1
|
Hong Y, Liu J, Wang W, Li H, Kong W, Li X, Zhang W, Pahlavan S, Tang YD, Wang X, Wang K. Pluripotent stem cell-derived cardiomyocyte transplantation: marching from bench to bedside. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2801-x. [PMID: 40418524 DOI: 10.1007/s11427-024-2801-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/12/2024] [Indexed: 05/27/2025]
Abstract
Cardiovascular diseases such as myocardial infarction, heart failure, and cardiomyopathy, persist as a leading global cause of death. Current treatment options have inherent limitations, particularly in terms of cardiac regeneration due to the limited regenerative capacity of adult human hearts. The transplantation of pluripotent stem cell-derived cardiomyocytes (PSC-CMs) has emerged as a promising and potential solution to address this challenge. This review aims to summarize the latest advancements and prospects of PSC-CM transplantation (PCT), along with the existing constraints, such as immune rejection and engraftment arrhythmias, and corresponding solutions. Encompassing a comprehensive range from fundamental research findings and preclinical experiments to ongoing clinical trials, we hope to offer insights into PCT from bench to bedside.
Collapse
Affiliation(s)
- Yi Hong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Center for Non-coding RNA Medicine, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Department of Education, Peking University First Hospital, Peking University, Beijing, 100035, China
| | - Jiarui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Center for Non-coding RNA Medicine, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing, 100191, China
| | - Weixuan Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Center for Non-coding RNA Medicine, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing, 100191, China
| | - Hao Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Center for Non-coding RNA Medicine, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing, 100191, China
| | - Weijing Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Center for Non-coding RNA Medicine, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing, 100191, China
| | - Xiaoxia Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Center for Non-coding RNA Medicine, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing, 100191, China
| | - Wei Zhang
- TianXinFu (Beijing) Medical Appliance Co., Ltd., Beijing, 102200, China
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, The Academic Center for Education, Culture and Research, Tehran, 14155-4364, Iran
| | - Yi-da Tang
- Department of Cardiology and Institute of Vascular Medicine, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Third Hospital, Beijing, 100191, China.
| | - Xi Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Center for Non-coding RNA Medicine, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing, 100191, China.
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China.
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Center for Non-coding RNA Medicine, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing, 100191, China.
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
2
|
Jiang Y, Li Y, Duan L, Jiang B. Amniotic Fluid-Derived Stem Cells: An Overlooked Source of Stem Cells for Translational Research. DNA Cell Biol 2025; 44:144-152. [PMID: 40096350 DOI: 10.1089/dna.2024.0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Amniotic fluid-derived stem cells (AFSCs) represent a promising yet underutilized resource for research and clinical applications. While AFSCs share phenotypic and functional characteristics with stem cells derived from somatic tissues such as bone marrow, adipose tissue, placenta, and umbilical cord, their unique developmental origin grants them several superior qualities. These include enhanced multipotency, tissue-specific genotypic profiles, and the ability to form single-cell colonies. Such features position AFSCs as highly valuable for translational research and tissue engineering. This review seeks to underscore the distinctive attributes of AFSCs, particularly their relevance in developmental research and engineering. By emphasizing these qualities, we aim to stimulate further exploration into their use in patient-specific induced pluripotent stem cells and organoid development, potentially unlocking their full therapeutic potential. The unique capabilities of AFSCs make them an exceptional candidate for advancing regenerative medicine, offering new avenues for treating a variety of conditions that currently have limited therapeutic options.
