1
|
Chen YS, Hong ZX, Lin YT, Tsao EC, Chen PY, Liu CA, Harn HJ, Chiou TW, Lin SZ. Efficiency of PGK1 proteins delivered to the brain via a liposomal system through intranasal route administration for the treatment of spinocerebellar ataxia type 3. Drug Deliv Transl Res 2024; 14:1940-1953. [PMID: 38161195 DOI: 10.1007/s13346-023-01498-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
A patient-friendly and efficient treatment method for patients with spinocerebellar ataxia type 3 (SCA3) was provided through a nose-to-brain liposomal system. Initially, PGK1 was overexpressed in HEK 293-84Q-GFP diseased cells (HEK 293-84Q-GFP-PGK1 cells) to confirm its effect on the diseased protein polyQ. A decrease in polyQ expression was demonstrated in HEK 293-84Q-GFP-PGK1 cells compared to HEK 293-84Q-GFP parental cells. Subsequently, PGK1 was encapsulated in a liposomal system to evaluate its therapeutic efficiency in SCA3. The optimized liposomes exhibited a significantly enhanced positive charge, facilitating efficient intracellular protein delivery to the cells. The proteins were encapsulated within the liposomes using an optimized method involving a combination of heat shock and sonication. The liposomal system was further demonstrated to be deliverable to the brain via intranasal administration. PGK1/liposomes were intranasally delivered to SCA3 mice, which subsequently exhibited an amelioration of motor impairment, as assessed via the accelerated rotarod test. Additionally, fewer shrunken morphology Purkinje cells and a reduction in polyQ expression were observed in SCA3 mice that received PGK1/liposomes but not in the untreated, liposome-only, or PGK1-only groups. This study provides a non-invasive route for protein delivery and greater delivery efficiency via the liposomal system for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Yu-Shuan Chen
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, 707, Sec.3, Chung-Yang Rd., 970, R.O.C, Hualien, Taiwan.
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
- Tzu Chi University of Science and Technology, Hualien, Taiwan.
| | - Zhen-Xiang Hong
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, 707, Sec.3, Chung-Yang Rd., 970, R.O.C, Hualien, Taiwan
| | - Yi-Tung Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, 707, Sec.3, Chung-Yang Rd., 970, R.O.C, Hualien, Taiwan
| | - En-Ci Tsao
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, 707, Sec.3, Chung-Yang Rd., 970, R.O.C, Hualien, Taiwan
| | - Pei-Yu Chen
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, 707, Sec.3, Chung-Yang Rd., 970, R.O.C, Hualien, Taiwan
| | - Ching-Ann Liu
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, 707, Sec.3, Chung-Yang Rd., 970, R.O.C, Hualien, Taiwan
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Horng-Jyh Harn
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, 707, Sec.3, Chung-Yang Rd., 970, R.O.C, Hualien, Taiwan
- Department of Pathology, Hualien Tzu Chi Hospital, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Tzyy-Wen Chiou
- Department of Life Science, National Dong Hwa University, Hualien, Taiwan
| | - Shinn-Zong Lin
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
| |
Collapse
|
2
|
Chiang MK, Lin TC, Lin KH, Chang YC, Hsieh-Li HM, Lai DM. Hyperbaric Oxygen Therapy Attenuated the Motor Coordination and Cognitive Impairment of Polyglutamine Spinocerebellar Ataxia SCA17 Mice. CEREBELLUM (LONDON, ENGLAND) 2024; 23:401-417. [PMID: 36943575 DOI: 10.1007/s12311-023-01548-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 03/23/2023]
Abstract
Spinocerebellar ataxias (SCAs) are a large and diverse group of autosomal-dominant neurodegenerative diseases. No drugs have been approved for these relentlessly progressive and fatal SCAs. Our previous studies indicate that oxidative stress, neuroinflammation, and neuronal apoptosis are elevated in the SCA17 mice, which are the main therapeutic targets of hyperbaric oxygen treatment (HBOT). HBOT is considered to be an alternative and less invasive therapy for SCAs. In this study, we evaluated the HBOT (2.2 ATA for 14 days) effect and the persistence for the management of SCA17 mice and their wild-type littermates. We found HBOT attenuated the motor coordination and cognitive impairment of SCA17 mice and which persisted for about 1 month after the treatment. The results of several biochemistry and liver/kidney hematoxylin and eosin staining show the HBOT condition has no obvious toxicity in the mice. Immunostaining analyses show that the neuroprotective effect of HBOT could be through the promotion of BDNF production and the amelioration of neuroinflammation. Surprisingly, HBOT executes different effects on the male and female SCA17 mice, including the reduction of neuroinflammation and activation of CaMKII and ERK. This study suggests HBOT is a potential alternative therapeutic treatment for SCA17. Accumulated findings have revealed the similarity in disease pathomechanisms and possible therapeutic strategies in polyQ diseases; therefore, HBOT could be an optional treatment as well as the other polyQ diseases.
