1
|
Kassem NOF, Strongin RM, Stroup AM, Brinkman MC, El-Hellani A, Erythropel HC, Etemadi A, Goniewicz ML, Hansen EG, Kassem NO, Li D, Liles S, Noël A, Rezk-Hanna M, Wang Q, Rahman I. Toxicity of waterpipe tobacco smoking: the role of flavors, sweeteners, humectants, and charcoal. Toxicol Sci 2024; 201:159-173. [PMID: 39037923 PMCID: PMC11424890 DOI: 10.1093/toxsci/kfae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Waterpipe tobacco (WPT) smoking is a public health concern, particularly among youth and young adults. The global spread of WPT use has surged because the introduction of pre-packaged flavored and sweetened WPT, which is widely marketed as a safer tobacco alternative. Besides flavorants and sugars, WPT additives include humectants, which enhance the moisture and sweetness of WPT, act as solvents for flavors, and impart smoothness to the smoke, thus increasing appeal to users. In the United States, unlike cigarette tobacco flavoring (with the exception of menthol), there is no FDA product standard or policy in place prohibiting sales of flavored WPT. Research has shown that the numerous fruit, candy, and alcohol flavors added to WPT entice individuals to experience those flavors, putting them at an increased risk of exposure to WPT smoke-related toxicants. Additionally, burning charcoal briquettes-used as a heating source for WPT-contributes to the harmful health effects of WPT smoking. This review presents existing evidence on the potential toxicity resulting from humectants, sugars, and flavorants in WPT, and from the charcoal used to heat WPT. The review discusses relevant studies of inhalation toxicity in animal models and of biomarkers of exposure in humans. Current evidence suggests that more data are needed on toxicant emissions in WPT smoke to inform effective tobacco regulation to mitigate the adverse impact of WPT use on human health.
Collapse
Affiliation(s)
- Nada O F Kassem
- Health Promotion and Behavioral Science, San Diego State University, San Diego, CA 92182, United States
- Hookah Tobacco Research Center, San Diego State University Research Foundation, San Diego, CA 92123, United States
| | - Robert M Strongin
- Department of Chemistry, Portland State University, Portland, OR 97207-0751, United States
| | - Andrea M Stroup
- Behavioral Health and Health Policy Practice, Westat, Rockville, MD 20850, United States
| | - Marielle C Brinkman
- College of Public Health, The Ohio State University, Columbus, OH 43210, United States
- Center for Tobacco Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43214, United States
| | - Ahmad El-Hellani
- Center for Tobacco Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43214, United States
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH 43210, United States
| | - Hanno C Erythropel
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, United States
- Department of Psychiatry, Yale School of Medicine, Yale Center for the Study of Tobacco Products (YCSTP), New Haven, CT 06511, United States
| | - Arash Etemadi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Maciej L Goniewicz
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Eleanore G Hansen
- Division of Environmental Health Science, School of Public Health, University of Minnesota, Minneapolis, MN 55455, United States
| | - Noura O Kassem
- Hookah Tobacco Research Center, San Diego State University Research Foundation, San Diego, CA 92123, United States
| | - Dongmei Li
- Department of Clinical and Translational Research, Obstetrics and Gynecology, Public Health Sciences, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Sandy Liles
- Hookah Tobacco Research Center, San Diego State University Research Foundation, San Diego, CA 92123, United States
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Mary Rezk-Hanna
- School of Nursing, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Qixin Wang
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, United States
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, United States
| |
Collapse
|
2
|
Ferdous Z, Beegam S, Zaaba NE, Nemmar A. Exposure to Waterpipe Smoke Disrupts Erythrocyte Homeostasis of BALB/c Mice. BIOLOGY 2024; 13:453. [PMID: 38927333 PMCID: PMC11200634 DOI: 10.3390/biology13060453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