Collapse
Affiliation(s)
- Yu Jiang
- West China Second University Hosptial, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, China
| | - Yanjiao Li
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Kunming University, Kunming, China
| | - Li Duan
- Department of Orthopedics, Shenzhen Key Lab of Tissue Engineering, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
- Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Bin Jiang
- Department of Orthopedics, Shenzhen Key Lab of Tissue Engineering, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
- R&D Division, Eureka Biotech Inc., Philadelphia, PA, USA
| |
Collapse
|
3
|
Chen SY, Fang YH, Huang CY, Wu JH, Shan YS, Liu YW, Huang PH. Transcriptome-wide RNA 5-methylcytosine profiles of human iPSCs and iPSC-derived cardiomyocytes. Sci Data 2024; 11:1378. [PMID: 39695135 PMCID: PMC11655970 DOI: 10.1038/s41597-024-04209-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
Cardiac regenerative therapy has recently progressed by reprogramming somatic cells into induced pluripotent stem cells (iPSCs) and advanced by large-scale differentiation-derived cardiomyocytes (hiPSC-CMs). However, repairing damaged cardiac tissues with hiPSC-CMs remains limited due to immune rejection, cardiac arrhythmias, and concerns over tumor formation after hiPSC-CM transplantation. Despite efforts in profiling epigenomic changes during cardiac differentiation, regulatory mechanisms underlying 5-methylcytosine (m5C) deposition in RNA m5C epitranscriptomic landscape during hiPSC-to-cardiomyocyte differentiation remain unclear. Herein, bisulfite RNA-sequencing analysis was conducted in human pluripotent stem cells (hPSCs) from three independent cellular origins, and their derived cardiomyocytes (hPSC-CM), metabolic-maturation of derived cardiomyocytes (hPSC-CM-lac) and biochemical-enhanced derived cardiomyocytes (hPSC-CM-TDI). Integrated analysis of differentially methylated RNA m5C profiles and transcriptome-wide expression facilitated the identification of m5C sites coupled to the cardiomyocyte differentiation and RNA-dependent regulatory mechanisms of stem cell pluripotency. The RNA m5C profiles in this dataset allow the evaluations of the m5C level and distribution of specific m5C loci and facilitate understanding of the m5C epitranscriptomic landscape in biological functions of hPSC-CM beyond in vivo transplantation barriers.
Collapse
Affiliation(s)
- Szu-Ying Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Hsien Fang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chen-Yu Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jou-Hsien Wu
- School of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Wen Liu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Po-Hsien Huang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
4
|
Yahyazadeh R, Baradaran Rahimi V, Askari VR. Stem cell and exosome therapies for regenerating damaged myocardium in heart failure. Life Sci 2024; 351:122858. [PMID: 38909681 DOI: 10.1016/j.lfs.2024.122858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Finding novel treatments for cardiovascular diseases (CVDs) is a hot topic in medicine; cell-based therapies have reported promising news for controlling dangerous complications of heart disease such as myocardial infarction (MI) and heart failure (HF). Various progenitor/stem cells were tested in various in-vivo, in-vitro, and clinical studies for regeneration or repairing the injured tissue in the myocardial to accelerate the healing. Fetal, adult, embryonic, and induced pluripotent stem cells (iPSC) have revealed the proper potency for cardiac tissue repair. As an essential communicator among cells, exosomes with specific contacts (proteins, lncRNAs, and miRNAs) greatly promote cardiac rehabilitation. Interestingly, stem cell-derived exosomes have more efficiency than stem cell transplantation. Therefore, stem cells induced pluripotent stem cells (iPSCs), embryonic stem cells (ESCs), cardiac stem cells (CDC), and skeletal myoblasts) and their-derived exosomes will probably be considered an alternative therapy for CVDs remedy. In addition, stem cell-derived exosomes have been used in the diagnosis/prognosis of heart diseases. In this review, we explained the advances of stem cells/exosome-based treatment, their beneficial effects, and underlying mechanisms, which will present new insights in the clinical field in the future.
