1
|
Dalton J, Narayanan R, Oris RJ, Ezeonu T, Bradley E, Canseco JA, Vaccaro AR, Koerner JD, Markova D, Kepler CK. Can treatment with human mesenchymal stem cells rescue the degenerative disc phenotype? An in vitro pilot study of induced cytokine expression. Spine J 2025:S1529-9430(25)00176-7. [PMID: 40154630 DOI: 10.1016/j.spinee.2025.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 01/07/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND CONTEXT Given the relatively low cell density in degenerative discs, strategies intended to bolster disc cellularity through stem cell injections have come into clinical use. Stem cell therapy is meant to provide a source of viable disc cells that can promote a healthy disc phenotype. Nevertheless, there is a limited understanding of the mechanisms through which stem cell therapy impacts degeneration. PURPOSE The objectives of this pilot study were: 1) to evaluate gene expression changes associated with an in vitro induced degenerative phenotype in human nucleus pulposus (NP) cells, 2) to co-culture these degenerative NP cells with human mesenchymal stem cells (hMSCs) and investigate the impact this has on gene expression, 3) to investigate possible mechanisms by which hMSCs may impact the degenerative phenotype. STUDY DESIGN Laboratory study. METHODS NP cells were isolated and cultured from patients undergoing anterior lumbar interbody fusion for degenerative disc disease. A degenerative phenotype was induced in cultured NP cells by treatment with an inflammatory protocol (10pg/ml IL-1β and 100pg/ml TNF-α) for 7 days. Gene expression of Treated NP cells was compared to Untreated NP cells via reverse transcriptase polymerase chain reaction. NP cells were then co-cultured with hMSCs in vitro and treated with the inflammatory protocol. Gene expression of Treated NP cells co-cultured with hMSCs was compared to Treated NP cells alone. Preliminary co-culture data demonstrated that IL-10 was uniquely and dramatically upregulated. Therefore, gene expression of Treated NP cells exposed to IL-10 for 24 hours was compared to Treated NP cells alone. RESULTS Treated NP cells compared to Control NP cells showed upregulation of numerous pro-inflammatory cytokines, including CXCL5, IL-8, and IL-6 and downregulation of several antiinflammatory cytokines, including IL-10. After co-culture of Treated NP cells with hMSCs, a significant increase in gene expression was identified in IL-10 (+15.34 fold), BMP-6 (+2.32 fold), and LIF (+2.14 fold). A significant decrease in gene expression (p<.05) was seen in CCL7 (-2.03) and CXCL12 (-1.67). Exposure of Treated NP cells to IL-10 resulted in upregulation of COL-2 (+1.55 fold, p=.013) and downregulation of IL-8 (-1.4 fold), CXCL-5 (-1.58 fold,), and MMP-3 (-2.02 fold). CONCLUSION This in vitro pilot study shows that co-culture of degenerative phenotype NP cells with hMSCs produces multiple gene regulatory changes associated with an antiinflammatory phenotype. Additionally, exposure of degenerative phenotype NP cells to IL-10 produces gene regulation associated with both antiinflammatory and pro-extracellular matrix effects. CLINICAL SIGNIFICANCE These findings provide mechanistic support for the use of stem cell therapy as a strategy to decrease the pro-inflammatory molecular environment associated with disc degeneration. Additionally, given the challenges with the viability of hMSCs in the disc microenvironment, IL-10 may be another potential candidate for future targeted therapies for disc degeneration.
