National Institute for Health and Medical Research (INSERM), Paris, France
| |
Collapse
|
16
|
Metz S, Krarup NT, Bryrup T, StÞy J, Andersson EA, Christoffersen C, Neville MJ, Christiansen MR, Jonsson AE, Witte DR, Kampmann U, Nielsen LB, JÞrgensen NR, Karpe F, Grarup N, Pedersen O, KilpelÀinen TO, Hansen T. The Arg82Cys Polymorphism of the Protein Nepmucin Implies a Role in HDL Metabolism. J Endocr Soc 2022; 6:bvac034. [PMID: 35382499 PMCID: PMC8974852 DOI: 10.1210/jendso/bvac034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Indexed: 12/02/2022] Open
Abstract
Context Blood lipid levels are linked to the risk of cardiovascular disease and regulated by genetic factors. A low-frequency polymorphism Arg82Cys (rs72836561) in the membrane protein nepmucin, encoded by CD300LG, is associated with lower fasting concentration of high-density lipoprotein cholesterol (HDLc) and higher fasting triglycerides. However, whether the variant is linked to postprandial lipids and glycemic status remains elusive. Objective Here, we augment the genetic effect of Arg82Cys on fasting plasma concentrations of HDL subclasses, postprandial lipemia after a standardized high-fat meal, and glycemic status to further untangle its role in HDL metabolism. Methods We elucidated fasting associations with HDL subclasses in a population-based cohort study (Oxford BioBank, OBB), including 4522 healthy men and women. We investigated fasting and postprandial consequences on HDL metabolism in recall-by-genotype (RbG) studies (fasting: 20 carrier/20 noncarrier; postprandial: 7 carrier/17 noncarrier), and shed light on the synergistic interaction with glycemic status. Results A lower fasting plasma concentration of cholesterol in large HDL particles was found in healthy male carriers of the Cys82 polymorphism compared to noncarriers, both in the OBB (Pâ
=â
.004) and RbG studies (Pâ
=â
.005). In addition, the Cys82 polymorphism was associated with low fasting plasma concentrations of ApoA1 (Pâ
=â
.008) in the OBB cohort. On the contrary, we did not find differences in postprandial lipemia or 2-hour plasma glucose levels. Conclusion Taken together, our results indicate an association between the Arg82Cys variant and a lower concentration of HDL particles and HDLc, especially in larger HDL subclasses, suggesting a link between nepmucin and HDLc metabolism or maturation.
Collapse
Affiliation(s)
- Sophia Metz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nikolaj T Krarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Cardiology, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Thomas Bryrup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Julie StĂžy
- Aarhus University Hospital, Steno Diabetes Center Aarhus, 8200 Aarhus, Denmark
| | - Ehm A Andersson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Matt J Neville
- Oxford Centre for Diabetes, Endocrinology & Metabolism, OX3 7LE Oxford, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, OX3 7LE Oxford, UK
| | - Malene R Christiansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anna E Jonsson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Daniel R Witte
- Department of Public Health, Section of Epidemiology, Aarhus University, 8000 Aarhus, Denmark
| | - Ulla Kampmann
- Aarhus University Hospital, Steno Diabetes Center Aarhus, 8200 Aarhus, Denmark
| | - Lars B Nielsen
- Department of Clinical Biochemistry, Rigshospitalet, 2100 Copenhagen, Denmark
- Faculty of Health, Aarhus University, 8000 Aarhus, Denmark
| | - Niklas R JĂžrgensen
- Department of Clinical Biochemistry, Rigshospitalet, 2100 Copenhagen, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology & Metabolism, OX3 7LE Oxford, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, OX3 7LE Oxford, UK
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Tuomas O KilpelÀinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Faculty of Health, University of Southern Denmark, 5000 Odense, Denmark
| |
Collapse
|
17
|
Julve J, EscolĂ -Gil JC. High-Density Lipoproteins and Cardiovascular Disease: The Good, the Bad, and the Future. Int J Mol Sci 2021; 22:ijms22147488. [PMID: 34299108 PMCID: PMC8307852 DOI: 10.3390/ijms22147488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 12/31/2022] Open
Affiliation(s)
- Josep Julve
- Institut dâInvestigacions BiomĂšdiques IIB Sant Pau, 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades MetabĂłlicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Departament de BioquĂmica i Biologia Molecular, Universitat AutĂČnoma de Barcelona, 08041 Barcelona, Spain
- Correspondence: (J.J.); (J.C.E.-G.)