Collapse
Affiliation(s)
- Meng-Ke Chiang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ta-Chun Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | | | - Ya-Chin Chang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.
| | - Dar-Ming Lai
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
3
|
Sciandrone B, Palmioli A, Ciaramelli C, Pensotti R, Colombo L, Regonesi ME, Airoldi C. Cell-Free and In Vivo Characterization of the Inhibitory Activity of Lavado Cocoa Flavanols on the Amyloid Protein Ataxin-3: Toward New Approaches against Spinocerebellar Ataxia Type 3. ACS Chem Neurosci 2024; 15:278-289. [PMID: 38154144 PMCID: PMC10797631 DOI: 10.1021/acschemneuro.3c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disorder characterized by ataxia and other neurological manifestations, with a poor prognosis and a lack of effective therapies. The amyloid aggregation of the ataxin-3 protein is a hallmark of SCA3 and one of the main biochemical events prompting its onset, making it a prominent target for the development of preventive and therapeutic interventions. Here, we tested the efficacy of an aqueous Lavado cocoa extract and its polyphenolic components against ataxin-3 aggregation and neurotoxicity. The combination of biochemical assays and atomic force microscopy morphological analysis provided clear evidence of cocoa flavanols' ability to hinder ATX3 amyloid aggregation through direct physical interaction, as assessed by NMR spectroscopy. The chemical identity of the flavanols was investigated by ultraperformance liquid chromatography-high-resolution mass spectrometry. The use of the preclinical model Caenorhabditis elegans allowed us to demonstrate cocoa flavanols' ability to ameliorate ataxic phenotypes in vivo. To the best of our knowledge, Lavado cocoa is the first natural source whose extract is able to directly interfere with ATX3 aggregation, leading to the formation of off-pathway species.
Collapse
Affiliation(s)
- Barbara Sciandrone
- Department
of Biotechnology and Biosciences, University
of Milano-Bicocca, P.zza Della Scienza 2, 20126 Milan, Italy
| | - Alessandro Palmioli
- Department
of Biotechnology and Biosciences, University
of Milano-Bicocca, P.zza Della Scienza 2, 20126 Milan, Italy
- NeuroMI,
Milan Center for Neuroscience, University
of Milano-Bicocca, 20126 Milano, Italy
| | - Carlotta Ciaramelli
- Department
of Biotechnology and Biosciences, University
of Milano-Bicocca, P.zza Della Scienza 2, 20126 Milan, Italy
- NeuroMI,
Milan Center for Neuroscience, University
of Milano-Bicocca, 20126 Milano, Italy
| | - Roberta Pensotti
- Department
of Biotechnology and Biosciences, University
of Milano-Bicocca, P.zza Della Scienza 2, 20126 Milan, Italy
| | - Laura Colombo
- Department
of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via M. Negri 2, 20156 Milano, Italy
| | - Maria Elena Regonesi
- Department
of Biotechnology and Biosciences, University
of Milano-Bicocca, P.zza Della Scienza 2, 20126 Milan, Italy
- NeuroMI,
Milan Center for Neuroscience, University
of Milano-Bicocca, 20126 Milano, Italy
| | - Cristina Airoldi
- Department
of Biotechnology and Biosciences, University
of Milano-Bicocca, P.zza Della Scienza 2, 20126 Milan, Italy
- NeuroMI,
Milan Center for Neuroscience, University
of Milano-Bicocca, 20126 Milano, Italy
| |
Collapse
|
4
|
Naveed M, Ali N, Aziz T, Hanif N, Fatima M, Ali I, Alharbi M, Alasmari AF, Albekairi TH. The natural breakthrough: phytochemicals as potent therapeutic agents against spinocerebellar ataxia type 3. Sci Rep 2024; 14:1529. [PMID: 38233440 PMCID: PMC10794461 DOI: 10.1038/s41598-024-51954-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/11/2024] [Indexed: 01/19/2024] Open
Abstract
There is no FDA-approved drug for neurological disorders like spinocerebellar ataxia type 3. CAG repeats mutation in the ATXN3 gene, causing spinocerebellar ataxia type 3 disease. Symptoms include sleep cycle disturbance, neurophysiological abnormalities, autonomic dysfunctions, and depression. This research focuses on drug discovery against ATXN3 using phytochemicals of different plants. Three phytochemical compounds (flavonoids, diterpenoids, and alkaloids) were used as potential drug candidates and screened against the ATXN3 protein. The 3D structure of ATXN3 protein and phytochemicals were retrieved and validation of the protein was 98.1% Rama favored. The protein binding sites were identified for the interaction by CASTp. ADMET was utilized for the pre-clinical analysis, including solubility, permeability, drug likeliness and toxicity, and chamanetin passed all the ADMET properties to become a lead drug candidate. Boiled egg analysis attested that the ligand could cross the gastrointestinal tract. Pharmacophore analysis showed that chamanetin has many hydrogen acceptors and donors which can form interaction bonds with the receptor proteins. Chamanetin passed all the screening analyses, having good absorption, no violation of Lipinski's rule, nontoxic properties, and good pharmacophore properties. Chamanetin was one of the lead compounds with a - 7.2 kcal/mol binding affinity after screening the phytochemicals. The stimulation of ATXN3 showed stability after 20 ns of interaction in an overall 50 ns MD simulation. Chamanetin (Flavonoid) was predicted to be highly active against ATXN3 with good drug-like properties. In-silico active drug against ATXN3 from a plant source and good pharmacokinetics parameters would be excellent drug therapy for SC3, such as flavonoids (Chamanetin).