The prevalence of waterpipe tobacco smoking (WPS) is increasing worldwide and is relatively high among youth and young adults. It has been shown, both experimentally and clinically, that WPS exposure adversely affects the cardiovascular and hematological systems through the generation of oxidative stress and inflammation. Our study aimed to evaluate the impact of WPS exposure on erythrocytes, a major component of the hematological system, of BALB/c mice. Here, we assessed the effect of nose-only WPS exposure for four consecutive weeks on erythrocyte inflammation, oxidative stress, and eryptosis. The duration of the session was 30 min/day, 5 days/week. Control mice were exposed to air. Our results showed that the levels of C-reactive protein, lipid peroxidation (LPO), superoxide dismutase, and total nitric oxide (NO) were significantly increased in the plasma of WPS-exposed mice. The number of erythrocytes and the hematocrit were significantly decreased in WPS-exposed mice compared with the control group. Moreover, there was an increase in the erythrocyte fragility in mice exposed to WPS compared with those exposed to air. The levels of lactate dehydrogenase, LPO, reduced glutathione, catalase, and NO were significantly increased in the red blood cells (RBCs) of WPS-exposed mice. In addition, erythrocytes of the WPS-exposed group showed a significant increase in ATPase activity, Ca2+, annexin V binding, and calpain activity. Taken together, our findings suggest that WPS exposure elevated inflammation and oxidative stress in the plasma and induced hemolysis in vivo. It also caused alterations of RBCs oxidative stress and eryptosis in vitro. Our data confirm the detrimental impact of WPS on erythrocyte physiology.
Collapse
Affiliation(s)
- Zannatul Ferdous
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Z.F.); (S.B.)
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Z.F.); (S.B.)
| | - Nur E. Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Z.F.); (S.B.)
| | - Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Z.F.); (S.B.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
3
|
Hamadi N, Al-Salam S, Beegam S, Zaaba NE, Elzaki O, Nemmar A. Impact of prolonged exposure to occasional and regular waterpipe smoke on cardiac injury, oxidative stress and mitochondrial dysfunction in male mice. Front Physiol 2024; 15:1286366. [PMID: 38370014 PMCID: PMC10869456 DOI: 10.3389/fphys.2024.1286366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Regular waterpipe smoking (Reg-WPS) is well recognized for its deleterious effect on the heart. However, there is a paucity of experimental studies on the impact of occasional waterpipe smoking (Occ-WPS), also known as nondaily smoking, versus Reg-WPS on cardiac homeostasis, and the mechanisms underlying these effects. Hence, we aimed, in the present study, to investigate the effect of Occ-WPS (30 min/day, 1 day/week) versus Reg-WPS (30 min/day, 5 days/week) for 6 months on systolic blood pressure (SBP), cardiac injury, oxidative markers, chemokines, proinflammatory cytokines, DNA damage and mitochondrial function compared with air (control) exposed mice. Our results show that SBP was increased following exposure to either Occ-WPS or Reg-WPS compared with air-exposed mice. Moreover, we found that only Reg-WPS induced a significant elevation in the levels of troponin I, brain natriuretic peptide, lactate dehydrogenase, and creatine phosphokinase. However, the atrial natriuretic peptide (ANP) was significantly increased in both Occ-WPS and Reg-WPS groups. Compared with air-exposed mice, the levels of lipid peroxidation, reduced glutathione and monocyte chemoattractant protein-1 were only significantly augmented in the Reg-WPS. However, catalase, superoxide dismutase, and CXCL1 were significantly increased in both Occ-WPS and Reg-WPS. The concentrations of the adhesion molecules E-selectin, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1 were solely elevated in the heart of mice exposed to Reg-WPS. Similarly, the concentrations of interleukin-1β and tumor necrosis factor α were only significantly augmented in the Reg-WPS. However, both Occ-WPS and Reg-WPS triggered significant augmentation in the levels of IL17 and DNA damage compared to the control groups. Furthermore, while Occ-WPS induced a slight but statistically insignificant elevation in the concentrations of mammalian targets of rapamycin and nuclear factor erythroid-derived 2-like 2 (Nrf2) expression, Reg-WPS exposure increased their levels substantially, in addition to p53 and mitochondrial complexes II & III, and IV activities compared with air-exposed mice. In conclusion, our findings show that while the long-term Occ-WPS exposure induced an elevation of SBP, ANP, antioxidant enzymes, IL17, CXCL1, and cardiac DNA damage, Reg-WPS exposure was consistently associated with the elevation of SBP and occurrence of cardiac damage, inflammation, oxidative stress, DNA damage and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Naserddine Hamadi
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Nur Elena Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ozaz Elzaki