| | - Joan Carles EscolĂ -Gil
- Institut dâInvestigacions BiomĂšdiques IIB Sant Pau, 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades MetabĂłlicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Departament de BioquĂmica i Biologia Molecular, Universitat AutĂČnoma de Barcelona, 08041 Barcelona, Spain
- Correspondence: (J.J.); (J.C.E.-G.)
| |
Collapse
|
18
|
Trakaki A, Marsche G. Current Understanding of the Immunomodulatory Activities of High-Density Lipoproteins. Biomedicines 2021; 9:biomedicines9060587. [PMID: 34064071 PMCID: PMC8224331 DOI: 10.3390/biomedicines9060587] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Lipoproteins interact with immune cells, macrophages and endothelial cells - key players of the innate and adaptive immune system. High-density lipoprotein (HDL) particles seem to have evolved as part of the innate immune system since certain HDL subspecies contain combinations of apolipoproteins with immune regulatory functions. HDL is enriched in anti-inflammatory lipids, such as sphingosine-1-phosphate and certain saturated lysophospholipids. HDL reduces inflammation and protects against infection by modulating immune cell function, vasodilation and endothelial barrier function. HDL suppresses immune cell activation at least in part by modulating the cholesterol content in cholesterol/sphingolipid-rich membrane domains (lipid rafts), which play a critical role in the compartmentalization of signaling pathways. Acute infections, inflammation or autoimmune diseases lower HDL cholesterol levels and significantly alter HDL metabolism, composition and function. Such alterations could have a major impact on disease progression and may affect the risk for infections and cardiovascular disease. This review article aims to provide a comprehensive overview of the immune cell modulatory activities of HDL. We focus on newly discovered activities of HDL-associated apolipoproteins, enzymes, lipids, and HDL mimetic peptides.
Collapse
|
19
|
Fecal g. Streptococcus and g. Eubacterium_coprostanoligenes_group combined with sphingosine to modulate the serum dyslipidemia in high-fat diet mice. Clin Nutr 2021; 40:4234-4245. [PMID: 33608131 DOI: 10.1016/j.clnu.2021.01.031] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/04/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Although high-fat diet (HFD) could impact the composition of fecal microbiome and their metabolites, it is still largely unknown which fecal bacteria and metabolites are relatively important in responding to the HFD. This study aimed to identify the crucial fecal bacteria and metabolites in the HFD mice using a microbial-metabolite network, and to investigate the synergistic mediation effect of the crucial fecal bacteria and metabolites on serum dyslipidemia induced by the HFD. METHODS The 16srDNA sequencing and the ultra-performance liquid chromatography (UPLC/TOF MSMS) platform were performed to characterize the composition and function of fecal microbiome, and metabolites in the HFD. The microbial-metabolite network, correlation and mediation analyses were performed to examine the relationships among fecal microbiome, metabolites, and serum dyslipidemia indicators. Mice models were conducted to evaluate the effect of fecal metabolite on dyslipidemia. RESULTS Compared to the control, 32 genera were altered in the HFD, including 26 up-regulated and 6 down-regulated. A total of 42 altered pathways were observed between the control and HFD, and the "Glycosphingolipid biosynthesis" was identified as the most significant pathway (fold change = 0.64; p < 0.001). Meanwhile, 49 fecal metabolites were altered in the HFD, and the fecal microbiome was associated with the fecal metabolism (M2 = 0.776, p = 0.008). Based on the microbial-metabolite network, two major hub genera were screened (HUB1: g. Streptococcus, HUB2: g. Eubacterium_coprostanoligenes_group), and one bacterial metabolite, sphingosine, was found in this study. Further, the HUB2 was positively associated with fecal sphingosine (r = 0.646, p = 0.001), and its downstream metabolic pathway, "Glycosphingolipid biosynthesis" pathway (r = 0.544, p = 0.009). The regulatory relationship between the HUB2 and sphingosine synergistically mediated the effect of HFD on TCHO (33.7%), HDL-C (37.3%), and bodyweight (36.7%). Besides, compared to the HFD, the HFD with sphingosine supplementation had lower bodyweight (35.12 ± 1.23 vs. 39.42 ± 1.25, p < 0.001), TG (0.44 ± 0.08 vs. 0.52 ± 0.05, p = 0.002), TCHO (3.81 ± 0.34 vs. 4.51 ± 0.38, p = 0.002), and LDL-c (0.82 ± 0.09 vs. 0.97 ± 0.15, p = 0.016). CONCLUSIONS The g. Streptococcus and g. Eubacterium_coprostanoligenes are two hub genera in the fecal micro-ecosystem of the HFD, and the g. Eubacterium_coprostanoligenes mediates the effect of HFD on dyslipidemia through sphingosine. Sphingosine supplementation can improve dyslipidemia induced by HFD.