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan.
| | - Nouman Ali
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Tariq Aziz
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100, Arta, Greece.
| | - Nimra Hanif
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Mahnoor Fatima
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Imran Ali
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Thamer H Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Chen YS, Harn HJ, Hong ZX, Huang YC, Lin YT, Zheng HX, Chen PY, Yang HH, Chen PR, Tsai HC, Lin SZ, Ho TJ, Chiou TW. Preconditioning of exosomes derived from human olfactory ensheathing cells improved motor coordination and balance in an SCA3/MJD mouse model: A new therapeutic approach. Eur J Pharm Sci 2023; 191:106608. [PMID: 37832855 DOI: 10.1016/j.ejps.2023.106608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Exosome therapy is a novel trend in regeneration medicine. However, identifying a suitable biomarker that can associate the therapeutic efficacy of exosomes with SCA3/MJD is essential. In this study, parental cells were preconditioned with butylidenephthalide (Bdph) for exosome preparation to evaluate the therapeutic effect of SCA3/MJD. The therapeutic agent hsa-miRNA-6780-5p was enriched up to 98-fold in exosomes derived from butylidenephthalide (Bdph)-preconditioned human olfactory ensheathing cells (hOECs) compared with that in naïve hOECs exosomes. The particle sizes of exosomes derived from naïve hOECs and those derived from hOECs preconditioned with Bdph were approximately 113.0 ± 3.5 nm and 128.9 ± 0.7 nm, respectively. A liposome system was used to demonstrate the role of hsa-miRNA-6780-5p, wherein hsa-miRNA-6780-5p was found to enhance autophagy and inhibit the expression of spinocerebellar ataxia type 3 (SCA3) disease proteins with the polyglutamine (polyQ) tract. Exosomes with enriched hsa-miRNA-6780-5p were further applied to HEK-293-84Q cells, leading to decreased expression of polyQ and increased autophagy. The results were reversed when 3MA, an autophagy inhibitor, was added to the cells treated with hsa-miRNA-6780-5p-enriched exosomes, indicating that the decreased polyQ expression was modulated via autophagy. SCA3 mice showed improved motor coordination behavior when they intracranially received exosomes enriched with hsa-miRNA-6780-5p. SCA3 mouse cerebellar tissues treated with hsa-miRNA-6780-5p-enriched exosomes showed decreased expression of polyQ and increased expression of LC3II/I, an autophagy marker. In conclusion, our findings can serve as a basis for developing an alternative therapeutic strategy for SCA3 disease treatment using miRNA-enriched exosomes derived from chemically preconditioned cells.
Collapse
Affiliation(s)
- Yu-Shuan Chen
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Taiwan, ROC; Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC; Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Horng-Jyh Harn
- Department of Pathology, Hualien Tzu Chi Hospital, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC
| | - Zhen-Xiang Hong
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Taiwan, ROC
| | - Yi-Chen Huang
- Department of Life Science, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd, Shoufeng, Hualien 974301, Taiwan, ROC
| | - Yi-Tung Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Taiwan, ROC
| | - Hui-Xuan Zheng
- Department of Life Science, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd, Shoufeng, Hualien 974301, Taiwan, ROC
| | - Pei-Yu Chen
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Taiwan, ROC
| | - Hsueh-Hui Yang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC
| | - Peir-Rong Chen
- Department of Otolaryngology, Hualien Tzu Chi Hospital and Tzu Chi University, Hualien, Taiwan, ROC
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Shinn-Zong Lin
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 707, Sec. 3, Chung-Yang Rd., Hualien, Taiwan, ROC.
| | - Tzyy-Wen Chiou
- Department of Life Science, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd, Shoufeng, Hualien 974301, Taiwan, ROC.