Collapse
Affiliation(s)
- Jonathan Dalton
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Rajkishen Narayanan
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Robert J Oris
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Teeto Ezeonu
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Evan Bradley
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jose A Canseco
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Alexander R Vaccaro
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA; Department of Orthopaedic Surgery, Rothman Orthopaedic Institute, Philadelphia, PA 19107, USA
| | - John D Koerner
- Hackensack Hospital, Department of Orthopaedic Surgery, Hackensack, NJ 07601, USA
| | - Dessislava Markova
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Christopher K Kepler
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA; Department of Orthopaedic Surgery, Rothman Orthopaedic Institute, Philadelphia, PA 19107, USA
| |
Collapse
|
2
|
He Y, Liu S, Lin H, Ding F, Shao Z, Xiong L. Roles of organokines in intervertebral disc homeostasis and degeneration. Front Endocrinol (Lausanne) 2024; 15:1340625. [PMID: 38532900 PMCID: PMC10963452 DOI: 10.3389/fendo.2024.1340625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
The intervertebral disc is not isolated from other tissues. Recently, abundant research has linked intervertebral disc homeostasis and degeneration to various systemic diseases, including obesity, metabolic syndrome, and diabetes. Organokines are a group of diverse factors named for the tissue of origin, including adipokines, osteokines, myokines, cardiokines, gastrointestinal hormones, and hepatokines. Through endocrine, paracrine, and autocrine mechanisms, organokines modulate energy homeostasis, oxidative stress, and metabolic balance in various tissues to mediate cross-organ communication. These molecules are involved in the regulation of cellular behavior, inflammation, and matrix metabolism under physiological and pathological conditions. In this review, we aimed to summarize the impact of organokines on disc homeostasis and degeneration and the underlying signaling mechanism. We focused on the regulatory mechanisms of organokines to provide a basis for the development of early diagnostic and therapeutic strategies for disc degeneration.
Collapse
Affiliation(s)
- Yuxin He
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Ding
- Department of Orthopaedics, JingMen Central Hospital, Jingmen, China
- Hubei Minzu University, Enshi, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Pan Y, Jiang Z, Ye Y, Zhu D, Li N, Yang G, Wang Y. Role and Mechanism of BMP4 in Regenerative Medicine and Tissue Engineering. Ann Biomed Eng 2023:10.1007/s10439-023-03173-6. [PMID: 37014581 DOI: 10.1007/s10439-023-03173-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/21/2023] [Indexed: 04/05/2023]
Abstract
Bone morphogenetic protein 4 (BMP4) is emerging as a promising cytokine for regenerative medicine and tissue engineering. BMP4 has been shown to promote the regeneration of teeth, periodontal tissue, bone, cartilage, the thymus, hair, neurons, nucleus pulposus, and adipose tissue, as well as the formation of skeletal myotubes and vessels. BMP4 can also contribute to the formation of tissues in the heart, lung, and kidney. However, there are certain deficiencies, including the insufficiency of the mechanism of BMP4 in some fields and an appropriate carrier of BMP4 for clinical use. There has also been a lack of in vivo experiments and orthotopic transplantation studies in some fields. BMP4 has great distance from the clinical application. Therefore, there are many BMP4-related studies waiting to be explored. This review mainly discusses the effects, mechanisms, and applications of BMP4 in regenerative medicine and tissue engineering over the last 10 years in various domains and possible improvements. BMP4 has shown great potential in regenerative medicine and tissue engineering. The research of BMP4 has broad development space and great value.
Collapse
Affiliation(s)
- Yiqi Pan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Yuer Ye
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Danji Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Na Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China.
| |
Collapse
|
4
|
Khalid S, Ekram S, Ramzan F, Salim A, Khan I. Co-regulation of Sox9 and TGFβ 1 transcription factors in mesenchymal stem cells regenerated the intervertebral disc degeneration. Front Med (Lausanne) 2023; 10:1127303. [PMID: 37007782 PMCID: PMC10063891 DOI: 10.3389/fmed.2023.1127303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/20/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Intervertebral disc (IVD) shows aging and degenerative changes earlier than any other body connective tissue. Its repair and regeneration provide a considerable challenge in regenerative medicine due to its high degree of infrastructure and mechanical complexity. Mesenchymal stem cells, due to their tissue resurfacing potential, represent many explanatory pathways to regenerate a tissue breakdown. METHODS This study was undertaken to evaluate the co-regulation of Sox9 and TGFβ1 in differentiating human umbilical cord mesenchymal stem cells (hUC-MSC) into chondrocytes. The combinatorial impact of Sox9 and TGFβ1 on hUC-MSCs was examined in vitro by gene expression and immunocytochemical staining. In in vivo, an animal model of IVD degeneration was established under a fluoroscopic guided system through needle puncture of the caudal disc. Normal and transfected MSCs were transplanted. Oxidative stress, pain, and inflammatory markers were evaluated by qPCR. Disc height index (DHI), water content, and gag content were analyzed. Histological examinations were performed to evaluate the degree of regeneration. RESULTS hUC-MSC transfected with Sox9+TGFβ1 showed a noticeable morphological appearance of a chondrocyte, and highly expressed chondrogenic markers (aggrecan, Sox9, TGFβ1, TGFβ2, and type II collagens) after transfection. Histological observation demonstrated that cartilage regeneration, extracellular matrix synthesis, and collagen remodeling were significant upon staining with H&E, Alcian blue, and Masson's trichrome stain on day 14. Additionally, oxidative stress, pain, and inflammatory markers were positively downregulated in the animals transplanted with Sox9 and TGFβ1 transfected MSCs. CONCLUSION These findings indicate that the combinatorial effect of Sox9 and TGFβ1 substantially accelerates the chondrogenesis in hUC-MSCs. Cartilage regeneration and matrix synthesis were significantly enhanced. Therefore, a synergistic effect of Sox9 and TGFβ1 could be an immense therapeutic combination in the tissue engineering of cartilaginous joint bio-prostheses and a novel candidate for cartilage stabilization.
