1
|
Barcelos PM, Filgueiras IS, Nóbile AL, Usuda JN, Adri AS, de Alburquerque DG, Côrrea YLG, do Vale FYN, Bahia IAF, Nava RG, Boroni M, Marques AHC, Dalmolin R, Schimke LF, Cabral-Miranda G, Nakaya HI, Dias HD, Fonseca DLM, Cabral-Marques O. Gene regulatory networks analysis for the discovery of prognostic genes in gliomas. Sci Rep 2025; 15:14034. [PMID: 40269178 PMCID: PMC12018930 DOI: 10.1038/s41598-025-98542-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025] Open
Abstract
Gliomas are the most common and aggressive primary tumors of the central nervous system. Dysregulated transcription factors (TFs) and genes have been implicated in glioma progression, yet these tumors' overall structure of gene regulatory networks (GRNs) remains undefined. We analyzed transcriptional data from 989 primary gliomas in The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) to address this. GRNs were reconstructed using the RTN package which identifies regulons-sets of genes regulated by a common TF based on co-expression and mutual information. Regulon activity was evaluated through Gene Set Enrichment Analysis. Elastic net regularization and Cox regression identified 31 and 32 prognostic genes in the TCGA and CGGA datasets, respectively, with 11 genes overlapping, many of which are associated with neural development and synaptic processes. GAS2L3, HOXD13, and OTP demonstrated the strongest correlations with survival outcomes among these. Single-cell RNA-seq analysis of 201,986 cells revealed distinct expression patterns for these genes in glioma subpopulations, particularly oligoprogenitor cells. This study uncovers key GRNs and prognostic genes in gliomas, offering new insights into tumor biology and potential therapeutic targets.
Collapse
Affiliation(s)
- Pedro Marçal Barcelos
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Prof. Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil.
| | - Igor Salerno Filgueiras
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
- Laboratory of Psychoneuroimmunology, Selye Lab, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Adriel Leal Nóbile
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Prof. Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil
- Laboratory of Psychoneuroimmunology, Selye Lab, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Júlia Nakanishi Usuda
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Prof. Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil
- Laboratory of Psychoneuroimmunology, Selye Lab, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Anny Silva Adri
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Prof. Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil
- Laboratory of Psychoneuroimmunology, Selye Lab, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Débora Gomes de Alburquerque
- Laboratory of Psychoneuroimmunology, Selye Lab, University of São Paulo School of Medicine, São Paulo, Brazil
- Interunit Postgraduate Program on Bioinformatics, Institute of Chemistry (IQ), University of São Paulo (USP), Matão Street, 1010, São Paulo, SP, 05508-090, Brazil
| | - Yohan Lucas Gonçalves Côrrea
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Prof. Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil
- Laboratory of Psychoneuroimmunology, Selye Lab, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Fernando Yuri Nery do Vale
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Prof. Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil
- Laboratory of Psychoneuroimmunology, Selye Lab, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Ian Antunes Ferreira Bahia
- Interunit Postgraduate Program on Bioinformatics, Institute of Chemistry (IQ), University of São Paulo (USP), Matão Street, 1010, São Paulo, SP, 05508-090, Brazil
| | - Roseane Galdioli Nava
- Laboratory of Psychoneuroimmunology, Selye Lab, University of São Paulo School of Medicine, São Paulo, Brazil
- Interunit Postgraduate Program on Bioinformatics, Institute of Chemistry (IQ), University of São Paulo (USP), Matão Street, 1010, São Paulo, SP, 05508-090, Brazil
| | - Mariana Boroni
- Laboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Alexandre H C Marques
- Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Rodrigo Dalmolin
- Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Lena F Schimke
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
- Laboratory of Psychoneuroimmunology, Selye Lab, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Gustavo Cabral-Miranda
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | | | - Haroldo Dutra Dias
- Laboratory of Psychoneuroimmunology, Selye Lab, University of São Paulo School of Medicine, São Paulo, Brazil
- Department of Medicine, Division of Molecular Medicine, Laboratory of Medical Investigation 29, School of Medicine, University of São Paulo (USP) School of Medicine, Avenida Dr. Arnaldo, 455, São Paulo, SP, 01246-903, Brazil
| | - Dennyson Leandro M Fonseca
- Interunit Postgraduate Program on Bioinformatics, Institute of Chemistry (IQ), University of São Paulo (USP), Matão Street, 1010, São Paulo, SP, 05508-090, Brazil.
| | - Otavio Cabral-Marques
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Prof. Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil.
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil.
- Laboratory of Psychoneuroimmunology, Selye Lab, University of São Paulo School of Medicine, São Paulo, Brazil.
- Interunit Postgraduate Program on Bioinformatics, Institute of Chemistry (IQ), University of São Paulo (USP), Matão Street, 1010, São Paulo, SP, 05508-090, Brazil.
- Department of Medicine, Division of Molecular Medicine, Laboratory of Medical Investigation 29, School of Medicine, University of São Paulo (USP) School of Medicine, Avenida Dr. Arnaldo, 455, São Paulo, SP, 01246-903, Brazil.
- IDO'R Institute for Research, São Paulo, Brazil.