Collapse
|
20
|
Magaye RR, Savira F, Hua Y, Xiong X, Huang L, Reid C, Flynn BL, Kaye D, Liew D, Wang BH. Attenuating PI3K/Akt- mTOR pathway reduces dihydrosphingosine 1 phosphate mediated collagen synthesis and hypertrophy in primary cardiac cells. Int J Biochem Cell Biol 2021; 134:105952. [PMID: 33609744 DOI: 10.1016/j.biocel.2021.105952] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/15/2022]
Abstract
Cardiac fibrosis and myocyte hypertrophy play contributory roles in the progression of diseases such as heart Failure (HF) through what is collectively termed cardiac remodelling. The phosphoinositide 3- kinase (PI3K), protein kinase B (Akt) and mammalian target for rapamycin (mTOR) signalling pathway (PI3K/Akt- mTOR) is an important pathway in protein synthesis, cell growth, cell proliferation, and lipid metabolism. The sphingolipid, dihydrosphingosine 1 phosphate (dhS1P) has been shown to bind to high density lipids in plasma. Unlike its analog, spingosine 1 phosphate (S1P), the role of dhS1P in cardiac fibrosis is still being deciphered. This study was conducted to investigate the effect of dhS1P on PI3K/Akt signalling in primary cardiac fibroblasts and myocytes. Our findings demonstrate that inhibiting PI3K reduced collagen synthesis in neonatal cardiac fibroblasts (NCFs), and hypertrophy in neonatal cardiac myocytes (NCMs) induced by dhS1P, in vitro. Reduced activation of the PI3K/Akt- mTOR signalling pathway led to impaired translation of fibrotic proteins such as collagen 1 (Coll1) and transforming growth factor ÎČ (TGFÎČ) and inhibited the transcription and translation of tissue inhibitor of matrix metalloproteinase 1 (TIMP1). PI3K inhibition also affected the gene expression of S1P receptors and enzymes such as the dihydroceramide delta 4 desaturase (DEGS1) and sphingosine kinase 1 (SK1) in the de novo sphingolipid pathway. While in myocytes, PI3K inhibition reduced myocyte hypertrophy induced by dhS1P by reducing skeletal muscle α- actin (αSKA) mRNA expression, and protein translation due to increased glycogen synthase kinase 3ÎČ (GSK3ÎČ) mRNA expression. Our findings show a relationship between the PI3K/Akt- mTOR signalling cascade and exogenous dhS1P induced collagen synthesis and myocyte hypertrophy in primary neonatal cardiac cells.
Collapse
Affiliation(s)
- Ruth R Magaye
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in Therapeutics, Melbourne, Australia
| | - Feby Savira
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in Therapeutics, Melbourne, Australia
| | - Yue Hua
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Melbourne, Australia; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xin Xiong
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Melbourne, Australia; Shanghai Institute of Heart Failure, Research Centre for Translational Medicine, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai 200120, China
| | - Li Huang
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in Therapeutics, Melbourne, Australia
| | - Christopher Reid
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Melbourne, Australia; School of Public Health School, Curtin University, Perth, Australia
| | - Bernard L Flynn
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - David Kaye
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Danny Liew
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Melbourne, Australia
| | - Bing H Wang
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in Therapeutics, Melbourne, Australia.