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abderrahim Nemmar
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
4
|
Hamadi N, Beegam S, Zaaba NE, Elzaki O, Altamimi MA, Nemmar A. Neuroinflammation, Oxidative Stress, Apoptosis, Microgliosis and Astrogliosis in the Cerebellum of Mice Chronically Exposed to Waterpipe Smoke. Biomedicines 2023; 11:biomedicines11041104. [PMID: 37189722 DOI: 10.3390/biomedicines11041104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Waterpipe smoking (WPS) is prevalent in Asian and Middle Eastern countries and has recently gained worldwide popularity, especially among youth. WPS has potentially harmful chemicals and is associated with a wide range of adverse effects on different organs. However, little is known regarding the impact of WPS inhalation on the brain and especially on the cerebellum. Presently, we aimed at investigating inflammation, oxidative stress and apoptosis as well as microgliosis and astrogliosis in the cerebellum of BALB/C mice chronically (6 months) exposed to WPS compared with air-exposed mice (control). WPS inhalation augmented the concentrations of proinflammatory cytokines tumor necrosis factor, interleukin (IL)-6 and IL-1β in cerebellar homogenates. Likewise, WPS increased oxidative stress markers including 8-isoprostane, thiobarbituric acid reactive substances and superoxide dismutase. In addition, compared with the air-exposed group, WPS caused an increase in the oxidative DNA damage marker, 8-hydroxy-2′-deoxyguanosine, in cerebellar homogenates. Similarly, in comparison with the air group, WPS inhalation elevated the cerebellar homogenate levels of cytochrome C, cleaved caspase-3 and nuclear factor-κB (NF-κB). Immunofluorescence analysis of the cerebellum showed that WPS exposure significantly augmented the number of ionized calcium-binding adaptor molecule 1 and glial fibrillary acidic protein-positive microglia and astroglia, respectively. Taken together, our data show that chronic exposure to WPS is associated with cerebellar inflammation, oxidative stress, apoptosis, microgliosis and astrogliosis. These actions were associated with a mechanism involving NF-κB activation.
Collapse
Affiliation(s)
- Naserddine Hamadi
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi P.O. Box 144534, United Arab Emirates
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Nur Elena Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Ozaz Elzaki
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Mariam Abdulla Altamimi
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi P.O. Box 144534, United Arab Emirates
| | - Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| |
Collapse
|
5
|
Waterpipe smoke inhalation potentiates cardiac oxidative stress, inflammation, mitochondrial dysfunction, apoptosis and autophagy in experimental hypertension. Biomed Pharmacother 2023; 158:114144. [PMID: 36916396 DOI: 10.1016/j.biopha.2022.114144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/04/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
Cigarette smoking worsens the health of hypertensive patients. However, less is known about the actions and underlying mechanisms of waterpipe smoke (WPS) in hypertension. Therefore, we evaluated the effects of WPS inhalation in mice made hypertensive (HT) by infusing angiotensin II for six weeks. On day 14 of the infusion of angiotensin II or vehicle (normotensive; NT), mice were exposed either to air or WPS for four consecutive weeks. Each session was 30 min/day and 5 days/week. In NT mice, WPS increased systolic blood pressure (SBP) compared with NT air-exposed group. SBP increase was elevated in HT+WPS group versus either HT+air or NT+WPS. Similarly, the plasma levels of brain natriuretic peptide, C-reactive protein, 8-isoprostane and superoxide dismutase were increased in HT+WPS compared with either HT+air or NT+WPS. In the heart tissue, several markers of oxidative stress and inflammation were increased in HT+WPS group vs the controls. Furthermore, mitochondrial dysfunction in HT+WPS group was more affected than in the HT+air or HT+WPS groups. WPS inhalation in HT mice significantly increased cardiac DNA damage, cleaved caspase 3, expression of the autophagy proteins beclin 1 and microtubule-associated protein light chain 3B, and phosphorylated nuclear factor κ B, compared with the controls. Compared with HT+air mice, heart histology of WPS-exposed HT mice showed increased cardiomyocyte damage, neutrophilic and lymphocytic infiltration and focal fibrosis. We conclude that, in HT mice, WPS inhalation worsened hypertension, cardiac oxidative stress, inflammation, mitochondrial dysfunction, DNA damage, apoptosis and autophagy. The latter effects were associated with a mechanism involving NF-κB activation.