| |
Collapse
|
2
|
Li J, Pan H, Wang Y, Chen H, Song Z, Wang Z, Li J. Construction of an Extracellular Matrix-Related Risk Model to Analyze the Correlation Between Glioblastoma and Tumor Immunity. BIOMED RESEARCH INTERNATIONAL 2025; 2025:2004975. [PMID: 40224547 PMCID: PMC11991793 DOI: 10.1155/bmri/2004975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/30/2025] [Indexed: 04/15/2025]
Abstract
Background: Abnormalities in the extracellular matrix (ECM) have been shown to play a crucial role in promoting the formation, progression, and metastasis of glioblastoma multiforme (GBM). Therefore, our study is aimed at constructing a prognostic model based on ECM-related factors, to predict the prognosis of patients with GBM. Methods: We employed single-sample gene set enrichment analysis (ssGSEA) to establish the ECM index of GBM. The identification of candidate genes was achieved by differential analysis conducted between ECM index groups, as well as through the utilization of weighted gene coexpression network analysis (WGCNA) and gene enrichment analysis. We conducted functional validation to confirm the significance of five biomarkers that were tested in the U251 cell line. The screening of prognostic genes was conducted using least absolute shrinkage and selection operator (LASSO) and univariate Cox analysis. The predictive relevance of the risk score model was assessed by using Kaplan-Meier (KM) survival curves in both The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) cohorts. In addition, we conducted immunological studies, created and verified a nomogram, and constructed a network involving long noncoding RNA (lncRNA), microRNA (miRNA), and messenger RNA (mRNA). Results: We identified 45 candidate genes by overlapping the 59 WGCNA core genes with the 855 differentially expressed genes (DEGs) between ECM index groups. These candidate genes were significantly enriched in 254 biological processes (BPs), 18 cellular components (CCs), 27 molecular functions (MFs), and 11 KEGG pathways. We identified a prognostic ECM-related five-gene signature using these candidate genes and constructed a risk model. Furthermore, we generated a nomogram model with excellent predictive ability. We also found significant differences between risk groups in six cell types and 29 immune checkpoints. Finally, we constructed a lncRNA-miRNA-mRNA network consisting of 27 lncRNAs, 73 miRNAs, and 5 model mRNAs. Conclusion: Our study developed a prognostic model based on the ECM-related five-gene signature, which can serve as a valuable reference for the treatment and prophetic prediction of GBM.
Collapse
Affiliation(s)
- Jian Li
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Neurosurgery, Linyi People's Hospital, Linyi, Shandong, China
| | - Hong Pan
- Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yangyang Wang
- Department of Neurosurgery, Linyi People's Hospital, Linyi, Shandong, China
| | - Haixin Chen
- Department of Neurosurgery, Linyi People's Hospital, Linyi, Shandong, China
| | - Zhaopeng Song
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zheng Wang
- Department of Neurosurgery, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng, Shandong, China
| | - Jinxing Li
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Neurosurgery, Linyi People's Hospital, Linyi, Shandong, China
| |
Collapse
|
3
|
Tharamelveliyil Rajendran A, Dheeraj Rajesh G, Ashtekar H, Sairam A, Kumar P, Vadakkepushpakath AN. Uncovering naringin's anticancer mechanisms in glioblastoma via molecular docking and network pharmacology approaches. Sci Rep 2024; 14:21486. [PMID: 39277626 PMCID: PMC11401857 DOI: 10.1038/s41598-024-72475-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024] Open
Abstract
Naringin, a flavonoid, exhibits diverse therapeutic properties and has been proven to exert cytotoxic effects on cancer cells. Nevertheless, the precise mechanism of naringin maintaining its cytotoxic effect on glioblastoma (GBM) remains unknown. Thus, the current study aimed to establish a plausible cellular mechanism for Naringin's inhibition of GBM. We employed various system biology techniques to forecast the primary targets, including gene ontology and cluster analysis, KEGG enrichment pathway estimation, molecular docking, MD (molecular dynamic) simulation and MMPBSA analysis. Glioblastoma target sequences were obtained via DisGeNet and Therapeutic Target Prediction, aligned with naringin targets, and analyzed for gene enrichment and ontology. Gene enrichment analysis identified the top ten hub genes. Further, molecular docking was conducted on all identified targets. For molecular dynamics modelling, we selected the two complexes that exhibited the most docking affinity and the two most prominent genes of the hub identified through analysis of the enrichment of genes. The PARP1 and ALB1 signalling pathways were found to be the main regulated routes. Naringin exhibited the highest binding potential of - 12.90 kcal/mol with PARP1 (4ZZZ), followed by ABL1 (2ABL), with naringin showing a - 8.4 kcal/mol binding score, as determined by molecular docking. The molecular dynamic approach and MM-PBSA investigation along with PCA study revealed that the complex of Naringin, with 4ZZZ (PARP1) and, 2ABL (ABL1), are highly stable compared to that of imatinib and talazoparib. Analyses of the signalling pathway suggested that naringin may have anticancer effects against GBM by influencing the protein PARP and ALB1 levels. Cytotoxicity assay was performed on two different glioblastoma cell lines C6 and U87MG cells. Naringin demonstrates a higher cytotoxic potency against U87MG human glioblastoma cells compared to C6 rat glioma cells.
Collapse
Affiliation(s)
- Arunraj Tharamelveliyil Rajendran
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Gupta Dheeraj Rajesh
- Department of Pharmaceutical Chemistry, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Harsha Ashtekar
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Anusha Sairam
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Pankaj Kumar
- Department of Pharmaceutical Chemistry, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Anoop Narayanan Vadakkepushpakath
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangalore, Karnataka, 575018, India.
| |
Collapse
|
4
|
Zhang W, Shi Y, Oyang L, Cui S, Li S, Li J, Liu L, Li Y, Peng M, Tan S, Xia L, Lin J, Xu X, Wu N, Peng Q, Tang Y, Luo X, Liao Q, Jiang X, Zhou Y. Endoplasmic reticulum stress-a key guardian in cancer. Cell Death Discov 2024; 10:343. [PMID: 39080273 PMCID: PMC11289465 DOI: 10.1038/s41420-024-02110-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Endoplasmic reticulum stress (ERS) is a cellular stress response characterized by excessive contraction of the endoplasmic reticulum (ER). It is a pathological hallmark of many diseases, such as diabetes, obesity, and neurodegenerative diseases. In the unique growth characteristic and varied microenvironment of cancer, high levels of stress are necessary to maintain the rapid proliferation and metastasis of tumor cells. This process is closely related to ERS, which enhances the ability of tumor cells to adapt to unfavorable environments and promotes the malignant progression of cancer. In this paper, we review the roles and mechanisms of ERS in tumor cell proliferation, apoptosis, metastasis, angiogenesis, drug resistance, cellular metabolism, and immune response. We found that ERS can modulate tumor progression via the unfolded protein response (UPR) signaling of IRE1, PERK, and ATF6. Targeting the ERS may be a new strategy to attenuate the protective effects of ERS on cancer. This manuscript explores the potential of ERS-targeted therapies, detailing the mechanisms through which ERS influences cancer progression and highlighting experimental and clinical evidence supporting these strategies. Through this review, we aim to deepen our understanding of the role of ER stress in cancer development and provide new insights for cancer therapy.
