1
|
Su FZ, Bai CX, Zhang WS, Liu M, Li B, Sun MH, He YJ, Zeng YN, Sun YP, Yang BY, Kuang HX, Wang QH. Lipid-lowering effects of bile Arisaema polysaccharides on high-fat diet-induced hyperlipidemia: An integrated analysis of metabolomics, lipidomics and microbiome. Int J Biol Macromol 2025; 311:143932. [PMID: 40348213 DOI: 10.1016/j.ijbiomac.2025.143932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 04/22/2025] [Accepted: 05/03/2025] [Indexed: 05/14/2025]
Abstract
Bile Arisaema, a traditional Chinese medicine, has been previously identified by our team to possess antipyretic properties attributed to its polysaccharide component. Recently, we have confirmed that bile Arisaema played a significantly lipid-lowering effect on hyperlipidemia rats. Building upon this discovery, the present study aimed to investigate the unexplored hypolipidemic potential of its polysaccharide component and elucidate the underlying mechanisms. A soluble polysaccharide fraction devoid of free proteins, named BAPs, was extracted from bile Arisaema using a combination of hot water extraction, alcohol precipitation, and the Sevage method. The structural characteristics of BAPs were preliminarily elucidated through monosaccharide composition analysis (mainly composed of glucose), molecular weight distribution (38.74 kDa and 2.87 kDa), and glycosyl linkage analysis via methylation. The results of animal experiment demonstrated that oral administration of BAPs (400 mg/kg/day) for four weeks significantly improved abnormal serum lipid levels, hepatic function and histopathological injury on high-fat diet-induced hyperlipidemia rats. Mechanistically, the results of high throughput sequencing indicated that BAPs intake markedly altered the hepatic and fecal metabolome and lipidome, while also modulating gut microbiota composition and improving intestinal barrier integrity. Spearman's correlation analysis unveiled closely associations between the altered microbes, lipids, metabolites and serum biochemical indicators. Western blotting and qRT-PCR analyses further confirmed that these metabolic improvements were mediated by the regulation of key genes involved in lipid metabolism. Collectively, this study demonstrated that BAP supplementation effectively improved serum lipid profiles in hyperlipidemia rats by modulating metabolic disorders and restoring gut homeostasis.
Collapse
Affiliation(s)
- Fa-Zhi Su
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Chen-Xi Bai
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Wen-Sen Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Meng Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Biao Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Ming-Hao Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Yu-Jia He
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Yuan-Ning Zeng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan-Ping Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Bing-You Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Qiu-Hong Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Liu Y, Stott R, Regouski M, Fan Z, Perisse IV, Patrick T, Keim J, Meng Q, Polejaeva IA. A retrospective analysis of sheep generated by somatic cell nuclear transfer. Theriogenology 2024; 227:102-111. [PMID: 39047406 DOI: 10.1016/j.theriogenology.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Somatic cell nuclear transfer (SCNT) is one of the primary methods for production of genetically engineered sheep, which allows for gene editing or transgene introduction in somatic cells. The use of SCNT eliminates the risk of genetic mosaicism in embryos and animals that is commonly observed after zygote micromanipulations. This retrospective analysis of SCNT in sheep performed at Utah State University, spanning from 2016 to 2021, examined parameters that may impact pregnancy and full-term development, including donor oocytes (donor age), donor cell lines, SCNT parameters (time of oocyte activation following SCNT, number of transferred embryos, in vitro maturation and culture conditions), and recipients (surgical number and ovulatory status), as well as factors that may correlate with large offspring syndrome or abnormal offspring syndrome (LOS/AOS) in the fetuses and lambs. Our findings indicated that compared to prepubertal oocytes, the SCNT embryos produced from adult sheep oocytes had comparable in vitro maturation rates, pregnancy and full-term development rates, as well as SCNT efficiency. In addition, earlier activation time of SCNT embryos (e.g. 24-26 h post maturation) was correlated to the early pregnancy loss rate, full-term rate, and SCNT efficiency. Compared to our standard serum-containing medium, commercial serum-free culture medium showed a positive correlation with the full-term development of sheep SCNT embryos. Transferring 15-30 embryos per recipient resulted in consistently good pregnancy rates. Surgical numbers and ovulatory status (having at least one follicle between 6 and 12 mm in size or a corpus hemorrhagicum (CH)) of recipients did not affect pregnancy and full-term development rates. In summary, this retrospective analysis identified parameters for improving pregnancy and full-term development of SCNT embryos in sheep.