Collapse
|
6
|
Alavi SS, Joukar S, Rostamzadeh F, Najafipour H, Darvishzadeh-Mahani F, Mortezaeizade A. Exercise Training Attenuates Cardiac Vulnerability and Promotes Cardiac Resistance to Isoproterenol-Induced Injury Following Hookah Smoke Inhalation in Male Rats: Role of Klotho and Sirtuins. Cardiovasc Toxicol 2022; 22:501-514. [PMID: 35316495 DOI: 10.1007/s12012-022-09733-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/17/2022] [Indexed: 11/25/2022]
Abstract
Hookah smoking is on the rise around the world. Present study investigated the heart resistance to harmful stress following long-term waterpipe tobacco smoking (WTS) and moderate-intensity exercise training intervention in male Wistar rats. Animals were randomly divided into a non-ischemic heart control group and four ischemic heart groups including ISO (isoproterenol-treated), Ex + ISO (subjected to exercise plus ISO), S + ISO (exposed to hookah smoke plus ISO), and Ex + S + ISO (subjected to exercise along with hookah smoke plus ISO). After eight weeks of training and WTS, heart ischemia induced by isoproterenol injections. Then, cardiac functional indices and some biochemical and histopathological parameters were assessed. WTS + ISO reduced systolic pressure, ± dP/dt max, and contractility indices (P < 0.001 vs. ISO group) and increased end diastolic pressure and Tau index (P < 0.001 vs. ISO) of the left ventricle. Also, WTS + ISO was associated with an increase in Bax protein level and Bax/Bcl-2 ratio (P < 0.05 and P < 001, respectively, vs. ISO group) as apoptotic markers of heart tissue. Hookah smoke significantly decreased SIRT1 (P < 0.05 and P < 0.001, respectively, vs. ISO) and klotho (P < 0.01 and P < 0.001, respectively, vs. ISO) in serum and heart, and SIRT3 and pS9-GSK-3β (P < 001 and P < 0.05, respectively, vs. ISO) in heart tissue. Combination of exercise with WTS prevented the hookah smoke-induced alterations in apoptotic markers, cardiac functional indices, and SIRT1, SIRT3, klotho, and pS9-GSK-3β proteins. The findings demonstrated that hookah smoke inhalation intensifies ventricular dysfunction and decreases heart resistance to harmful stresses. Moderate-intensity exercise training attenuated these complications partly through recovering the klotho and sirtuins levels and apoptosis-survival balancing.
Collapse
Affiliation(s)
- Samaneh Sadat Alavi
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences and Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, P.O. Box 7616914115, Kerman, Iran
| | - Siyavash Joukar
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences and Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, P.O. Box 7616914115, Kerman, Iran.
| | - Farzaneh Rostamzadeh
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Darvishzadeh-Mahani
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Mortezaeizade
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
7
|
Alarabi AB, Lozano PA, Khasawneh FT, Alshbool FZ. The effect of emerging tobacco related products and their toxic constituents on thrombosis. Life Sci 2022; 290:120255. [PMID: 34953893 PMCID: PMC9118784 DOI: 10.1016/j.lfs.2021.120255] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 02/03/2023]
Abstract
Although conventional cigarette smoking is declining, emerging tobacco related products (ETRPs) are currently gaining ground, especially among the youth. These products include electronic cigarettes, waterpipes/hookah, cigars/cigarillo, smokeless tobacco, and heat-not-burn cigarettes. The observed increase in the use of ETRPs is multifactorial and complex but appears to be mainly driven by efforts from the major tobacco companies to reinvent themselves, and present more appealing and allegedly safe(r) tobacco products. However, it is becoming apparent that these products produce substantial amounts of toxic chemicals, many of which have been shown to exert negative health effects, including in the context of the cardiovascular system. Thus, there has been research efforts, albeit limited in general, to characterize the health impact of these products on occlusive/thrombotic cardiovascular diseases (CVD). In this review, we will discuss the potential impact of ETRPs on thrombosis-based CVD. Specifically, we will review how these products and the major chemicals they produce and/or emit can trigger key players in the process of thrombosis, namely inflammation, oxidative stress, platelets, coagulation, and the vascular endothelium, and the relationship between these effects.