Collapse
Grants
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- he Research Project of Health Commission of Hunan Province (202203034978, 202202055318, 202203231032, 202109031837, 202109032010, 20201020), Science and Technology Innovation Program of Hunan Province(2023ZJ1122, 2023RC3199, 2023RC1073), Hunan Provincial Science and Technology Department (2020TP1018), the Changsha Science and Technology Board (kh2201054), Ascend Foundation of National cancer center (NCC201909B06) and by Hunan Cancer Hospital Climb Plan (ZX2020001-3, YF2020002)
- the Research Project of Health Commission of Hunan Province (202203034978, 202202055318, 202203231032, 202109031837, 202109032010, 20201020), Science and Technology Innovation Program of Hunan Province(2023ZJ1122, 2023RC3199, 2023RC1073), Hunan Provincial Science and Technology Department (2020TP1018), the Changsha Science and Technology Board (kh2201054), Ascend Foundation of National cancer center (NCC201909B06) and by Hunan Cancer Hospital Climb Plan (ZX2020001-3, YF2020002)
Collapse
Affiliation(s)
- Wenlong Zhang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yidan Shi
- The High School Attached to Hunan Normal University, Changsha, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
| | - Shiwen Cui
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shizhen Li
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jinyun Li
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Lin Liu
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Yun Li
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Xuemeng Xu
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
| | - Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Qianjin Liao
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
- Department of Oncology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China.
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China.
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China.
- Hengyang Medical School, University of South China, Hengyang, Hunan, China.
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China.
| |
Collapse
|
5
|
Coluccia M. Cyclooxygenase and Cancer: Fundamental Molecular Investigations. Int J Mol Sci 2023; 24:12342. [PMID: 37569718 PMCID: PMC10418830 DOI: 10.3390/ijms241512342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
The involvement of prostaglandins in cancer was first observed in human esophageal carcinoma cells, whose invasive and metastatic potential in nude mice was found to be related to PGE2 and PGF2a production [...].
Collapse
Affiliation(s)
- Mauro Coluccia
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
6
|
Cen S, Jiang D, Lv D, Xu R, Hou J, Yang Z, Wu P, Xiong X, Gao X. Comprehensive analysis of the biological functions of endoplasmic reticulum stress in prostate cancer. Front Endocrinol (Lausanne) 2023; 14:1090277. [PMID: 36967783 PMCID: PMC10036859 DOI: 10.3389/fendo.2023.1090277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Introduction Endoplasmic reticulum stress (ERS) has sizeable affect on cancer proliferation, metastasis, immunotherapy and chemoradiotherapy resistance. However, the effect of ERS on the biochemical recurrence (BCR) of prostate cancer patients remains elusive. Here, we generated an ERS-related genes risk signature to evaluate the physiological function of ERS in PCa with BCR. Methods We collected the ERS-related genes from the GeneCards. The edgeR package was used to screen the differential ERS-related genes in PCa from TCGA datasets. ERS-related gene risk signature was then established using LASSO and multivariate Cox regression models and validated by GEO data sets. Nomogram was developed to assess BCR-free survival possibility. Meanwhile, the correlations between ERS-related signature, gene mutations, drug sensitivity and tumor microenvironment were also investigated. Results We obtained an ERS risk signature consisting of five genes (AFP, COL10A1, DNAJB1, EGF and PTGS2). Kaplan Meier survival analysis and ROC Curve analysis indicated that the high risk score of ERS-related gene signature was associated with poor BCR-free prognosis in PCa patients. Besides, immune cell infiltration and immune checkpoint expression levels differed between high- and low-risk scoring subgroups. Moreover, drug sensitivity analyzed indicated that high-risk score group may be involved in apoptosis pathway. Discussion This study comprehensively analyzed the characteristics of ERS related genes in PCa, and created a five-gene signature, which could effectively predict the BCR time of PCa patients. Targeting ERS related genes and pathways may provide potential guidance for the treatment of PCa.
Collapse
Affiliation(s)
- Shengren Cen
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dongmei Jiang
- Department of Pathology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Daojun Lv
- Department of Urology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ran Xu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiamao Hou
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zixiang Yang
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peng Wu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinhao Xiong
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xingcheng Gao
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Duan J, Yuan W, Jiang J, Wang J, Yan X, Liu F, Liu A. ASK1 inhibitor NQDI‑1 decreases oxidative stress and neuroapoptosis via the ASK1/p38 and JNK signaling pathway in early brain injury after subarachnoid hemorrhage in rats. Mol Med Rep 2023; 27:47. [PMID: 36633130 PMCID: PMC9879074 DOI: 10.3892/mmr.2023.12934] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/30/2022] [Indexed: 01/10/2023] Open
Abstract
Oxidative stress and neuroapoptosis are key pathological processes after subarachnoid hemorrhage (SAH). The present study evaluated the anti‑oxidation and anti‑apoptotic neuroprotective effects of the apoptosis signal‑regulating kinase 1 (ASK1) inhibitor ethyl‑2,7‑dioxo‑2,7‑dihydro‑3H‑naphtho(1,2,3‑de)quinoline‑1‑carboxylate (NQDI‑1) in early brain injury (EBI) following SAH in a rat model. A total of 191 rats were used and the SAH model was induced using monofilament perforation. Western blotting was subsequently used to detect the endogenous expression levels of proteins. Immunofluorescence was then used to confirm the nerve cellular localization of ASK1. Short‑term neurological function was assessed using the modified Garcia scores and the beam balance test 24 h after SAH, whereas long‑term neurological function was assessed using the rotarod test and the Morris water maze test. Apoptosis of neurons was assessed by TUNEL staining and oxidative stress was assessed by dihydroethidium staining 24 h after SAH. The protein expression levels of phosphorylated (p‑)ASK1 and ASK1 rose following SAH. NQDI‑1 was intracerebroventricularly injected 1 h after SAH and demonstrated significant improvements in both short and long‑term neurological function and significantly reduced oxidative stress and neuronal apoptosis. Injection of NQDI‑1 caused a significant decrease in protein expression levels of p‑ASK1, p‑p38, p‑JNK, 4 hydroxynonenal, and Bax and significantly increased the protein expression levels of heme oxygenase 1 and Bcl‑2. The use of the p38 inhibitor BMS‑582949 or the JNK inhibitor SP600125 led to significant decreases in the protein expression levels of p‑p38 or p‑JNK, respectively, and a significant reduction in oxidative stress and neuronal apoptosis; however, these inhibitors did not demonstrate an effect on p‑ASK1 or ASK1 protein expression levels. In conclusion, treatment with NQDI‑1 improved neurological function and decreased oxidative stress and neuronal apoptosis in EBI following SAH in rats, possibly via inhibition of ASK1 phosphorylation and the ASK1/p38 and JNK signaling pathway. NQDI‑1 may be considered a potential agent for the treatment of patients with SAH.