Collapse
Affiliation(s)
- Ying Liu
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA.
| | - Rusty Stott
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Misha Regouski
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Zhiqiang Fan
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Iuri Viotti Perisse
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Tayler Patrick
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Jacob Keim
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Qinggang Meng
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Irina A Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA.
| |
Collapse
|
3
|
Zhou Y, Ye F, Zhang L, Kang Q, Luo Y, Jiang N, Lou L, Mao Y, Wang L, Jin F. The role of DNA damage response in human embryonic stem cells exposed to atmospheric oxygen tension: Implications for embryo development and differentiation. Reprod Toxicol 2024; 128:108648. [PMID: 38909692 DOI: 10.1016/j.reprotox.2024.108648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/26/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Previous retrospective cohort studies have found that, compared with oxygen tension in the uterus and fallopian tubes (2 %-8 %), exposure of pre-implantation embryos to atmospheric oxygen tension (AtmO2, 20 %) during assisted reproductive technology(ART) can affect embryo quality, pregnancy outcomes and offspring health. However, current research on the effects and mechanisms of AtmO2 on the development of embryos and offspring is mainly limited to animal experiments. Human embryonic stem cells (hESCs) play a special and irreplaceable role in the study of early human embryonic development. In this study, we used hESCs as a model to elucidate the possible effects and mechanisms of AtmO2 exposure on human embryonic development. We found that exposure to AtmO2 can reduce cell viability, produce oxidative stress, increase DNA damage, initiate DNA repair, activate autophagy, and increase cell apoptosis. We also noticed that approximately 50 % of hESCs survived, adapted and proliferated through high expression of self-renewal and pluripotency regulatory factors, and affected embryoid body differentiation. These data indicate that hESCs experience oxidative stress, accumulation of DNA damage, and activate DNA damage response under the selective pressure of AtmO2.Some hESCs undergo cell death, whereas other hESCs adapt and proliferate through increased expression of self-renewal genes. The current findings provide in vitro evidence that exposure to AtmO2 during the early preimplantation stage negatively affects hESCs.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fenglei Ye
- Department of Obstetrics, Maternal and Child Health Hospital, Lishui, China
| | - Linyun Zhang
- Department of Obstetrics and Gynecology, Hangzhou TCM Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Quanmin Kang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yujia Luo
- Department of NICU, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Nan Jiang
- Department of Reproductive Endocrinology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lijun Lou
- Department of Reproductive Endocrinology, Affiliated Dongyang Hospital, Wenzhou Medical University, Jinhua, China
| | - Yuchan Mao
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liya Wang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fan Jin
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Xie J, Luo M, Chen Q, Zhang Q, Qin L, Wang Y, Zhao Y, He Y. Hypolipidemic effect and gut microbiota regulation of Gypenoside aglycones in rats fed a high-fat diet. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118066. [PMID: 38499259 DOI: 10.1016/j.jep.2024.118066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gynostemma pentaphyllum (Thunb.) Makino has traditional applications in Chinese medicine to treat lipid abnormalities. Gypenosides (GPs), the main bioactive components of Gynostemma pentaphyllum, have been reported to exert hypolipidemic effects through multiple mechanisms. The lipid-lowering effects of GPs may be attributed to the aglycone portion resulting from hydrolysis of GPs by the gut microbiota. However, to date, there have been no reports on whether gypenoside aglycones (Agl), the primary bioactive constituents, can ameliorate hyperlipidemia by modulating the gut microbiota. AIM OF THE STUDY This study explored the potential therapeutic effects of gypenoside aglycone (Agl) in a rat model of high-fat diet (HFD)-induced hyperlipidemia. METHODS A hyperlipidemic rat model was established by feeding rats with a high-fat diet. Agl was administered orally, and serum lipid levels were analyzed. Molecular techniques, including RT-polymerase chain reaction (PCR) and fecal microbiota sequencing, were used to investigate the effects of Agl on lipid metabolism and gut microbiota composition. RESULTS Agl administration significantly reduced serum levels of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) and mitigated hepatic damage induced by HFD. Molecular investigations have revealed the modulation of key lipid metabolism genes and proteins by Agl. Notably, Agl treatment enriched the gut microbiota with beneficial genera, including Lactobacillus, Akkermansia, and Blautia and promoted specific shifts in Lactobacillus murinus, Firmicutes bacterium CAG:424, and Allobaculum stercoricanis. CONCLUSION This comprehensive study established Agl as a promising candidate for the treatment of hyperlipidemia. It also exhibits remarkable hypolipidemic and hepatoprotective properties. The modulation of lipid metabolism-related genes, along with the restoration of gut microbiota balance, provides mechanistic insights. Thus, Agl has great potential for clinical applications in hyperlipidemia management.