Collapse
Affiliation(s)
- Roghayeh Yahyazadeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Vo QD, Saito Y, Nakamura K, Iida T, Yuasa S. Induced Pluripotent Stem Cell-Derived Cardiomyocytes Therapy for Ischemic Heart Disease in Animal Model: A Meta-Analysis. Int J Mol Sci 2024; 25:987. [PMID: 38256060 PMCID: PMC10815661 DOI: 10.3390/ijms25020987] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Ischemic heart disease (IHD) poses a significant challenge in cardiovascular health, with current treatments showing limited success. Induced pluripotent derived-cardiomyocyte (iPSC-CM) therapy within regenerative medicine offers potential for IHD patients, although its clinical impacts remain uncertain. This study utilizes meta-analysis to assess iPSC-CM outcomes in terms of efficacy and safety in IHD animal model studies. A meta-analysis encompassing PUBMED, ScienceDirect, Web of Science, and the Cochrane Library databases, from inception until October 2023, investigated iPSC therapy effects on cardiac function and safety outcomes. Among 51 eligible studies involving 1012 animals, despite substantial heterogeneity, the iPSC-CM transplantation improved left ventricular ejection fraction (LVEF) by 8.23% (95% CI, 7.15 to 9.32%; p < 0.001) compared to control groups. Additionally, cell-based treatment reduced the left ventricle fibrosis area and showed a tendency to reduce left ventricular end-systolic volume (LVESV) and end-diastolic volume (LVEDV). No significant differences emerged in mortality and arrhythmia risk between iPSC-CM treatment and control groups. In conclusion, this meta-analysis indicates iPSC-CM therapy's promise as a safe and beneficial intervention for enhancing heart function in IHD. However, due to observed heterogeneity, the efficacy of this treatment must be further explored through large randomized controlled trials based on rigorous research design.
Collapse
Affiliation(s)
- Quan Duy Vo
- Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (S.Y.)
| | - Yukihiro Saito
- Department of Cardiovascular Medicine, Okayama University Hospital, Okayama 700-8558, Japan
| | - Kazufumi Nakamura
- Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (S.Y.)
| | - Toshihiro Iida
- Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (S.Y.)
| | - Shinsuke Yuasa
- Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (S.Y.)
| |
Collapse
|
6
|
Chehelgerdi M, Behdarvand Dehkordi F, Chehelgerdi M, Kabiri H, Salehian-Dehkordi H, Abdolvand M, Salmanizadeh S, Rashidi M, Niazmand A, Ahmadi S, Feizbakhshan S, Kabiri S, Vatandoost N, Ranjbarnejad T. Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy. Mol Cancer 2023; 22:189. [PMID: 38017433 PMCID: PMC10683363 DOI: 10.1186/s12943-023-01873-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/27/2023] [Indexed: 11/30/2023] Open
Abstract
The advent of iPSCs has brought about a significant transformation in stem cell research, opening up promising avenues for advancing cancer treatment. The formation of cancer is a multifaceted process influenced by genetic, epigenetic, and environmental factors. iPSCs offer a distinctive platform for investigating the origin of cancer, paving the way for novel approaches to cancer treatment, drug testing, and tailored medical interventions. This review article will provide an overview of the science behind iPSCs, the current limitations and challenges in iPSC-based cancer therapy, the ethical and social implications, and the comparative analysis with other stem cell types for cancer treatment. The article will also discuss the applications of iPSCs in tumorigenesis, the future of iPSCs in tumorigenesis research, and highlight successful case studies utilizing iPSCs in tumorigenesis research. The conclusion will summarize the advancements made in iPSC-based tumorigenesis research and the importance of continued investment in iPSC research to unlock the full potential of these cells.