Collapse
Affiliation(s)
- Jiajia Duan
- Department of Neurosurgery, Third Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
| | - Wen Yuan
- Department of Neurosurgery, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Juan Jiang
- Department of Anatomy and Neurobiology, Xiangya Medicine School, Central South University, Changsha, Hunan 410000, P.R. China
| | - Jikai Wang
- Department of Neurosurgery, The Fifth Sun Yet-sen Hospital, Sun Yet-sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Xiangya Medicine School, Central South University, Changsha, Hunan 410000, P.R. China
| | - Fei Liu
- Department of Neurosurgery, The Fifth Sun Yet-sen Hospital, Sun Yet-sen University, Zhuhai, Guangdong 519000, P.R. China,Correspondence to: Professor Fei Liu, Department of Neurosurgery, The Fifth Sun Yet-sen Hospital, Sun Yet-sen University, 52 Meihuadong Road, Xiangzhou, Zhuhai, Guangdong 519000, P.R. China, E-mail:
| | - Aihua Liu
- Department of Neurosurgery, Third Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China,Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China,Professor Aihua Liu, Beijing Neurosurgical Institute, Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring West Road, Fengtai, Beijing 100070, P.R. China, E-mail:
| |
Collapse
|
8
|
Liu G, Guan Y, Liu Y, Wang Y, Zhang J, Liu Y, Liu X. Saikosaponin D Inducing Apoptosis and Autophagy through the Activation of Endoplasmic Reticulum Stress in Glioblastoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1-12. [PMID: 36467888 PMCID: PMC9715330 DOI: 10.1155/2022/5489553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
Saikosaponin D (SSD), a saponin derivative, is extracted from Bupleurum falcatum. It exhibits an inhibitory effect on a number of tumor cells and is relatively safe when used at therapeutic doses. However, its effects on glioblastoma multiforme (GBM) have not been fully explored. This study is aimed at investigating the cytotoxic effects of SSD in GBM cell lines. SSD induces apoptosis and autophagy by activating endoplasmic reticulum (ER) stress in GBM cells. GBM cell proliferation activity and morphology were observed using the Cell Counting Kit-8 assay and hematoxylin and eosin staining. Hoechst 33258 fluorescence staining and flow cytometry were performed to assess apoptosis. Western blotting and immunocytochemical staining were used to detect protein expression and distribution. SSD significantly inhibited the proliferation of RG-2, U87-MG, and U251 cells in a dose-dependent manner, and the proportion of apoptotic cells increased significantly. Additionally, the expressions of ER-, apoptosis-, and autophagy-related proteins were significantly upregulated and distributed in the cytoplasm and nucleus. Therefore, SSD may be considered a novel treatment option for GBM. This study demonstrated the anti-GBM effect of SSD from the perspectives of cell apoptosis and autophagy.
Collapse
Affiliation(s)
- Guimei Liu
- Department of Medical Immunology, College of Basic Medical Sciences, Yan’an University, Yan’an 716000, China
| | - Yuehong Guan
- Department of Medical Immunology, College of Basic Medical Sciences, Yan’an University, Yan’an 716000, China
| | - Yongxian Liu
- Department of Medical Immunology, College of Basic Medical Sciences, Yan’an University, Yan’an 716000, China
| | - Yaping Wang
- Department of Medical Immunology, College of Basic Medical Sciences, Yan’an University, Yan’an 716000, China
| | - Jing Zhang
- Department of Medical Immunology, College of Basic Medical Sciences, Yan’an University, Yan’an 716000, China
| | - Yusi Liu
- Department of Medical Immunology, College of Basic Medical Sciences, Yan’an University, Yan’an 716000, China
| | - Xiaobin Liu
- Department of Medical Immunology, College of Basic Medical Sciences, Yan’an University, Yan’an 716000, China
| |
Collapse
|
9
|
Chang CY, Wu CC, Wang JD, Liao SL, Chen WY, Kuan YH, Wang WY, Chen CJ. Endoplasmic Reticulum Stress Contributed to Dipyridamole-Induced Impaired Autophagic Flux and Glioma Apoptosis. Int J Mol Sci 2022; 23:579. [PMID: 35054765 PMCID: PMC8775759 DOI: 10.3390/ijms23020579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 12/03/2022] Open
Abstract
Elevation of intracellular cAMP levels has been implicated in glioma cell proliferation inhibition, differentiation, and apoptosis. Inhibition of phosphodiesterase is a way to elevate intracellular cAMP levels. The present study aimed to investigate the anti-glioma potential of dipyridamole, an inhibitor of phosphodiesterase. Upon treatment with dipyridamole, human U87 glioma cells decreased cell viability, clonogenic colonization, migration, and invasion, along with Noxa upregulation, Endoplasmic Reticulum (ER) stress, impaired autophagic flux, Yes-associated Protein 1 (YAP1) phosphorylation, and YAP1 reduction. Pharmacological and genetic studies revealed the ability of dipyridamole to initiate Noxa-guided apoptosis through ER stress. Additionally, the current study further identified the biochemical role of YAP1 in communicating with ER stress and autophagy under situations of dipyridamole treatment. YAP1 promoted autophagy and protected glioma cells from dipyridamole-induced apoptotic cell death. Dipyridamole impaired autophagic flux and rendered glioma cells more vulnerable to apoptotic cell death through ER stress-inhibitable YAP1/autophagy axis. The overall cellular changes caused by dipyridamole appeared to ensure a successful completion of apoptosis. Dipyridamole also duplicated the biochemical changes and apoptosis in glioma T98G cells. Since dipyridamole has additional biochemical and pharmacological properties, further research centered on the anti-glioma mechanisms of dipyridamole is still needed.