Collapse
Affiliation(s)
- Jian Xie
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, 563000, China; Department of Medical Genetics, Zunyi Medical University, Zunyi, 563000, China.
| | - Mingxia Luo
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, 563000, China.
| | - Qiuyi Chen
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, 563000, China.
| | - Qianru Zhang
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, 563000, China.
| | - Lin Qin
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, 563000, China.
| | - Yuhe Wang
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Yongxia Zhao
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, 563000, China.
| | - Yuqi He
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
5
|
Wadood AA, Zhang X. The Omics Revolution in Understanding Chicken Reproduction: A Comprehensive Review. Curr Issues Mol Biol 2024; 46:6248-6266. [PMID: 38921044 PMCID: PMC11202932 DOI: 10.3390/cimb46060373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Omics approaches have significantly contributed to our understanding of several aspects of chicken reproduction. This review paper gives an overview of the use of omics technologies such as genomics, transcriptomics, proteomics, and metabolomics to elucidate the mechanisms of chicken reproduction. Genomics has transformed the study of chicken reproduction by allowing the examination of the full genetic makeup of chickens, resulting in the discovery of genes associated with reproductive features and disorders. Transcriptomics has provided insights into the gene expression patterns and regulatory mechanisms involved in reproductive processes, allowing for a better knowledge of developmental stages and hormone regulation. Furthermore, proteomics has made it easier to identify and quantify the proteins involved in reproductive physiology to better understand the molecular mechanisms driving fertility, embryonic development, and egg quality. Metabolomics has emerged as a useful technique for understanding the metabolic pathways and biomarkers linked to reproductive performance, providing vital insights for enhancing breeding tactics and reproductive health. The integration of omics data has resulted in the identification of critical molecular pathways and biomarkers linked with chicken reproductive features, providing the opportunity for targeted genetic selection and improved reproductive management approaches. Furthermore, omics technologies have helped to create biomarkers for fertility and embryonic viability, providing the poultry sector with tools for effective breeding and reproductive health management. Finally, omics technologies have greatly improved our understanding of chicken reproduction by revealing the molecular complexities that underpin reproductive processes.
Collapse
Affiliation(s)
- Armughan Ahmed Wadood
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China;
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Xiquan Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China;
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
6
|
Gačnikar J, Mrkun J, Babič J, Sterniša M, Zakošek Pipan M. Impact of Mycotoxin Metabolites Deepoxy-Deoxynivalenol and Beta-Zearalenol on Bovine Preimplantation Embryo Development in the Presence of Acetonitrile. Vet Sci 2024; 11:267. [PMID: 38922014 PMCID: PMC11209286 DOI: 10.3390/vetsci11060267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
The quality of animal feed is increasingly affected by weather conditions, high humidity, and damage to grains, which have led to various mycotoxin-producing moulds. The aim of this study was to determine the effects of the combination of deepoxy-deoxynivalenol and beta-zearalenol on the development of preimplantation bovine embryos, the extent to which the presence of both mycotoxin metabolites affects the development of in vitro cultured bovine embryos, or whether the effect of both toxins enhances embryotoxicity. Ovaries were transported from the abattoir to the laboratory and, after maturation and fertilisation, zygotes were placed in an embryo culture medium (IVC) with different mycotoxin metabolite concentrations diluted in acetonitrile. It was found that the blastocyst rate of cleaved embryos was affected by 1 μL acetonitrile in 400 μL medium (0.25%) compared to the group without acetonitrile. For this reason, it was decided to use acetonitrile as a control group, and the desired mycotoxin metabolite concentrations were diluted in the lowest possible amount of acetonitrile (0.5 μL) that could be accurately added to the study groups. There was no statistical difference when the higher mycotoxin metabolite concentrations were added.