Collapse
Affiliation(s)
- Ahmed B Alarabi
- Department of Pharmacy Practice, Irma Lerma Rangel College of Pharmacy Texas A&M University, Kingsville, TX, USA
| | - Patricia A Lozano
- Department of Pharmacy Practice, Irma Lerma Rangel College of Pharmacy Texas A&M University, Kingsville, TX, USA
| | - Fadi T Khasawneh
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy Texas A&M University, Kingsville, TX, USA.
| | - Fatima Z Alshbool
- Department of Pharmacy Practice, Irma Lerma Rangel College of Pharmacy Texas A&M University, Kingsville, TX, USA.
| |
Collapse
|
8
|
Nemmar A, Al-Salam S, Beegam S, Zaaba NE, Elzaki O, Yasin J, Ali BH. Waterpipe smoke-induced hypercoagulability and cardiac injury in mice: Influence of cessation of exposure. Biomed Pharmacother 2022; 146:112493. [PMID: 35062048 DOI: 10.1016/j.biopha.2021.112493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/21/2021] [Accepted: 11/30/2021] [Indexed: 11/19/2022] Open
Abstract
Waterpipe tobacco smoking has gained worldwide popularity, particularly among youths. Several clinical and experimental studies have reported that waterpipe smoking (WPS) injures the cardiovascular system. However, the impact of smoking cessation (CS) on the cardiovascular toxicity induced by WPS received scant attention. Hence, we assessed, in C57BL/6 mice, the cardiovascular effects of WPS exposure for 3 months followed by 3 months of SC, as compared with mice exposed for either 3 months to WPS or air (control). WPS exposure induced hypertension, prothrombotic events both in vivo and in vitro and increased the plasma concentrations of tissue factor, fibrinogen and plasminogen activator inhibitor-1. These effects were significantly alleviated by SC. In heart tissue, the levels of troponin I, creatine kinase, lipid peroxidation, 8-isoprostane, tumor necrosis factor α, inteleukin 6, DNA damage and cleaved caspase-3 were significantly increased by WPS exposure. These actions were significantly reduced in the group of mice exposed to WPS followed by SC. Similarly, the increase in the level of nuclear factor κ-β induced by WPS exposure was significantly mitigated by SC. Immunohistochemical analysis of the hearts showed that WPS exposure increased the expression of nuclear factor erythroid-derived 2-like 2 by cardiomyocytes. The latter effect was significantly reduced by SC. Taken together, our data show that SC is associated with amelioration of WPS induced hypertension, prothrombotic events and cardiac oxidative stress, inflammation, DNA damage and apoptosis.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Nur Elena Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Ozaz Elzaki
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Javed Yasin
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine & Health Sciences, Sultan Qaboos University, P O Box 35, Muscat 123, Al-Khod, Sultanate of Oman
| |
Collapse
|
9
|
Waterpipe tobacco smoke and health: What we have learned from rodent models? Life Sci 2021; 284:119898. [PMID: 34453942 DOI: 10.1016/j.lfs.2021.119898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/07/2021] [Accepted: 08/17/2021] [Indexed: 11/21/2022]
Abstract
AIMS Waterpipe smoking (WPS) is a popular form of tobacco smoking. This is due to the misperception that WPS is less detrimental than cigarette smoking. This review aimed to present the adverse effects of WPS on health outcomes through utilizing animal models. MAIN METHODS The design of the current study is systematic review. PubMed, HINARI, Google, and SCOPUS databases were searched for the adverse effects of WPS on general health in rodents. Certain key information was extracted and collected from the included studies. KEY FINDINGS After screening different databases and removal of duplicates, 43 papers were included in this review. It was found that WPS was able to negatively affect the oxidative stress and inflammatory biomarkers in mice. Furthermore, WPS increased the levels of Tumor necrosis factor-α and 8-isoprostane, and DNA damage in mice lung homogenates. Additionally, chronic exposure to WPS increased the serum levels of creatinine and blood urea nitrogen in mice; indicating injury to renal tissues. The negative effect of WPS extends to affect offspring rats following prenatal WPS, in which WPS in utero lead to remarkable increase in the levels of testosterone, estrogen and follicle-stimulating hormones in WPS exposed animals. SIGNIFICANCE This systematic review highlighted the adverse effects of WPS on health outcomes at cellular and biochemical levels in different tissues and organs of rodents. The current reviews' findings highlighted the great hazards presented by WPS in the selected rodents' model and the essential necessity for future improved management of WPS indoor consumption.