Collapse
Affiliation(s)
| | | | | | | | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Sindh, Pakistan
| |
Collapse
|
5
|
Du J, Garcia JP, Bach FC, Tellegen AR, Grad S, Li Z, Castelein RM, Meij BP, Tryfonidou MA, Creemers LB. Intradiscal injection of human recombinant BMP-4 does not reverse intervertebral disc degeneration induced by nuclectomy in sheep. J Orthop Translat 2022; 37:23-36. [PMID: 36196149 PMCID: PMC9513727 DOI: 10.1016/j.jot.2022.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/03/2022] Open
Abstract
Background Methods Results Conclusion The Translational Potential of This Article
Collapse
|
6
|
Zhang S, Liu W, Chen S, Wang B, Wang P, Hu B, Lv X, Shao Z. Extracellular matrix in intervertebral disc: basic and translational implications. Cell Tissue Res 2022; 390:1-22. [DOI: 10.1007/s00441-022-03662-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023]
|
7
|
Ekram S, Khalid S, Salim A, Khan I. Regulating the fate of stem cells for regenerating the intervertebral disc degeneration. World J Stem Cells 2021; 13:1881-1904. [PMID: 35069988 PMCID: PMC8727226 DOI: 10.4252/wjsc.v13.i12.1881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/12/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Lower back pain is a leading cause of disability and is one of the reasons for the substantial socioeconomic burden. The etiology of intervertebral disc (IVD) degeneration is complicated, and its mechanism is still not completely understood. Factors such as aging, systemic inflammation, biochemical mediators, toxic environmental factors, physical injuries, and genetic factors are involved in the progression of its pathophysiology. Currently, no therapy for restoring degenerated IVD is available except pain management, reduced physical activities, and surgical intervention. Therefore, it is imperative to establish regenerative medicine-based approaches to heal and repair the injured disc, repopulate the cell types to retain water content, synthesize extracellular matrix, and strengthen the disc to restore normal spine flexion. Cellular therapy has gained attention for IVD management as an alternative therapeutic option. In this review, we present an overview of the anatomical and molecular structure and the surrounding pathophysiology of the IVD. Modern therapeutic approaches, including proteins and growth factors, cellular and gene therapy, and cell fate regulators are reviewed. Similarly, small molecules that modulate the fate of stem cells for their differentiation into chondrocytes and notochordal cell types are highlighted.
Collapse
Affiliation(s)
- Sobia Ekram
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Shumaila Khalid
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan.