Collapse
Affiliation(s)
- Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fereshteh Behdarvand Dehkordi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Hamidreza Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Mohammad Abdolvand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Sharareh Salmanizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar-Jereeb Street, Isfahan, 81746-73441, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saba Ahmadi
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Sara Feizbakhshan
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saber Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Nasimeh Vatandoost
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tayebeh Ranjbarnejad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
7
|
Fang YH, Wang SPH, Liao IC, Tsai KJ, Huang PH, Yang PJ, Yen CJ, Liu PY, Shan YS, Liu YW. HLA-E high /HLA-G high /HLA-II low Human iPSC-Derived Cardiomyocytes Exhibit Low Immunogenicity for Heart Regeneration. Adv Healthc Mater 2023; 12:e2301186. [PMID: 37672681 DOI: 10.1002/adhm.202301186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Although human pluripotent stem cells (hPSCs)-derived cardiomyocytes (hPSC-CMs) can remuscularize infarcted hearts and restore post-infarct cardiac function, post-transplant rejection resulting from human leukocyte antigen (HLA) mismatching is an enormous obstacle. It is crucial to identify hypoimmunogenic hPSCs for allogeneic cell therapy. This study is conducted to demonstrate the immune privilege of HLA-Ehigh /HLA-Ghigh /HLA-IIlow human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (hiPSC-CMs). Ischemia-reperfusion surgery is done to create transmural myocardial infarction in rats. At post-infarct 4 days, hPSC-CMs (1.0×107 cells per kg), including human embryonic stem cell-derived cardiomyocytes (hESC-CMs), HLA-Elow/HLA-Glow/HLA-IIhigh hiPSC-CMs, and HLA-Ehigh /HLA-Ghigh /HLA-IIlow hiPSC-CMs, are injected into the infarcted myocardium. Under the treatment of very low dose cyclosporine A (CsA), only HLA-Ehigh /HLA-Ghigh /HLA-IIlow hiPSC-CMs survive in vivo and improved post-infarct cardiac function with infarct size reduction. HLA-Ehigh /HLA-Ghigh /HLA-IIlow hiPSC-CMs activate the SHP-1 signaling pathway of natural killer (NK) cells and cytotoxic T cells to evade attack by NK cells and cytotoxic T cells. Herein, it is demonstrated that using a clinically relevant CsA dose, HLA-Ehigh /HLA-Ghigh /HLA-IIlow hiPSC-CMs repair the infarcted myocardium and restore the post-infarct heart function. HLA-Ehigh /HLA-Ghigh /HLA-IIlow hiPSCs are less immunogenic and may serve as platforms for regeneration medicine.
Collapse
Affiliation(s)
- Yi-Hsien Fang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 70401, Taiwan
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70403, Taiwan
| | - Saprina P H Wang
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70403, Taiwan
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70403, Taiwan
| | - I-Chuang Liao
- Department of Pathology, Chi-Mei Medical Center, Tainan, 71004, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 70401, Taiwan
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70403, Taiwan
| | - Po-Hsien Huang
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70403, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Pei-Jung Yang
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70403, Taiwan
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70403, Taiwan
| | - Chia-Jui Yen
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70403, Taiwan
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70403, Taiwan
| | - Ping-Yen Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 70401, Taiwan
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70403, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 70401, Taiwan
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70403, Taiwan
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70403, Taiwan
| | - Yen-Wen Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 70401, Taiwan
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70403, Taiwan
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70403, Taiwan
| |
Collapse
|
8
|
Zhuo D, Lei I, Li W, Liu L, Li L, Ni J, Liu Z, Fan G. The origin, progress, and application of cell-based cardiac regeneration therapy. J Cell Physiol 2023; 238:1732-1755. [PMID: 37334836 DOI: 10.1002/jcp.31060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/08/2023] [Accepted: 05/29/2023] [Indexed: 06/21/2023]
Abstract
Cardiovascular disease (CVD) has become a severe threat to human health, with morbidity and mortality increasing yearly and gradually becoming younger. When the disease progresses to the middle and late stages, the loss of a large number of cardiomyocytes is irreparable to the body itself, and clinical drug therapy and mechanical support therapy cannot reverse the development of the disease. To explore the source of regenerated myocardium in model animals with the ability of heart regeneration through lineage tracing and other methods, and develop a new alternative therapy for CVDs, namely cell therapy. It directly compensates for cardiomyocyte proliferation through adult stem cell differentiation or cell reprogramming, which indirectly promotes cardiomyocyte proliferation through non-cardiomyocyte paracrine, to play a role in heart repair and regeneration. This review comprehensively summarizes the origin of newly generated cardiomyocytes, the research progress of cardiac regeneration based on cell therapy, the opportunity and development of cardiac regeneration in the context of bioengineering, and the clinical application of cell therapy in ischemic diseases.