Collapse
Affiliation(s)
- Cheng-Yi Chang
- Department of Surgery, Feng Yuan Hospital, Taichung 420, Taiwan;
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan;
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung 407, Taiwan;
- Department of Financial Engineering, Providence University, Taichung 433, Taiwan
- Department of Data Science and Big Data Analytics, Providence University, Taichung 433, Taiwan
| | - Jiaan-Der Wang
- Children’s Medical Center, Taichung Veterans General Hospital, Taichung 407, Taiwan;
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung 407, Taiwan
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan;
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan;
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
| | - Wen-Yi Wang
- Department of Nursing, Hung Kuang University, Taichung 433, Taiwan;
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
10
|
Ramos-Inza S, Ruberte AC, Sanmartín C, Sharma AK, Plano D. NSAIDs: Old Acquaintance in the Pipeline for Cancer Treatment and Prevention─Structural Modulation, Mechanisms of Action, and Bright Future. J Med Chem 2021; 64:16380-16421. [PMID: 34784195 DOI: 10.1021/acs.jmedchem.1c01460] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The limitations of current chemotherapeutic drugs are still a major issue in cancer treatment. Thus, targeted multimodal therapeutic approaches need to be strategically developed to successfully control tumor growth and prevent metastatic burden. Inflammation has long been recognized as a hallmark of cancer and plays a key role in the tumorigenesis and progression of the disease. Several epidemiological, clinical, and preclinical studies have shown that traditional nonsteroidal anti-inflammatory drugs (NSAIDs) exhibit anticancer activities. This Perspective reports the most recent outcomes for the treatment and prevention of different types of cancers for several NSAIDs alone or in combination with current chemotherapeutic drugs. Furthermore, an extensive review of the most promising structural modifications is reported, such as phospho, H2S, and NO releasing-, selenium-, metal complex-, and natural product-NSAIDs, among others. We also provide a perspective about the new strategies used to obtain more efficient NSAID- or NSAID derivative- formulations for targeted delivery.
Collapse
Affiliation(s)
- Sandra Ramos-Inza
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Ana Carolina Ruberte
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| |
Collapse
|
11
|
Huang R, Li G, Wang K, Wang Z, Zeng F, Hu H, Jiang T. Comprehensive Analysis of the Clinical and Biological Significances of Endoplasmic Reticulum Stress in Diffuse Gliomas. Front Cell Dev Biol 2021; 9:619396. [PMID: 34307339 PMCID: PMC8301220 DOI: 10.3389/fcell.2021.619396] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/21/2021] [Indexed: 12/14/2022] Open
Abstract
Background As a critical organelle for protein and lipid synthesis, the dysfunction of endoplasmic reticulum has a significant impact on multiple biological processes of cells. Thus, in this study, we constructed an ER stress-related risk signature to investigate the functional roles of ER stress in gliomas. Methods A total of 626 samples from TCGA RNA-seq dataset (training cohort) and 310 samples from CGGA RNA-seq dataset (validation cohort) were enrolled in this study. Clinical information and genomic profiles were also obtained. The ER stress signature was developed by the LASSO regression model. The prognostic value of the risk signature was evaluated by Cox regression, Kaplan-Meier and ROC Curve analyses. Bioinformatics analysis and experiment in vitro were performed to explore the biological implication of this signature. Results We found that the ER stress-related signature was tightly associated with major clinicopathological features and genomic alterations of gliomas. Kaplan-Meier curve and Cox regression analysis indicated that ER stress activation was an independent prognostic factor for patients with glioma. Besides, we also constructed an individualized prognosis prediction model through Nomogram and ROC Curve analysis. Bioinformatics analysis suggested that ER stress activation also promoted the malignant progression of glioma and participated in the regulation of tumor immune microenvironment, especially the infiltration of macrophages in M2 phase. These results were further validated in IHC analysis and cell biology experiments. Conclusion The ER stress activation had a high prognostic value and could serve as a promising target for developing individualized treatment of glioma.
Collapse
Affiliation(s)
- Ruoyu Huang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Guanzhang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Kuanyu Wang
- Chinese Glioma Cooperative Group (CGCG), Beijing, China.,Department of Gamma Knife Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhiliang Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Fan Zeng
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Huimin Hu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| |
Collapse
|
12
|
Zhang G, Wang B, Cheng S, Fan H, Liu S, Zhou B, Liu W, Liang R, Tang Y, Zhang Y. KDELR2 knockdown synergizes with temozolomide to induce glioma cell apoptosis through the CHOP and JNK/p38 pathways. Transl Cancer Res 2021; 10:3491-3506. [PMID: 35116653 PMCID: PMC8799170 DOI: 10.21037/tcr-21-869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/23/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND The C-terminal tetrapeptide Lys-Asp-Glu-Leu receptors (KDELRs) are transmembrane proteins that regulate ER stress (ERS) response, growth, differentiation, and immune responses. There is an association between KDELR2and promotion of glioblastoma tumorigenesis. The aim of the present study was to explore the functional mechanism of KDELR2 in glioma and during response to chemotherapy to temozolomide (TMZ). METHODS The expression of KDELR2 in glioma tissues and cells was evaluated by immunohistochemistry, western blot and RT-qPCR assay. Then role of KDELR2 was demonstrated by CCK8, colony formation, flow cytometry and Hochest 33258 assays. The expression of genes (ATF4, ATF6, PERK, eIF2-α, GRP78 and CHOP) in U373 cells was evaluated by RT-qPCR. The protein expression of genes (cleaved caspase 3, caspase 3, cleaved PARP, PARP, Bax, Bcl-2, JNK, p-JNK, p38, p-p38, ATF4, ATF6, XBP-1s, PERK, p-PERK, GRP78 and CHOP) was measured by western blot assay. RESULTS The expression of KDELR2 was upregulated in high-grade gliomas tissues. KDELR2 knockdown suppressed cell proliferation but increased cell apoptosis. Further, Knockdown of KDELR2 also activated the ER stress (ERS)-dependent CHOP pathway, and resulted in increased levels of phosphorylated c-Jun N-terminal kinase (JNK) and p38. Moreover, the combination of KDELR2 knockdown and TMZ application showed a synergistic cytotoxic effect in U373 cells through the ERS-dependent CHOP and JNK/p38 pathways. CONCLUSIONS KDELR2 knockdown induces apoptosis and sensitizes glioma cells to TMZ, which is mediated by the ERS-dependent CHOP and JNK/p38 pathways.