Collapse
Affiliation(s)
- J. Gačnikar
- Clinic for Reproduction and Large Animals, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.M.); (M.Z.P.)
| | - J. Mrkun
- Clinic for Reproduction and Large Animals, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.M.); (M.Z.P.)
| | - J. Babič
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - M. Sterniša
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - M. Zakošek Pipan
- Clinic for Reproduction and Large Animals, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.M.); (M.Z.P.)
| |
Collapse
|
7
|
Zhang Y, Zhang J, Sun J, Ouyang Y, Shi D, Lu F. Hypoxia enhances steroidogenic competence of buffalo (Bubalus bubalis) granulosa cells. Theriogenology 2023; 210:214-220. [PMID: 37527623 DOI: 10.1016/j.theriogenology.2023.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023]
Abstract
Granulosa cells (GCs) synthesize estrogens needed for follicular growth. However, the effects of hypoxia on steroidogenesis in buffalo GCs remain unclear. In this study, the impacts of hypoxic conditions (5% oxygen) on estrogen synthesis in buffalo GCs were examined. The results showed that hypoxia improved both the expression levels of estrogen synthesis-related genes (CYP11A1, CYP19A1, and 3β-HSD) and the secretion levels of estradiol in buffalo GCs. Hypoxic conditions promoted the sensitivity of buffalo GCs to FSH. Furthermore, inhibition of cAMP/PKA signaling pathway (H89, a cAMP/PKA signaling pathway inhibitor) reduced both the expression levels of estrogen synthesis-related genes (CYP11A1, CYP19A1, and 3β-HSD) and the secretion levels of estradiol in hypoxia-cultured buffalo GCs. Besides, inhibition of cAMP/PKA signaling pathway lowered the responsiveness of buffalo GCs to FSH under hypoxic conditions. The present study indicated that hypoxia enhanced the steroidogenic competence of buffalo GCs principal by affecting cAMP/PKA signaling pathway and subsequent sensitivity of GCs to FSH.
Collapse
Affiliation(s)
- Yu Zhang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530005, China
| | - Jun Zhang
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, China
| | - Junming Sun
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, China
| | - Yiqiang Ouyang
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, China
| | - Deshun Shi
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530005, China
| | - Fenghua Lu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
8
|
Marsico TV, Silva MV, Valente RS, Annes K, Rissi VB, Glanzner WG, Sudano MJ. Unraveling the Consequences of Oxygen Imbalance on Early Embryo Development: Exploring Mitigation Strategies. Animals (Basel) 2023; 13:2171. [PMID: 37443969 DOI: 10.3390/ani13132171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Although well-established and adopted by commercial laboratories, the in vitro embryo production system still requires refinements to achieve its highest efficiency. Early embryonic development is a dynamic event, demanding suitable conditions to provide a high number of embryos with quality and competence. The first step to obtaining an optimized in vitro environment is to know the embryonic metabolism and energy request throughout the different stages of development. Oxygen plays a crucial role in several key biological processes necessary to sustain and complete embryonic development. Nonetheless, there is still controversy regarding the optimal in vitro atmospheric concentrations during culture. Herein, we discuss the impact of oxygen tension on the viability of in vitro-produced embryos during early development. The importance of oxygen tension is addressed as its roles regarding essential embryonic traits, including embryo production rates, embryonic cell viability, gene expression profile, epigenetic regulation, and post-cryopreservation survival. Finally, we highlight the damage caused by in vitro unbalanced oxygen tensions and strategies to mitigate the harmful effects.