Collapse
Affiliation(s)
- Danping Zhuo
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ienglam Lei
- Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Wenjun Li
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Li Liu
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lan Li
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingyu Ni
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihao Liu
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanwei Fan
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
9
|
Cheng W, Fan C, Song Q, Chen P, Peng H, Lin L, Liu C, Wang B, Zhou Z. Induced pluripotent stem cell-based therapies for organ fibrosis. Front Bioeng Biotechnol 2023; 11:1119606. [PMID: 37274156 PMCID: PMC10232908 DOI: 10.3389/fbioe.2023.1119606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
Fibrotic diseases result in organ remodelling and dysfunctional failure and account for one-third of all deaths worldwide. There are no ideal treatments that can halt or reverse progressive organ fibrosis, moreover, organ transplantation is complicated by problems with a limited supply of donor organs and graft rejection. The development of new approaches, especially induced pluripotent stem cell (iPSC)-based therapy, is becoming a hot topic due to their ability to self-renew and differentiate into different cell types that may replace the fibrotic organs. In the past decade, studies have differentiated iPSCs into fibrosis-relevant cell types which were demonstrated to have anti-fibrotic effects that may have the potential to inform new effective precision treatments for organ-specific fibrosis. In this review, we summarize the potential of iPSC-based cellular approaches as therapeutic avenues for treating organ fibrosis, the advantages and disadvantages of iPSCs compared with other types of stem cell-based therapies, as well as the challenges and future outlook in this field.
Collapse
Affiliation(s)
- Wei Cheng
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Qing Song
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Ping Chen
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Hong Peng
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Ling Lin
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Cong Liu
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Bin Wang
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zijing Zhou
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| |
Collapse
|
10
|
Tatullo M, Zavan B, Piattelli A. Critical Overview on Regenerative Medicine: New Insights into the Role of Stem Cells and Innovative Biomaterials. Int J Mol Sci 2023; 24:ijms24097936. [PMID: 37175642 PMCID: PMC10177993 DOI: 10.3390/ijms24097936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Regenerative medicine represents a novel and intriguing field of medicine [...].
Collapse
Affiliation(s)
- Marco Tatullo
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, 70124 Bari, Italy
- University of Dundee, Dundee DD1 4HR, UK
- MIRROR-Medical Institute for Regeneration and Repairing and Organ Replacement, Interdepartmental Center, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Barbara Zavan
- Translational Medicine Department, University of Ferrara, 44121 Ferrara, Italy
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University of Health and Medical Sciences, Via di Sant'Alessandro 8, 00131 Rome, Italy
| |
Collapse
|
11
|
Small Extracellular Vesicles Derived from Induced Pluripotent Stem Cells in the Treatment of Myocardial Injury. Int J Mol Sci 2023; 24:ijms24054577. [PMID: 36902008 PMCID: PMC10003569 DOI: 10.3390/ijms24054577] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Induced pluripotent stem cell (iPSC) therapy brings great hope to the treatment of myocardial injuries, while extracellular vesicles may be one of the main mechanisms of its action. iPSC-derived small extracellular vesicles (iPSCs-sEVs) can carry genetic and proteinaceous substances and mediate the interaction between iPSCs and target cells. In recent years, more and more studies have focused on the therapeutic effect of iPSCs-sEVs in myocardial injury. IPSCs-sEVs may be a new cell-free-based treatment for myocardial injury, including myocardial infarction, myocardial ischemia-reperfusion injury, coronary heart disease, and heart failure. In the current research on myocardial injury, the extraction of sEVs from mesenchymal stem cells induced by iPSCs was widely used. Isolation methods of iPSCs-sEVs for the treatment of myocardial injury include ultracentrifugation, isodensity gradient centrifugation, and size exclusion chromatography. Tail vein injection and intraductal administration are the most widely used routes of iPSCs-sEV administration. The characteristics of sEVs derived from iPSCs which were induced from different species and organs, including fibroblasts and bone marrow, were further compared. In addition, the beneficial genes of iPSC can be regulated through CRISPR/Cas9 to change the composition of sEVs and improve the abundance and expression diversity of them. This review focused on the strategies and mechanisms of iPSCs-sEVs in the treatment of myocardial injury, which provides a reference for future research and the application of iPSCs-sEVs.