| |
Collapse
|
8
|
Kirnaz S, Singh S, Capadona C, Lintz M, Goldberg JL, McGrath LB, Medary B, Sommer F, Bonassar LJ, Härtl R. Innovative Biological Treatment Methods for Degenerative Disc Disease. World Neurosurg 2021; 157:282-299. [PMID: 34929786 DOI: 10.1016/j.wneu.2021.09.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 10/19/2022]
Abstract
Low back pain is the leading cause of work absences and years lived with disability, and it is often associated with degenerative disc disease. In recent years, biological treatment approaches such as the use of growth factors, cell injections, annulus fibrosus (AF) repair, nucleus pulposus replacement, and tissue-engineered discs have been explored as means for preventing or reversing degenerative disc disease. Both animal and clinical studies have shown promising results for cell-based therapy on the grounds of its regenerative potential. Clinical data also indicate that stem cell injection is safe when appropriately performed, albeit its long-term safety and efficacy are yet to be explored. Numerous challenges also remain to be overcome, such as isolating, differentiating, and preconditioning the disc cells, as well as managing the nutrient-deficient and oxygen-deficient micromilieu of the intervertebral disc (IVD). AF repair methods including devices used in clinical trials have shown success in decreasing reherniation rates and improving overall clinical outcomes. In addition, recent studies that combined AF repair and nucleus pulposus replacement have shown improved biomechanical stability in IVDs after the combined treatment. Tissue-engineered IVDs for total disc replacement are still being developed, and future studies are necessary to overcome the challenges in their delivery, efficacy, and safety.
Collapse
Affiliation(s)
- Sertac Kirnaz
- Department of Neurological Surgery, Weill Cornell Medicine Brain and Spine Center, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York, USA
| | - Sunidhi Singh
- Department of Neurological Surgery, Weill Cornell Medicine Brain and Spine Center, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York, USA
| | - Charisse Capadona
- Department of Neurological Surgery, Weill Cornell Medicine Brain and Spine Center, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York, USA
| | - Marianne Lintz
- Department of Neurological Surgery, Weill Cornell Medicine Brain and Spine Center, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York, USA
| | - Jacob L Goldberg
- Department of Neurological Surgery, Weill Cornell Medicine Brain and Spine Center, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York, USA
| | - Lynn B McGrath
- Department of Neurological Surgery, Weill Cornell Medicine Brain and Spine Center, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York, USA
| | - Branden Medary
- Department of Neurological Surgery, Weill Cornell Medicine Brain and Spine Center, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York, USA
| | - Fabian Sommer
- Department of Neurological Surgery, Weill Cornell Medicine Brain and Spine Center, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York, USA
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
| | - Roger Härtl
- Department of Neurological Surgery, Weill Cornell Medicine Brain and Spine Center, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York, USA.
| |
Collapse
|
9
|
Lu Y, Xu H, Jiang Y, Li D, Hu Z, Yan C, Yin H, Li D, Zhao X, Zhang Y, Tian Y, Zhu Q, Wang Y. Effect of BMP6 on the proliferation and apoptosis of chicken chondrocytes induced by thiram. Res Vet Sci 2021; 142:101-109. [PMID: 34906792 DOI: 10.1016/j.rvsc.2021.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
The development of skeleton system is a complex biological process and be regulated by many transcription factors. Previous studies have shown that BMP6 is involved in skeleton development and other cells transforming to chondrocytes, but it is still not known whether do something to tibial dyschondroplasia (TD) broilers chondrocytes. In this study, RT-PCR revealed that the expression level of BMP6 in TD broiler chondrocytes at 7 days age was significantly decreased compared with normal group (P < 0.05). CCK-8 and EdU assay showed that the proliferation of cells transfected with interference BMP6 was significantly decreased compared with control siRNA, while cell proliferation was significantly increased after overexpression of BMP6. Meanwhile, the proportion of G0/G1 phase cells was significantly increased and the proportion of G2/M phase cells was significantly decreased after interference of BMP6 for 48 h in TD chicken chondrocytes (P < 0.05). In addition, flow cytometry analysis exhibited that interference BMP6 significantly increased apoptosis rate and necrotizing rate of cells. In conclusion, these results suggest that BMP6 plays a positive role in the growth and development of TD broiler chondrocytes. Our findings reveal a new target for TD prevention in broiler chickens.