Collapse
Affiliation(s)
- Thamiris Vieira Marsico
- Center for Natural and Human Sciences, Federal University of ABC, Santo André 09210-580, SP, Brazil
| | - Mara Viana Silva
- Center for Natural and Human Sciences, Federal University of ABC, Santo André 09210-580, SP, Brazil
| | - Roniele Santana Valente
- Center for Natural and Human Sciences, Federal University of ABC, Santo André 09210-580, SP, Brazil
| | - Kelly Annes
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil
| | - Vitor Braga Rissi
- Faculty of Veterinary Medicine, Federal University of Santa Catarina, UFSC, Curitibanos 89520-000, SC, Brazil
| | - Werner Giehl Glanzner
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Mateus José Sudano
- Center for Natural and Human Sciences, Federal University of ABC, Santo André 09210-580, SP, Brazil
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil
| |
Collapse
|
9
|
Shoutai Wan Improves Embryo Survival by Regulating Aerobic Glycolysis of Trophoblast Cells in a Mouse Model of Recurrent Spontaneous Abortion. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8251503. [PMID: 36212974 PMCID: PMC9534620 DOI: 10.1155/2022/8251503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/04/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022]
Abstract
Background During embryo implantation, the blastocyst exhibits a high capacity for aerobic glycolysis, which results in a unique microenvironment of high lactate/low pH at the maternal-fetal interface. Shoutai Wan (STW) is an effective Chinese herbal formula widely used in the clinical treatment of recurrent spontaneous abortion (RSA). However, the specific molecular mechanism by which STW prevents abortion is yet to be elucidated. Methods Female CBA/J mice were allocated into six groups randomly and then mated with BALB/c mice as the control group, DBA/2 mice as the RSA model, CBA/J×DBA/2 mice treated with dydrogesterone as the DQYT group, or CBA/J×DBA/2 mice treated with low, medium, and high-dose STW as the STW-L, STW-M, and STW-H groups, respectively. Drug administration started 14 days before mating and ended on the 14th day of pregnancy. The embryo loss rate of each group was calculated on day 14 of gestation, and the pregnancy outcomes of the mice in each group were observed. The mouse serum was collected to determine the levels of progesterone (P) and chorionic gonadotropin (CG). The activities of HK2, PKM2, and LDHA, the key glycolytic enzymes in each group, were detected. The expressions of lactate, ATP, HK2, PKM2, LDHA, MCT4, GLUT1, and GPR81 as well as the morphology of trophoblast cells were examined. Results The embryo loss rate and adverse pregnancy outcomes were significantly increased (P < 0.05) in the RSA model group. After dydrogesterone or different doses of STW treatment, the embryo loss rate and adverse pregnancy outcomes were rescued to varying degrees (P < 0.05). Interestingly, there was no significant difference among the groups in terms of serum P and CG (P < 0.05). Moreover, the activities of key glycolytic enzymes, lactate, ATP, HK2, PKM2, LDHA, MCT4, GLUT1, GPR81 protein or mRNA expression, and morphological abnormalities of trophoblast cells improved significantly in the RSA mice after dydrogesterone or different doses of STW treatment (P < 0.05). Conclusion STW can promote aerobic glycolysis in trophoblast cells of RSA mouse embryos, thereby improving the microenvironment of the maternal-fetal interface and enhancing embryo implantation.
Collapse
|
10
|
Wadood AA, Pu L, Shahzad Q, Waqas M, Yu L, Liao Y, Rehman SU, Chen D, Huang Z, Lu Y. Proteomic analysis identifies potential markers in small white and small yellow follicle development in chickens. Reprod Fertil Dev 2022; 34:516-525. [PMID: 35296374 DOI: 10.1071/rd21184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 12/21/2021] [Indexed: 11/23/2022] Open
Abstract
Extensive knowledge of follicular development is imperative for improving egg production in chickens. The functional role of follicles to produce oocytes (eggs) is well recognised; however, specific markers associated with follicle development have been poorly explored. Therefore, a tandem mass tag based proteomic technique was used to identify the status of the proteome of small white follicles (1-4mm) and small yellow follicles (6-8mm). Analysis of differentially expressed proteins (DEP, Fold Change>1.2, P -value<0.05) demonstrated a total of 92 proteins (n =92), of which 35 (n =35) were upregulated and 57 were downregulated. DEP were further used for gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathways. The GO analysis found that DEP were mainly associated with the RNA metabolic process, cellular component organisation, peptide biosynthetic process and protein folding, thereby suggesting a key role in the follicle development process. Kyoto Encyclopedia of Genes and Genomes enrichment pathway analysis of the DEP substantiated the findings of GO analysis and described that DEP are involved in regulation of the cytoskeleton, carbon metabolism and amino acid biosynthesis. The validation of proteomic data through real-time quantitative polymerase chain reaction suggested HSPA8, HSPA2, SOD1 and FKPB3 as potential markers of small white and small yellow follicle development. This study demonstrates an understanding of proteome dynamics and represents the most comprehensive information on the entire Guangxi Ma chicken follicular proteome.