| |
Collapse
|
21
|
Novel human immunomodulatory T cell receptors and their double-edged potential in autoimmunity, cardiovascular disease and cancer. Cell Mol Immunol 2020; 18:919-935. [PMID: 33235388 DOI: 10.1038/s41423-020-00586-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022] Open
Abstract
In the last decade, approaches based on T cells and their immunomodulatory receptors have emerged as a solid improvement in treatments for various types of cancer. However, the roles of these molecules in the therapeutic context of autoimmune and cardiovascular diseases are still relatively unexplored. Here, we review the best known and most commonly used immunomodulatory T cell receptors in clinical practice (PD-1 and CTLA-4), along with the rest of the receptors with known functions in animal models, which have great potential as modulators in human pathologies in the medium term. Among these other receptors is the receptor CD69, which has recently been described to be expressed in mouse and human T cells in autoimmune and cardiovascular diseases and cancer. However, inhibition of these receptors individually or in combination by drugs or monoclonal antibodies generates a loss of immunological tolerance and can trigger multiple autoimmune disorders in different organs and immune-related adverse effects. In the coming decades, knowledge on the functions of different immunomodulatory receptors will be pivotal for the development of new and better therapies with less harmful side effects. In this review, we discuss the roles of these receptors in the control of immunity from a perspective focused on therapeutic potential in not only cancer but also autoimmune diseases, such as systemic lupus erythematosus, autoimmune diabetes and rheumatoid arthritis, and cardiovascular diseases, such as atherosclerosis, acute myocardial infarction, and myocarditis.
Collapse
|
22
|
Bergougnan L, Andersen G, Plum-Mörschel L, Evaristi MF, Poirier B, Tardat A, Ermer M, Herbrand T, Arrubla J, Coester HV, Sansone R, Heiss C, Vitse O, Hurbin F, Boiron R, Benain X, Radzik D, Janiak P, Muslin AJ, Hovsepian L, Kirkesseli S, Deutsch P, Parkar AA. Endothelial-protective effects of a G-protein-biased sphingosine-1 phosphate receptor-1 agonist, SAR247799, in type-2 diabetes rats and a randomized placebo-controlled patient trial. Br J Clin Pharmacol 2020; 87:2303-2320. [PMID: 33125753 PMCID: PMC8247405 DOI: 10.1111/bcp.14632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 12/12/2022] Open
Abstract
Aims SAR247799 is a Gâproteinâbiased sphingosineâ1 phosphate receptorâ1 (S1P1) agonist designed to activate endothelial S1P1 and provide endothelialâprotective properties, while limiting S1P1 desensitization and consequent lymphocyteâcount reduction associated with higher doses. The aim was to show whether S1P1 activation can promote endothelial effects in patients and, if so, select SAR247799 doses for further clinical investigation. Methods Typeâ2 diabetes patients, enriched for endothelial dysfunction (flowâmediated dilation, FMD <7%; n = 54), were randomized, in 2 sequential cohorts, to 28âday onceâdaily treatment with SAR247799 (1 or 5 mg in ascending cohorts), placebo or 50 mg sildenafil (positive control) in a 5:2:2 ratio per cohort. Endothelial function was assessed by brachial artery FMD. Renal function, biomarkers and lymphocytes were measured following 5âweek SAR247799 treatment (3 doses) to Zucker diabetic fatty rats and the data used to select the doses for human testing. Results The maximum FMD change from baseline vs placebo for all treatments was reached on day 35; mean differences vs placebo were 0.60% (95% confidence interval [CI] â0.34 to 1.53%; P = .203) for 1 mg SAR247799, 1.07% (95% CI 0.13 to 2.01%; P = .026) for 5 mg SAR247799 and 0.88% (95% CI â0.15 to 1.91%; P = .093) for 50 mg sildenafil. Both doses of SAR247799 were well tolerated, did not affect blood pressure, and were associated with minimalâtoâno lymphocyte reduction and smallâtoâmoderate heart rate decrease. Conclusion These data provide the first human evidence suggesting endothelialâprotective properties of S1P1 activation, with SAR247799 being as effective as the clinical benchmark, sildenafil. Further clinical testing of SAR247799, at subâlymphocyteâreducing doses (â€5 mg), is warranted in vascular diseases associated with endothelial dysfunction.