Collapse
|
10
|
Chaieb F, Ben Saad H. The Chronic Effects of Narghile Use on Males' Cardiovascular Response During Exercise: A Systematic Review. Am J Mens Health 2021; 15:1557988321997706. [PMID: 33729068 PMCID: PMC7975579 DOI: 10.1177/1557988321997706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Narghile use has regained popularity throughout the world. Public opinion misjudges its chronic harmful effects on health, especially on the cardiovascular system. This systematic review aimed to evaluate the chronic effects of narghile use on cardiovascular response during exercise. It followed the preferred reporting items for systematic reviews guidelines. Original articles from PubMed and Scopus published until January 31, 2020, written in English, and tackling the chronic effects of narghile use on human cardiovascular response during exercise were considered. Five studies met the inclusion criteria. Only males were included in these studies. They were published between 2014 and 2017 by teams from Tunisia (n = 4) and Jordan (n = 1). One study applied the 6-min walk test, and four studies opted for the cardiopulmonary exercise test. Narghile use was associated with reduced submaximal (e.g., lower 6-min walk distance) and maximal aerobic capacities (e.g., lower maximal oxygen uptake) with abnormal cardiovascular status at rest (e.g., increase in heart rate and blood pressures), at the end of the exercise (e.g., lower heart rate, tendency to chronotropic insufficiency) and during the recovery period (e.g., lower recovery index). To conclude, chronic narghile use has negative effects on cardiovascular response to exercise with reduced submaximal and maximal exercise capacities.
Collapse
Affiliation(s)
- Faten Chaieb
- University of Sousse, Faculty of
Medicine of Sousse, Laboratory of Physiology, Sousse, Tunisia,Department of Physiology and Functional
Exploration, Farhat Hached University Hospital of Sousse, Tunisia
| | - Helmi Ben Saad
- University of Sousse, Faculty of
Medicine of Sousse, Laboratory of Physiology, Sousse, Tunisia,Heart Failure Research Laboratory
(LR12SP09), Farhat Hached Hospital, Sousse, Tunisia,Helmi Ben Saad (MD, PhD), Laboratory of
Physiology, Faculty of Medicine of Sousse, University of Sousse, Street Mohamed
Karoui, Sousse 4000, Tunisia.