Collapse
Affiliation(s)
- Armughan Ahmed Wadood
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Liping Pu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Qaisar Shahzad
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Muhammad Waqas
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Lintian Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Yuying Liao
- Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Saif Ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Dongyang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Zhenwen Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
11
|
Li D, Liu Z, Deng M, Liu L, Lu J, Wang F, Wan Y. The function of the m6A methyltransferase METTL3 in goat early embryo development under hypoxic and normoxic conditions. Theriogenology 2022; 177:140-150. [PMID: 34700071 DOI: 10.1016/j.theriogenology.2021.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/16/2021] [Accepted: 10/16/2021] [Indexed: 01/01/2023]
Abstract
It has been reported that N6-methyladenosine (m6A) methyltransferase-like 3 (METTL3) plays an important role in zygote genome activation during embryonic development, but the effects of METTL3 under oxidative stress in the early development of goat embryos remain largely unknown. In this study, zygotes were monitored at 72 and 168 h after fertilization, and they developed to the 8-cell stage and blastocyst stage under hypoxic conditions and normoxic conditions. Single-cell transcriptome sequencing was performed at the 8-cell stage and the blastocyst stage in the goat embryos, the differentially expressed METTL3 was screened from the sequencing results. We found that microinjection of small interfering RNA (siRNA) against METTL3 caused developmental arrest, both 8-cell rates (37.45 ± 2.21% vs. 47.09 ± 1.38%; P < 0.01) and blastocyst rates of Si-METTL3 (12.17% ± 2.84 vs. 20.83 ± 3.61%; P < 0.01) in Si-METTL3 group were significantly decreased compared with that of control under hypoxic conditions, significant changes were found in the m6A-related genes and the expression levels of critical transcription factors, such as, NANOG, GATA3, CDX2 and SOX17, were decreased. This study revealed the key role of METTL3 in the regulation of embryonic development under oxidative stress, and laid the foundation for further study of the crucial mechanism of oxidative stress during the early embryonic development of goats.
Collapse
Affiliation(s)
- Dongxu Li
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zifei Liu
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingtian Deng
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liang Liu
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiawei Lu
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongjie Wan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
12
|
Zhang J, Yang X, Chen M, Yan X, Gao L, Xu Y, Lu J, Li Z, Lu C, Deng Y, Li H, Shi D, Lu F. Hypoxia promotes steroidogenic competence of buffalo (Bubalus bubalis) theca cells. Theriogenology 2021; 180:113-120. [PMID: 34971972 DOI: 10.1016/j.theriogenology.2021.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/29/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
Theca cells (TCs) play an important role in follicular development and atresia. TCs synthesize androgens that act as substrate for granulosa cells aromatization to estrogens needed for follicular growth. However, the effects of hypoxia on steroidogenesis in buffalo TCs remain unclear. In the present study, the impacts of hypoxic conditions (5% oxygen) on androgen synthesis in buffalo TCs were examined. The results showed that hypoxia improved both the expression levels of androgen synthesis-related genes (CYP11A1, CYP17A1, and 3β-HSD) and the secretion levels of testosterone in buffalo TCs. Hypoxic conditions promoted the sensitivity of buffalo TCs to LH. Furthermore, inhibition of PI3K/AKT signaling pathway reduced both the expression levels of androgen synthesis-related genes (CYP11A1, CYP17A1, and 3β-HSD) and the secretion levels of testosterone in hypoxia-cultured buffalo TCs. Besides, inhibition of PI3K/AKT signaling pathway lowered the sensitivity of buffalo TCs to LH under hypoxic conditions. This study indicated that hypoxia enhanced the steroidogenic competence of buffalo TCs main through activating PI3K/AKT signaling pathway and subsequently facilitating the responsiveness of TCs to LH. This study provides a basis for further exploration of ovarian endocrine mechanism for steroidogenesis.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China
| | - Xiaofen Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China
| | - Mengjia Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China
| | - Xi Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China
| | - Lv Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China
| | - Ye Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China
| | - Jiaka Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China
| | - Zhengda Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China
| | - Canqiang Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yanfei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China
| | - Fenghua Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China.