Collapse
|
12
|
Csöbönyeiová M, Beerová N, Klein M, Debreová-Čeháková M, Danišovič Ľ. Cell-Based and Selected Cell-Free Therapies for Myocardial Infarction: How Do They Compare to the Current Treatment Options? Int J Mol Sci 2022; 23:10314. [PMID: 36142245 PMCID: PMC9499607 DOI: 10.3390/ijms231810314] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Because of cardiomyocyte death or dysfunction frequently caused by myocardial infarction (MI), heart failure is a leading cause of morbidity and mortality in modern society. Paradoxically, only limited and non-curative therapies for heart failure or MI are currently available. As a result, over the past two decades research has focused on developing cell-based approaches promoting the regeneration of infarcted tissue. Cell-based therapies for myocardial regeneration include powerful candidates, such as multipotent stem cells (mesenchymal stem cells (MSCs), bone-marrow-derived stem cells, endothelial progenitor cells, and hematopoietic stem cells) and induced pluripotent stem cells (iPSCs). These possess unique properties, such as potency to differentiate into desired cell types, proliferation capacity, and patient specificity. Preclinical and clinical studies have demonstrated modest improvement in the myocardial regeneration and reduced infarcted areas upon transplantation of pluripotent or multipotent stem cells. Another cell population that need to be considered as a potential source for cardiac regeneration are telocytes found in different organs, including the heart. Their therapeutic effect has been studied in various heart pathologies, such as MI, arrhythmias, or atrial amyloidosis. The most recent cell-free therapeutic tool relies on the cardioprotective effect of complex cargo carried by small membrane-bound vesicles-exosomes-released from stem cells via exocytosis. The MSC/iPSC-derived exosomes could be considered a novel exosome-based therapy for cardiovascular diseases thanks to their unique content. There are also other cell-free approaches, e.g., gene therapy, or acellular cardiac patches. Therefore, our review provides the most recent insights into the novel strategies for myocardial repair based on the regenerative potential of different cell types and cell-free approaches.
Collapse
Affiliation(s)
- Mária Csöbönyeiová
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešťany, Slovakia
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Nikoleta Beerová
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Martin Klein
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešťany, Slovakia
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Michaela Debreová-Čeháková
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešťany, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Ľuboš Danišovič
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešťany, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| |
Collapse
|
13
|
Mahmud S, Alam S, Emon NU, Boby UH, Kamruzzaman, Ahmed F, Monjur-Al-Hossain ASM, Tahamina A, Rudra S, Ajrin M. Opportunities and challenges in stem cell therapy in cardiovascular diseases: Position standing in 2022. Saudi Pharm J 2022; 30:1360-1371. [PMID: 36249945 PMCID: PMC9563042 DOI: 10.1016/j.jsps.2022.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/17/2022] [Indexed: 10/29/2022] Open
Abstract
This study intends to evaluate the development, importance, pre-clinical and clinical study evaluation of stem cell therapy for the treatment of cardiovascular disease. Cardiovascular disease is one of the main causes of fatality in the whole world. Though there are great progressions in the pharmacological and other interventional treatment options, heart diseases remain a common disorder that causes long-term warnings. Recent accession promotes the symptoms and slows down the adverse effects regarding cardiac remodelling. But they cannot locate the problems of immutable loss of cardiac tissues. In this case, stem cell treatment holds a promising challenge. Stem cells are the cells that are capable of differentiating into many cells according to their needs. So, it is assumed that these cells can distinguish into many cells and if these cells can be individualized into cardiac cells then they can be used to replace the damaged tissues of the heart. There is some abridgment in this therapy, none the less stem cell therapy remains a hopeful destination in the treatment of heart disease.