Collapse
Affiliation(s)
- Yuxiang Lu
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huiming Street, Wenjiang district Chengdu, 611130, China
| | - Hengyong Xu
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huiming Street, Wenjiang district Chengdu, 611130, China
| | - Yuru Jiang
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huiming Street, Wenjiang district Chengdu, 611130, China
| | - Dan Li
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huiming Street, Wenjiang district Chengdu, 611130, China
| | - Zhi Hu
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huiming Street, Wenjiang district Chengdu, 611130, China
| | - Chaoyang Yan
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huiming Street, Wenjiang district Chengdu, 611130, China
| | - Huadong Yin
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huiming Street, Wenjiang district Chengdu, 611130, China
| | - Diyan Li
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huiming Street, Wenjiang district Chengdu, 611130, China
| | - Xiaoling Zhao
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huiming Street, Wenjiang district Chengdu, 611130, China
| | - Yao Zhang
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huiming Street, Wenjiang district Chengdu, 611130, China
| | - Yaofu Tian
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huiming Street, Wenjiang district Chengdu, 611130, China
| | - Qing Zhu
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huiming Street, Wenjiang district Chengdu, 611130, China.
| | - Yan Wang
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huiming Street, Wenjiang district Chengdu, 611130, China.
| |
Collapse
|
10
|
Liao C, Li Y, Tjong SC. Polyetheretherketone and Its Composites for Bone Replacement and Regeneration. Polymers (Basel) 2020; 12:E2858. [PMID: 33260490 PMCID: PMC7760052 DOI: 10.3390/polym12122858] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 12/18/2022] Open
Abstract
In this article, recent advances in the development, preparation, biocompatibility and mechanical properties of polyetheretherketone (PEEK) and its composites for hard and soft tissue engineering are reviewed. PEEK has been widely employed for fabricating spinal fusions due to its radiolucency, chemical stability and superior sterilization resistance at high temperatures. PEEK can also be tailored into patient-specific implants for treating orbital and craniofacial defects in combination with additive manufacturing process. However, PEEK is bioinert, lacking osseointegration after implantation. Accordingly, several approaches including surface roughening, thin film coating technology, and addition of bioactive hydroxyapatite (HA) micro-/nanofillers have been adopted to improve osseointegration performance. The elastic modulus of PEEK is 3.7-4.0 GPa, being considerably lower than that of human cortical bone ranging from 7-30 GPa. Thus, PEEK is not stiff enough to sustain applied stress in load-bearing orthopedic implants. Therefore, HA micro-/nanofillers, continuous and discontinuous carbon fibers are incorporated into PEEK for enhancing its stiffness for load-bearing applications. Among these, carbon fibers are more effective than HA micro-/nanofillers in providing additional stiffness and load-bearing capabilities. In particular, the tensile properties of PEEK composite with 30wt% short carbon fibers resemble those of cortical bone. Hydrophobic PEEK shows no degradation behavior, thus hampering its use for making porous bone scaffolds. PEEK can be blended with hydrophilic polymers such as polyglycolic acid and polyvinyl alcohol to produce biodegradable scaffolds for bone tissue engineering applications.
Collapse
Affiliation(s)
- Chengzhu Liao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Yuchao Li
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Sie Chin Tjong
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
11
|
Advanced Strategies for the Regeneration of Lumbar Disc Annulus Fibrosus. Int J Mol Sci 2020; 21:ijms21144889. [PMID: 32664453 PMCID: PMC7402314 DOI: 10.3390/ijms21144889] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 12/15/2022] Open
Abstract
Damage to the annulus fibrosus (AF), the outer region of the intervertebral disc (IVD), results in an undesirable condition that may accelerate IVD degeneration causing low back pain. Despite intense research interest, attempts to regenerate the IVD have failed so far and no effective strategy has translated into a successful clinical outcome. Of particular significance, the failure of strategies to repair the AF has been a major drawback in the regeneration of IVD and nucleus replacement. It is unlikely to secure regenerative mediators (cells, genes, and biomolecules) and artificial nucleus materials after injection with an unsealed AF, as IVD is exposed to significant load and large deformation during daily activities. The AF defects strongly change the mechanical properties of the IVD and activate catabolic routes that are responsible for accelerating IVD degeneration. Therefore, there is a strong need to develop effective therapeutic strategies to prevent or reconstruct AF damage to support operational IVD regenerative strategies and nucleus replacement. By the way of this review, repair and regenerative strategies for AF reconstruction, their current status, challenges ahead, and future outlooks were discussed.
Collapse
|