Collapse
Affiliation(s)
- Guofeng Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Neurosurgery, The Affiliated Jiujiang Hospital of Nanchang University, Jiujiang, China
| | - Bin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shiqi Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hengyi Fan
- Department Radiation Oncology, Klinikum rechts der lsar, Technische Universität München, Munich, Germany
| | - Shaowen Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Zhou
- Department of Pathology, The Affiliated Jiujiang Hospital of Nanchang University, Jiujiang, China
| | - Weibin Liu
- Department of Neurosurgery, The Affiliated Jiujiang Hospital of Nanchang University, Jiujiang, China
| | - Rui Liang
- Department of Neurosurgery, The Affiliated Jiujiang Hospital of Nanchang University, Jiujiang, China
| | - Youjia Tang
- Department of Neurosurgery, The Affiliated Jiujiang Hospital of Nanchang University, Jiujiang, China
| | - Yan Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Kaduševičius E. Novel Applications of NSAIDs: Insight and Future Perspectives in Cardiovascular, Neurodegenerative, Diabetes and Cancer Disease Therapy. Int J Mol Sci 2021; 22:6637. [PMID: 34205719 PMCID: PMC8235426 DOI: 10.3390/ijms22126637] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 01/22/2023] Open
Abstract
Once it became clear that inflammation takes place in the modulation of different degenerative disease including neurodegenerative, cardiovascular, diabetes and cancer the researchers has started intensive programs evaluating potential role of non-steroidal anti-inflammatory drugs (NSAIDs) in the prevention or therapy of these diseases. This review discusses the novel mechanism of action of NSAIDs and its potential use in the pharmacotherapy of neurodegenerative, cardiovascular, diabetes and cancer diseases. Many different molecular and cellular factors which are not yet fully understood play an important role in the pathogenesis of inflammation, axonal damage, demyelination, atherosclerosis, carcinogenesis thus further NSAID studies for a new potential indications based on precise pharmacotherapy model are warranted since NSAIDs are a heterogeneous group of medicines with relative different pharmacokinetics and pharmacodynamics profiles. Hopefully the new data from studies will fill in the gap between experimental and clinical results and translate our knowledge into successful disease therapy.
Collapse
Affiliation(s)
- Edmundas Kaduševičius
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, 9 A. Mickeviciaus Street, LT-44307 Kaunas, Lithuania
| |
Collapse
|
14
|
Chang CY, Pan PH, Wu CC, Liao SL, Chen WY, Kuan YH, Wang WY, Chen CJ. Endoplasmic Reticulum Stress Contributes to Gefitinib-Induced Apoptosis in Glioma. Int J Mol Sci 2021; 22:3934. [PMID: 33920356 PMCID: PMC8069544 DOI: 10.3390/ijms22083934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
Adequate stress on the Endoplasmic Reticulum (ER) with the Unfolded Protein Response (UPR) could maintain glioma malignancy. Uncontrolled ER stress, on the other hand, predisposes an apoptosis-dominant UPR program. We studied here the proapoptotic actions of the Epidermal Growth Factor Receptor (EGFR) inhibitor gefitinib, with the focus on ER stress. The study models were human H4 and U87 glioma cell lines. We found that the glioma cell-killing effects of gefitinib involved caspase 3 apoptotic cascades. Three branches of ER stress, namely Activating Transcription Factor-6 (ATF6), Protein Kinase R (PKR)-Like ER Kinase (PERK), and Inositol-Requiring Enzyme 1 (IRE1), were activated by gefitinib, along with the elevation of intracellular free Ca2+, Reactive Oxygen Species (ROS), and NADPH Oxidase2/4 (NOX2/4). Specifically, elevated IRE1 phosphorylation, Tumor Necrosis Factor (TNF) Receptor-Associated Factor-2 (TRAF2) expression, Apoptosis Signal-Regulating Kinase-1 (Ask1) phosphorylation, c-Jun N-Terminal Kinase (JNK) phosphorylation, and Noxa expression appeared in gefitinib-treated glioma cells. Genetic, pharmacological, and biochemical studies further indicated an active ROS/ER stress/Ask1/JNK/Noxa axis causing the glioma apoptosis induced by gefitinib. The findings suggest that ER-stress-based therapeutic targeting could be a promising option in EGFR inhibitor glioma therapy, and may ultimately achieve a better patient response.
Collapse
Affiliation(s)
- Cheng-Yi Chang
- Department of Surgery, Feng Yuan Hospital, Taichung 420, Taiwan;
| | - Ping-Ho Pan
- Department of Pediatrics, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan;
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan;
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung 407, Taiwan;
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan;
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan;
| | - Yu-Hsiang Kuan
- Department of Pharmacology, Chung Shan Medical University, Taichung 402, Taiwan;
| | - Wen-Yi Wang
- Department of Nursing, HungKuang University, Taichung 433, Taiwan;
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
15
|
Pan Y, Zhao S, Chen F. The potential value of dequalinium chloride in the treatment of cancer: Focus on malignant glioma. Clin Exp Pharmacol Physiol 2021; 48:445-454. [PMID: 33496065 DOI: 10.1111/1440-1681.13466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022]
Abstract
Dequalinium chloride has been known as one kind of antibiotic that displays a broad antimicrobial spectrum and has been clinically proven to be very safe. In recent years, studies have shown that dequalinium chloride can inhibit the growth of malignant tumours, and reports were mainly used for solid tumours. Glioblastoma is the most common malignant neuroepithelial tumour of the central nervous system in adults, and the prognosis of glioblastoma is poor as it has a high resistance to apoptosis. This review summarizes the current understanding of dequalinium chloride-induced cancer cell apoptosis and its potential role in glioblastoma resistance and progression. Particularly, we focus on dequalinium chloride as it exerts a wide range of anti-cancer activity through its ability to target and accumulate in the mitochondria, and it effectively inhibits the growth of glioblastoma cells in vitro and vivo. Dequalinium chloride is an inhibitor of XIAP and can also act as a mitochondrial targeting agent, which gives it an interesting perspective regarding recent advances in the treatment of malignant glioma.