| |
Collapse
|
13
|
Lipid Metabolism in Bovine Oocytes and Early Embryos under In Vivo, In Vitro, and Stress Conditions. Int J Mol Sci 2021; 22:ijms22073421. [PMID: 33810351 PMCID: PMC8038040 DOI: 10.3390/ijms22073421] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Lipids are a potential reservoir of energy for initial embryonic development before activation of the embryonic genome and are involved in plasma membrane biosynthesis. Excessive lipid droplet formation is detrimental to cryotolerance and is related to alterations in mitochondrial function, which likely affects lipid metabolism. Increased lipid accumulation in in vitro produced embryos is a consequence of the stress during in vitro embryonic development process. There are several open questions concerning embryo lipid metabolism and developmental potential. Oocyte maturation and embryo development in vivo and in vitro may vary if the donors are subjected to any type of stress before follicle puncture because crucial changes in oocyte/embryonic metabolism occur in response to stress. However, little is known about lipid metabolism under additional stress (such as heat stress). Therefore, in this review, we aimed to update the information regarding the energy metabolism of oocytes and early bovine embryos exhibiting developmental competence, focusing on lipid metabolic pathways observed under in vivo, in vitro, and stress conditions.
Collapse
|
14
|
Lanzarini F, Pereira FA, de Camargo J, Oliveira AM, Belaz KRA, Melendez-Perez JJ, Eberlin MN, Brum MCS, Mesquita FS, Sudano MJ. ELOVL5 Participates in Embryonic Lipid Determination of Cellular Membranes and Cytoplasmic Droplets. Int J Mol Sci 2021; 22:ijms22031311. [PMID: 33525659 PMCID: PMC7865478 DOI: 10.3390/ijms22031311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/26/2020] [Accepted: 12/16/2020] [Indexed: 01/13/2023] Open
Abstract
Embryonic lipids are crucial for the formation of cellular membranes and dynamically participate in metabolic pathways. Cells can synthesize simple fatty acids, and the elongation of fatty acids facilitates the formation of complex lipids. The aim of this work was to investigate the involvement of the elongation of very long chain fatty acid enzyme 5 (ELOVL5) in embryonic development and lipid determination. Bovine embryos were produced in vitro using a standard protocol and randomly divided to receive one of three treatments at Day 4: morpholino (Mo) gene expression knockdown assay for ELOVL5 (ELOVL5-Mo), Mo antisense oligonucleotides for the thalassemic β-globulin human mRNA (technical control Mo), and placebo (biological control). The phenotypes of embryonic development, cell number, ELOVL5 protein abundance, lipid droplet deposits, and lipid fingerprint were investigated. No detrimental effects (p > 0.05) were observed on embryo development in terms of cleavage (59.4 ± 3.5%, 63.6 ± 4.1%, and 65.4 ± 2.2%), blastocyst production (31.3 ± 4.2%, 28.1 ± 4.9%, and 36.1 ± 2.1%), and blastocyst cell number (99.6 ± 7.7, 100.2 ± 6.2, 86.8 ± 5.6), respectively, for biological control, technical control Mo, and ELOVL5-Mo. ELOVL5 protein abundance and cytoplasmic lipid droplet deposition were increased (p < 0.05) in ELOVL5-Mo-derived blastocysts compared with the controls. However, seven lipid species, including phosphatidylcholines, phosphatidylethanolamines, and triacylglycerol, were downregulated in the ELOVL5-Mo-derived blastocysts compared with the biological control. Therefore, ELOVL5 is involved in the determination of embryonic lipid content and composition. Transient translational blockage of ELOVL5 reduced the expression of specific lipid species and promoted increased cytoplasmic lipid droplet deposition, but with no apparent deleterious effect on embryonic development and blastocyst cell number.
Collapse
Affiliation(s)
- Franciele Lanzarini
- Curso de Medicina Veterinária, Universidade Federal do Pampa, Unipampa, Uruguaiana 96460-000, RS, Brazil; (F.L.); (F.A.P.); (J.d.C.); (A.M.O.); (M.C.S.B.); (F.S.M.)
| | - Fernanda Alves Pereira
- Curso de Medicina Veterinária, Universidade Federal do Pampa, Unipampa, Uruguaiana 96460-000, RS, Brazil; (F.L.); (F.A.P.); (J.d.C.); (A.M.O.); (M.C.S.B.); (F.S.M.)
| | - Janine de Camargo
- Curso de Medicina Veterinária, Universidade Federal do Pampa, Unipampa, Uruguaiana 96460-000, RS, Brazil; (F.L.); (F.A.P.); (J.d.C.); (A.M.O.); (M.C.S.B.); (F.S.M.)