Collapse
Affiliation(s)
- Luc Bergougnan
- Sanofi R&D, 1 Avenue Pierre Brossolette, Chilly Mazarin, France
| | | | | | | | - Bruno Poirier
- Sanofi R&D, 1 Avenue Pierre Brossolette, Chilly Mazarin, France
| | - Agnes Tardat
- Sanofi R&D, 371 Rue du Professeur Blayac, Montpellier, France
| | | | | | | | | | - Roberto Sansone
- Division of Cardiology, Pulmonary diseases and Vascular medicine, University Hospital DĂŒsseldorf, DĂŒsseldorf, Germany
| | - Christian Heiss
- Department of Clinical and Experimental Medicine, University of Surrey, Stag Hill, Guildford, UK
| | - Olivier Vitse
- Sanofi R&D, 371 Rue du Professeur Blayac, Montpellier, France
| | - Fabrice Hurbin
- Sanofi R&D, 371 Rue du Professeur Blayac, Montpellier, France
| | - Rania Boiron
- Sanofi R&D, 1 Avenue Pierre Brossolette, Chilly Mazarin, France
| | - Xavier Benain
- Sanofi R&D, 371 Rue du Professeur Blayac, Montpellier, France
| | - David Radzik
- Sanofi R&D, 1 Avenue Pierre Brossolette, Chilly Mazarin, France
| | - Philip Janiak
- Sanofi R&D, 1 Avenue Pierre Brossolette, Chilly Mazarin, France
| | | | | | | | | | | |
Collapse
|
23
|
Sukhorukov VN, Khotina VA, Bagheri Ekta M, Ivanova EA, Sobenin IA, Orekhov AN. Endoplasmic Reticulum Stress in Macrophages: The Vicious Circle of Lipid Accumulation and Pro-Inflammatory Response. Biomedicines 2020; 8:biomedicines8070210. [PMID: 32668733 PMCID: PMC7400097 DOI: 10.3390/biomedicines8070210] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 02/08/2023] Open
Abstract
The endoplasmic reticulum (ER) stress is an important event in the pathogenesis of different human disorders, including atherosclerosis. ER stress leads to disturbance of cellular homeostasis, apoptosis, and in the case of macrophages, to foam cell formation and pro-inflammatory cytokines production. In atherosclerosis, several cell types can be affected by ER stress, including endothelial cells, vascular smooth muscular cells, and macrophages. Modified low-density lipoproteins (LDL) and cytokines, in turn, can provoke ER stress through different processes. The signaling cascades involved in ER stress initiation are complex and linked to other cellular processes, such as lysosomal biogenesis and functioning, autophagy, mitochondrial homeostasis, and energy production. In this review, we discuss the underlying mechanisms of ER stress formation and the interplay of lipid accumulation and pro-inflammatory response. We will specifically focus on macrophages, which are the key players in maintaining chronic inflammatory milieu in atherosclerotic lesions, and also a major source of lipid-accumulating foam cells.
Collapse
Affiliation(s)
- Vasily N. Sukhorukov
- Research Institute of Human Morphology, Laboratory of Cellular and Molecular Pathology of Cardiovascular System, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.A.K.); (M.B.E.); (I.A.S.); (A.N.O.)
- Correspondence: (V.N.S.); (E.A.I.)
| | - Victoria A. Khotina
- Research Institute of Human Morphology, Laboratory of Cellular and Molecular Pathology of Cardiovascular System, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.A.K.); (M.B.E.); (I.A.S.); (A.N.O.)
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Str., 125315 Moscow, Russia
| | - Mariam Bagheri Ekta
- Research Institute of Human Morphology, Laboratory of Cellular and Molecular Pathology of Cardiovascular System, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.A.K.); (M.B.E.); (I.A.S.); (A.N.O.)
| | - Ekaterina A. Ivanova
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia
- Correspondence: (V.N.S.); (E.A.I.)
| | - Igor A. Sobenin
- Research Institute of Human Morphology, Laboratory of Cellular and Molecular Pathology of Cardiovascular System, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.A.K.); (M.B.E.); (I.A.S.); (A.N.O.)
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, Institute of Experimental Cardiology, 15-a 3-rd Cherepkovskaya Str., 121552 Moscow, Russia
| | - Alexander N. Orekhov
- Research Institute of Human Morphology, Laboratory of Cellular and Molecular Pathology of Cardiovascular System, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.A.K.); (M.B.E.); (I.A.S.); (A.N.O.)
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Str., 125315 Moscow, Russia
| |
Collapse
|