Collapse
Affiliation(s)
- Shabnur Mahmud
- School of Health and Life Sciences, Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Safaet Alam
- Pharmaceutical Sciences Research Division, BCSIR Laboratories, Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-I-Khuda Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Nazim Uddin Emon
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Umme Habiba Boby
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Kamruzzaman
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Firoj Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1205, Bangladesh
| | - A S M Monjur-Al-Hossain
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka 1205, Bangladesh
| | - Afroza Tahamina
- Department of Botany, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Sajib Rudra
- Department of Botany, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Marzina Ajrin
- Department of Pharmacy, University of Science and Technology Chittagong, Chittagong 4202, Bangladesh
| |
Collapse
|
14
|
Liu C, Bayado N, He D, Li J, Chen H, Li L, Li J, Long X, Du T, Tang J, Dang Y, Fan Z, Wang L, Yang PC. Therapeutic Applications of Extracellular Vesicles for Myocardial Repair. Front Cardiovasc Med 2021; 8:758050. [PMID: 34957249 PMCID: PMC8695616 DOI: 10.3389/fcvm.2021.758050] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease is the leading cause of human death worldwide. Drug thrombolysis, percutaneous coronary intervention, coronary artery bypass grafting and other methods are used to restore blood perfusion for coronary artery stenosis and blockage. The treatments listed prolong lifespan, however, rate of mortality ultimately remains the same. This is due to the irreversible damage sustained by myocardium, in which millions of heart cells are lost during myocardial infarction. The lack of pragmatic methods of myocardial restoration remains the greatest challenge for effective treatment. Exosomes are small extracellular vesicles (EVs) actively secreted by all cell types that act as effective transmitters of biological signals which contribute to both reparative and pathological processes within the heart. Exosomes have become the focus of many researchers as a novel drug delivery system due to the advantages of low toxicity, little immunogenicity and good permeability. In this review, we discuss the progress and challenges of EVs in myocardial repair, and review the recent development of extracellular vesicle-loading systems based on their unique nanostructures and physiological functions, as well as the application of engineering modifications in the diagnosis and treatment of myocardial repair.
Collapse
Affiliation(s)
- Chunping Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Nathan Bayado
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Dongyue He
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jie Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiqi Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Longmei Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinhua Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyao Long
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tingting Du
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Tang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Dang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhijin Fan
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Lei Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Phillip C Yang
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
15
|
Progress and Challenges of Amniotic Fluid Derived Stem Cells in Therapy of Ischemic Heart Disease. Int J Mol Sci 2020; 22:ijms22010102. [PMID: 33374215 PMCID: PMC7794729 DOI: 10.3390/ijms22010102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/13/2020] [Accepted: 12/18/2020] [Indexed: 02/08/2023] Open
Abstract
Cardiovascular disease is the leading cause of deaths worldwide, claiming an estimated total of 17.9 million lives each year, of which one-third of the people are under the age of 70 years. Since adult cardiomyocytes fail to regenerate, the heart loses the ability to repair itself after an injury, making patients with heart disease suffer from poor prognosis. Pluripotent stem cells have the ability to differentiate into cardiomyocytes in vitro through a well-established process, which is a new advancement in cardiac regeneration therapy. However, pluripotent stem cell-derived cardiomyocytes have certain drawbacks, such as the risk of arrhythmia and immune incompatibility. Thus, amniotic fluid stem cells (AFSCs), a relatively novel source of stem cells, have been exploited for their ability of pluripotent differentiation. In addition, since AFSCs are weakly positive for the major histocompatibility class II molecules, they may have high immune tolerance. In summary, the possibility of development of cardiomyocytes from AFSCs, as well as their transplantation in host cells to produce mechanical contraction, has been discussed. Thus, this review article highlights the progress of AFSC therapy and its application in the treatment of heart diseases in recent years.
Collapse
|