Collapse
Affiliation(s)
- Yuehai Pan
- Department of Hand and foot surgery, The affiliated hospital of QingDao university, ShangDong, China
| | - Shuai Zhao
- Department of Anesthesiology, Bonn University, Bonn, Germany
| | - Fan Chen
- Department of Neurosurgery, The affiliated hospital of QingDao university, ShangDong, China
| |
Collapse
|
16
|
Wang X, Tang Q, Hou H, Zhang W, Li M, Chen D, Gu Y, Wang B, Hou J, Liu Y, Cao H. Gut Microbiota in NSAID Enteropathy: New Insights From Inside. Front Cell Infect Microbiol 2021; 11:679396. [PMID: 34295835 PMCID: PMC8290187 DOI: 10.3389/fcimb.2021.679396] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
As a class of the commonly used drugs in clinical practice, non-steroidal anti-inflammatory drugs (NSAIDs) can cause a series of adverse events including gastrointestinal injuries. Besides upper gastrointestinal injuries, NSAID enteropathy also attracts attention with the introduction of capsule endoscopy and double balloon enteroscopy. However, the pathogenesis of NSAID enteropathy remains to be entirely clarified. Growing evidence from basic and clinical studies presents that gut microbiota is a critical factor in NSAID enteropathy progress. We have reviewed the recent data about the interplay between gut microbiota dysbiosis and NSAID enteropathy. The chronic medication of NSAIDs could change the composition of the intestinal bacteria and aggravate bile acids cytotoxicity. Meanwhile, NSAIDs impair the intestinal barrier by inhibiting cyclooxygenase and destroying mitochondria. Subsequently, intestinal bacteria translocate into the mucosa, and then lipopolysaccharide released from gut microbiota combines to Toll-like receptor 4 and induce excessive production of nitric oxide and pro-inflammatory cytokines. Intestinal injuries present in the condition of intestinal inflammation and oxidative stress. In this paper, we also have reviewed the possible strategies of regulating gut microbiota for the management of NSAID enteropathy, including antibiotics, probiotics, prebiotics, mucosal protective agents, and fecal microbiota transplant, and we emphasized the adverse effects of proton pump inhibitors on NSAID enteropathy. Therefore, this review will provide new insights into a better understanding of gut microbiota in NSAID enteropathy.
Collapse
Affiliation(s)
- Xianglu Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Qiang Tang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Huiqin Hou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Wanru Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Mengfan Li
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Danfeng Chen
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yu Gu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jingli Hou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
- *Correspondence: Hailong Cao, ; Jingli Hou, ; Yangping Liu,
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
- *Correspondence: Hailong Cao, ; Jingli Hou, ; Yangping Liu,
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
- *Correspondence: Hailong Cao, ; Jingli Hou, ; Yangping Liu,
| |
Collapse
|
17
|
Chen P, Chen C, Hu M, Cui R, Liu F, Yu H, Ren Y. S-allyl-L-cysteine protects hepatocytes from indomethacin-induced apoptosis by attenuating endoplasmic reticulum stress. FEBS Open Bio 2020; 10:1900-1911. [PMID: 32790969 PMCID: PMC7459406 DOI: 10.1002/2211-5463.12945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/18/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Drug‐induced liver injury (DILI) can lead to acute liver failure, a lethal condition which may require liver transplantation. Hepatotoxicity associated with nonsteroidal anti‐inflammatory drugs (NSAIDs) accounts for ~ 10% of all DILI. In the current study, we determined whether indomethacin, one of the most commonly used NSAIDS, induced apoptosis in hepatocytes and investigated the underlying mechanism. Meanwhile, we investigated the protective effect of S‐allyl‐L‐cysteine (SAC), an active garlic derivative, on indomethacin‐induced hepatocyte apoptosis, and its implication on endoplasmic reticulum (ER) stress. We found that indomethacin triggered ER stress, as indicated by the elevated expression of phosphorylated eukaryotic translation initiation factor 2α (eIF2α), C/EBP homologous protein (CHOP) and spliced XBP1 in a rat liver BRL‐3A cell line. Following indomethacin treatment, caspase 3 activation and hepatocyte apoptosis were also observed. Inhibition of ER stress by chemical chaperone 4‐phenyl butyric acid alleviated cell apoptosis caused by indomethacin, indicating that ER stress is involved in indomethacin‐induced hepatocyte apoptosis. Moreover, SAC abated indomethacin‐induced eIF2α phosphorylation, inhibited CHOP upregulation and its nuclear translocation, abrogated the activation of caspase 3 and finally, protected hepatocytes from apoptosis. In conclusion, SAC protects indomethacin‐induced hepatocyte apoptosis through mitigating ER stress and may be suitable for development into a potential new therapeutic agent for the treatment of DILI.
Collapse
Affiliation(s)
- Peng Chen
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chen Chen
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province, Kunming, China
| | - Mingdao Hu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Rui Cui
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Feng Liu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Henghai Yu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuling Ren
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
18
|
Boonyong C, Vardhanabhuti N, Jianmongkol S. Modulation of non-steroidal anti-inflammatory drug-induced, ER stress-mediated apoptosis in Caco-2 cells by different polyphenolic antioxidants: a mechanistic study. J Pharm Pharmacol 2020; 72:1574-1584. [PMID: 32716561 DOI: 10.1111/jphp.13343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/04/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Direct scavenging of reactive oxygen species could not prevent ER stress-associated cytotoxicity of indomethacin or diclofenac in Caco-2 cells. This study investigated the effects of three polyphenolic antioxidants epigallocatechin gallate (EGCG), phyllanthin and hypophyllathin in non-steroidal anti-inflammatory drug-induced Caco-2 apoptosis. METHODS Cells were treated with ER stressors (indomethacin, diclofenac, tunicamycin or thapsigargin) and the polyphenols for up to 72 h. Cell viability, apoptosis and mitochondrial function were monitored by MTT, Hoechst 33342 and TMRE assays, respectively. Protein expression was measured by Western blot analysis. KEY FINDINGS Epigallocatechin gallate suppressed increases in p-PERK/p-eIF-2α/ATF-4/CHOP and p-IRE-1α/p-JNK1/2 expression levels in the cells treated with any of the ER stressors, leading to inhibition of apoptosis. In contrast, phyllanthin increased apoptosis in the cells subsequently exposed to either diclofenac, tunicamycin or thapsigargin, but not in the indomethacin-treated cells. The potentiation effect of phyllanthin seen with the three ER stressors was related to suppression of survival p-Nrf-2/HO-1 expression, resulting in increased activation of the eIF-2α/ATF-4/CHOP pathway. On the other hand, hypophyllanthin had no significant effect on the ER stressor-induced apoptosis. CONCLUSION Epigallocatechin gallate, phyllanthin and hypophyllanthin displayed different effects in the ER stress-mediated apoptosis, depending upon their interaction with the specific unfolded protein response signalling.