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, UFSCar, São Carlos 13565-905, SP, Brazil
| | - Andressa Minozzo Oliveira
- Curso de Medicina Veterinária, Universidade Federal do Pampa, Unipampa, Uruguaiana 96460-000, RS, Brazil; (F.L.); (F.A.P.); (J.d.C.); (A.M.O.); (M.C.S.B.); (F.S.M.)
| | - Katia Roberta Anacleto Belaz
- Instituto de Química, Universidade Federal de Catalão, UFG/UFCAT, Catalão 75705-220, GO, Brazil;
- Instituto de Química, Universidade de Campinas, UNICAMP, Campinas 13083-970, SP, Brazil
| | | | - Marcos Nogueira Eberlin
- Núcleo de Pesquisa do Mackenzie em Ciência, Fé e Sociedade, Universidade Presbiteriana Mackenzie, São Paulo 01302-907, SP, Brazil;
| | - Mário Celso Sperotto Brum
- Curso de Medicina Veterinária, Universidade Federal do Pampa, Unipampa, Uruguaiana 96460-000, RS, Brazil; (F.L.); (F.A.P.); (J.d.C.); (A.M.O.); (M.C.S.B.); (F.S.M.)
| | - Fernando Silveira Mesquita
- Curso de Medicina Veterinária, Universidade Federal do Pampa, Unipampa, Uruguaiana 96460-000, RS, Brazil; (F.L.); (F.A.P.); (J.d.C.); (A.M.O.); (M.C.S.B.); (F.S.M.)
| | - Mateus José Sudano
- Curso de Medicina Veterinária, Universidade Federal do Pampa, Unipampa, Uruguaiana 96460-000, RS, Brazil; (F.L.); (F.A.P.); (J.d.C.); (A.M.O.); (M.C.S.B.); (F.S.M.)
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, UFSCar, São Carlos 13565-905, SP, Brazil
- Centro de Ciências Naturais e Humana, Universidade Federal do ABC, Santo André 09210-580, SP, Brazil
- Correspondence:
| |
Collapse
|
15
|
Pu L, Shahzad Q, Chen F, Yao S, Tang Y, Chen D, Yu K, Xie L, Xu H, Zhang M, Lu Y. Proteomic analysis demonstrates that parthenogenetically activated swamp buffalo embryos have dysregulated energy metabolism. Reprod Domest Anim 2020; 55:1764-1773. [PMID: 33031588 DOI: 10.1111/rda.13838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/02/2020] [Indexed: 01/06/2023]
Abstract
The comprehensive understanding of early embryo development is essential to optimize in vitro culture conditions. Protein expression landscape of parthenogenetically produced embryo remains unexplored. This study aimed to investigate the protein expression dynamics with a particular focus on energy metabolism throughout the early developmental stages of parthenogenetic buffalo embryos. For this purpose, we performed iTRAQ-based quantitative mass spectrometry and identified 280 proteins common in all stages. A total of 933 proteins were identified during the proteomics analysis. The data depicted that morula and blastocyst had distinct protein expression dynamics as compared to 2- to 16-cell-stage embryo. KEGG pathway analysis showed 23 proteins belonging to energy metabolism appeared in the data. Study of energy metabolism-related protein's expression pattern demonstrated that there was asynchrony in proteins related to glycolysis throughout the examined developmental stages. The expression pattern of pyruvate kinase mutase (PKM), an essential protein of glycolysis, indicated a slightly decreasing trend from 2-cell-stage embryo to blastocyst, and it was supported by expression of proteins involved in lactate production (LDHA and LDHB) suggesting the decreasing rate of aerobic glycolysis (Warburg Effect) at morula and blastocyst stage. The increased Warburg Effect is considered as the hallmark of proliferating cells or embryo at the blastocyst stage. Furthermore, the proteins involved in the citric acid cycle also showed down-regulation at the blastocyst stage, indicating a lesser role of oxidative phosphorylation at this stage. Therefore, it could be divulged from the study that there may be an irregular pattern of energy metabolism in early parthenogenetic embryos. Further studies are recommended to understand this phenomenon.
Collapse
Affiliation(s)
- Liping Pu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Qaisar Shahzad
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Fumen Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Shun Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Yuyan Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Dongrong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Kai Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Long Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Huiyan Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Ming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| |
Collapse
|