| |
Collapse
|
11
|
Nemmar A, Al-Salam S, Beegam S, Zaaba NE, Ali BH. Effect of smoking cessation on chronic waterpipe smoke inhalation-induced airway hyperresponsiveness, inflammation, and oxidative stress. Am J Physiol Lung Cell Mol Physiol 2021; 320:L791-L802. [PMID: 33719568 DOI: 10.1152/ajplung.00420.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Waterpipe smoking (WPS) prevalence is increasing globally. Clinical and laboratory investigations reported that WPS triggers impairment of pulmonary function, inflammation, and oxidative stress. However, little is known if smoking cessation (SC) would reverse the adverse pulmonary effects induced by WPS. Therefore, we evaluated the impact of WPS inhalation for 3 mo followed by 3 mo of SC (air exposure) compared with those exposed for either 3 or 6 mo to WPS or air (control) in C57BL/6 mice. To this end, various physiological, biochemical, and histological endpoints were evaluated in the lung tissue. Exposure to WPS caused focal areas of dilated alveolar spaces and foci of widening of interalveolar spaces with peribronchiolar moderate mixed inflammatory cells consisting of lymphocytes, macrophages, and neutrophil polymorphs. The latter effects were mitigated by SC. Likewise, SC reversed the increase of airway resistance and reduced the increase in the levels of myeloperoxidase, matrix metalloproteinase 9, granulocyte-macrophage colony-stimulating factor, tumor necrosis factor-α, interleukin (IL)-6, and IL-1β in lung tissue induced by WPS. In addition, SC attenuated the increase of oxidative stress markers including 8-isoprostane, glutathione, and catalase induced by WPS. Similarly, DNA damage, apoptosis, and the expression of NF-κB in the lung induced by WPS inhalation were alleviated by CS. In conclusion, our data demonstrated, for the first time, to our knowledge, that SC-mitigated WPS inhalation induced an increase in airway resistance, inflammation, oxidative stress, DNA injury, and apoptosis, illustrating the benefits of SC on lung physiology.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Nur E Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| |
Collapse
|
12
|
Al-Omoush TK, Alzoubi KH, Khabour OF, Alsheyab FM, Abu-Siniyeh A, Al-Sawalha NA, Mayyas FA, Cobb CO, Eissenberg T. The CHRNA5 Polymorphism (rs16969968) and its Association with Waterpipe Smoking Addiction among Jordanians. ARAB JOURNAL OF BASIC AND APPLIED SCIENCES 2021; 27:450-455. [PMID: 33511332 DOI: 10.1080/25765299.2020.1849491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Waterpipe smoking is a form of tobacco use that causes nicotine/tobacco dependence and has become a global health problem. In the current study, the association of rs16969968 SNP in the CHRNA5 gene with waterpipe dependence was investigated. A total of 386 men and women who used a waterpipe to smoke tobacco were recruited and divided into less dependent and more dependent smokers based on their score on the Lebanon Waterpipe Dependence Scale (LWDS). Results showed a significant difference in the distribution of GG, GA, and AA genotypes by waterpipe dependence status (P<0.001). The more dependent group showed a higher frequency of the AA genotype than the less dependent smokers' group (38% versus 23% respectively). In addition, the more dependent smokers exhibited more A allele than less dependent smokers (53% versus 37% respectively, P<0.001). In conclusion, there is an association between the rs16969968 SNP and waterpipe dependence as assessed by the LWDS.
Collapse
Affiliation(s)
- Thaka'a K Al-Omoush
- Department of Applied Biology, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Fawzi M Alsheyab
- Department of Applied Biology, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Ahmed Abu-Siniyeh
- Department of Medical Laboratories, Faculty of Health Sciences, American University of Madaba, Madaba, Jordan
| | - Nour A Al-Sawalha
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Fadia A Mayyas
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Caroline O Cobb
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA.,Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, VA, USA
| | - Thomas Eissenberg
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA.,Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
13
|
Alomari MA, Khabour OF, Alzoubi KH. Gender-specific relationship of circulatory measures with waterpipe smoking: The Irbid WiHi project. INTERNATIONAL JOURNAL OF AFRICA NURSING SCIENCES 2021. [DOI: 10.1016/j.ijans.2021.100379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
14
|
Alomari MA, Alzoubi KH, Khabour OF. Differences in oxidative stress profile in adolescents smoking waterpipe versus cigarettes: The Irbid TRY Project. Physiol Rep 2020. [PMCID: PMC7484827 DOI: 10.14814/phy2.14512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Mahmoud A. Alomari
- Department of Physical Education Qatar University Doha Qatar
- Division of Physical Therapy Department of Rehabilitation Sciences Jordan University of Science and Technology Irbid Jordan
| | - Karem H. Alzoubi
- Department of Clinical Pharmacy Jordan University of Science and Technology Irbid Jordan
| | - Omar F. Khabour
- Department of Medical Laboratory Sciences Jordan University of Science and Technology Irbid Jordan
| |
Collapse
|