Collapse
Affiliation(s)
- Cherdsak Boonyong
- Inter-Department Program of Pharmacology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Nontima Vardhanabhuti
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Suree Jianmongkol
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
19
|
Chang CY, Pan PH, Li JR, Ou YC, Wang JD, Liao SL, Chen WY, Wang WY, Chen CJ. Aspirin Induced Glioma Apoptosis through Noxa Upregulation. Int J Mol Sci 2020; 21:4219. [PMID: 32545774 PMCID: PMC7352791 DOI: 10.3390/ijms21124219] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
Clinically, high cyclooxygenase-2 expression in malignant glioma correlates well with poor prognosis and the use of aspirin is associated with a reduced risk of glioma. To extend the current understanding of the apoptotic potential of aspirin in most cell types, this study provides evidence showing that aspirin induced glioma cell apoptosis and inhibited tumor growth, in vitro and in vivo. We found that the human H4 glioma cell-killing effects of aspirin involved mitochondria-mediated apoptosis accompanied by endoplasmic reticulum (ER) stress, Noxa upregulation, Mcl-1 downregulation, Bax mitochondrial distribution and oligomerization, and caspase 3/caspase 8/caspase 9 activation. Genetic silencing of Noxa or Bax attenuated aspirin-induced viability loss and apoptosis, while silencing Mcl-1 augmented the effects of aspirin. Data from genetic and pharmacological studies revealed that the axis of ER stress comprised an apoptotic cascade leading to Noxa upregulation and apoptosis. The apoptotic programs and mediators triggered by aspirin in H4 cells were duplicated in human U87 glioma cell line as well as in tumor-bearing BALB/c nude mice. The involvement of ER stress in indomethacin-induced Mcl-1 downregulation was reported in our previous study on glioma cells. Therefore, the aforementioned phenomena indicate that ER stress may be a valuable target for intervention in glioma apoptosis.
Collapse
Affiliation(s)
- Cheng-Yi Chang
- Department of Surgery, Feng Yuan Hospital, Taichung City 420, Taiwan;
| | - Ping-Ho Pan
- Department of Pediatrics, Tungs’ Taichung Metro Harbor Hospital, Taichung City 435, Taiwan;
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan;
| | - Jian-Ri Li
- Division of Urology, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Yen-Chuan Ou
- Department of Urology, Tungs’ Taichung Metro Harbor Hospital, Taichung City 435, Taiwan;
| | - Jiaan-Der Wang
- Children’s Medical Center, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung City 407, Taiwan
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan;
| | - Wen-Yi Wang
- Department of Nursing, HungKuang University, Taichung City 433, Taiwan;
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan
- Ph.D. Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung City 402, Taiwan
| |
Collapse
|
20
|
Osipov AV, Terpinskaya TI, Yanchanka T, Balashevich T, Zhmak MN, Tsetlin VI, Utkin YN. α-Conotoxins Enhance both the In Vivo Suppression of Ehrlich carcinoma Growth and In Vitro Reduction in Cell Viability Elicited by Cyclooxygenase and Lipoxygenase Inhibitors. Mar Drugs 2020; 18:193. [PMID: 32272633 PMCID: PMC7230841 DOI: 10.3390/md18040193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/16/2022] Open
Abstract
Several biochemical mechanisms, including the arachidonic acid cascade and activation of nicotinic acetylcholine receptors (nAChRs), are involved in increased tumor survival. Combined application of inhibitors acting on these two pathways may result in a more pronounced antitumor effect. Here, we show that baicalein (selective 12-lipoxygenase inhibitor), nordihydroguaiaretic acid (non-selective lipoxygenase inhibitor), and indomethacin (non-selective cyclooxygenase inhibitor) are cytotoxic to Ehrlich carcinoma cells in vitro. Marine snail α-conotoxins PnIA, RgIA and ArIB11L16D, blockers of α3β2/α6β2, α9α10 and α7 nAChR subtypes, respectively, as well as α-cobratoxin, a blocker of α7 and muscle subtype nAChRs, exhibit low cytotoxicity, but enhance the antitumor effect of baicalein 1.4-fold after 24 h and that of nordihydroguaiaretic acid 1.8-3.9-fold after 48 h of cell cultivation. α-Conotoxin MII, a blocker of α6-containing and α3β2 nAChR subtypes, increases the cytotoxic effect of indomethacin 1.9-fold after 48 h of cultivation. In vivo, baicalein, α-conotoxins MII and PnIA inhibit Ehrlich carcinoma growth and increase mouse survival; these effects are greatly enhanced by the combined application of α-conotoxin MII with indomethacin or conotoxin PnIA with baicalein. Thus, we show, for the first time, antitumor synergism of α-conotoxins and arachidonic acid cascade inhibitors.
Collapse
Affiliation(s)
- Alexey V. Osipov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (M.N.Z.); (V.I.T.)
| | - Tatiana I. Terpinskaya
- Institute of Physiology, National Academy of Sciences of Belarus, ul. Akademicheskaya, 28, 220072 Minsk, Belarus (T.Y.); (T.B.)
| | - Tatsiana Yanchanka
- Institute of Physiology, National Academy of Sciences of Belarus, ul. Akademicheskaya, 28, 220072 Minsk, Belarus (T.Y.); (T.B.)
| | - Tatjana Balashevich
- Institute of Physiology, National Academy of Sciences of Belarus, ul. Akademicheskaya, 28, 220072 Minsk, Belarus (T.Y.); (T.B.)
| | - Maxim N. Zhmak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (M.N.Z.); (V.I.T.)
| | - Victor I. Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (M.N.Z.); (V.I.T.)
| | - Yuri N. Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (M.N.Z.); (V.I.T.)
| |
Collapse
|