| |
Collapse
|
6
|
Almeida F, Ferreira IL, Naia L, Marinho D, Vilaça-Ferreira AC, Costa MD, Duarte-Silva S, Maciel P, Rego AC. Mitochondrial Dysfunction and Decreased Cytochrome c in Cell and Animal Models of Machado-Joseph Disease. Cells 2023; 12:2397. [PMID: 37830611 PMCID: PMC10571982 DOI: 10.3390/cells12192397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/14/2023] Open
Abstract
Mitochondrial dysfunction has been described in many neurodegenerative disorders; however, there is less information regarding mitochondrial deficits in Machado-Joseph disease (MJD), a polyglutamine (polyQ) disorder caused by CAG repeat expansion in the ATXN3 gene. In the present study, we characterized the changes in mitochondrial function and biogenesis markers in two MJD models, CMVMJD135 (MJD135) transgenic mice at a fully established phenotype stage and tetracycline-regulated PC6-3 Q108 cell line expressing mutant ataxin-3 (mATXN3). We detected mATXN3 in the mitochondrial fractions of PC6-3 Q108 cells, suggesting the interaction of expanded ATXN3 with the organelle. Interestingly, in both the cerebella of the MJD135 mouse model and in PC6-3 Q108 cells, we found decreased mitochondrial respiration, ATP production and mitochondrial membrane potential, strongly suggesting mitochondrial dysfunction in MJD. Also, in PC6-3 Q108 cells, an additional enhanced glycolytic flux was observed. Supporting the functional deficits observed in MJD mitochondria, MJD135 mouse cerebellum and PC6-3 Q108 cells showed reduced cytochrome c mRNA and protein levels. Overall, our findings show compromised mitochondrial function associated with decreased cytochrome c levels in both cell and animal models of MJD.
Collapse
Affiliation(s)
- Filipa Almeida
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (F.A.); (I.L.F.); (L.N.); (D.M.)
| | - Ildete L. Ferreira
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (F.A.); (I.L.F.); (L.N.); (D.M.)
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Luana Naia
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (F.A.); (I.L.F.); (L.N.); (D.M.)
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Daniela Marinho
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (F.A.); (I.L.F.); (L.N.); (D.M.)
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Ana Catarina Vilaça-Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (A.C.V.-F.); (M.D.C.); (S.D.-S.)
- ICVS/3B’s-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Marta D. Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (A.C.V.-F.); (M.D.C.); (S.D.-S.)
- ICVS/3B’s-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (A.C.V.-F.); (M.D.C.); (S.D.-S.)
- ICVS/3B’s-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (A.C.V.-F.); (M.D.C.); (S.D.-S.)
- ICVS/3B’s-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - A. Cristina Rego
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (F.A.); (I.L.F.); (L.N.); (D.M.)
- FMUC-Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
7
|
Tang Z, Hu S, Wu Z, He M. Therapeutic effects of engineered exosome-based miR-25 and miR-181a treatment in spinocerebellar ataxia type 3 mice by silencing ATXN3. Mol Med 2023; 29:96. [PMID: 37438701 DOI: 10.1186/s10020-023-00695-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Spinocerebellar ataxia type 3 (SCA3) is the most common autosomal dominant hereditary ataxia worldwide, which is however in a lack of effective treatment. In view of that engineered exosomes are a promising non-invasive gene therapy transporter that can overcome the traditional problem of poor drug delivery, the aim of this study was to evaluate, for the first time, the value of exosome-based microRNA therapy in SCA3 and the therapeutic effects of intravenously administrated ATXN3 targeting microRNAs in transgenic SCA3 mouse models. METHODS The rabies virus glycoprotein (RVG) peptide-modified exosomes loaded with miR-25 or miR-181a were peripherally injected to enable targeted delivery of miRNAs to the brain of SCA3 mice. The behaviors, ATXN3 level, purkinje cell and other neuronal loss, and neuroinflammation were evaluated 4 weeks after initial treatment. RESULTS The targeted and efficient delivery of miR-25 and miR-181a by modified exosomes substantially inhibited the mutant ATXN3 expression, reduced neuron apoptosis and induced motor improvements in SCA3 mouse models without increasing the neuroinflammatory response. CONCLUSIONS Our study confirmed the therapeutic potential of engineered exosome-based miR-25 and miR-181a treatment in substantially reducing ATXN3 aggregation and cytotoxicity by relying on its targeted and efficient drug delivery performance in SCA3 mice. This treatment method shows a promising prospect for future clinical applications in SCA3.
Collapse
Affiliation(s)
- Zhenchu Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
| | - Shenglan Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
| | - Ziwei Wu
- Department of Neurology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
| | - Miao He
- Department of Neurology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China.
| |
Collapse
|
8
|
Jamal QMS, Alharbi AH. Molecular docking and dynamics studies of cigarette smoke carcinogens interacting with acetylcholinesterase and butyrylcholinesterase enzymes of the central nervous system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61972-61992. [PMID: 34382170 DOI: 10.1007/s11356-021-15269-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The free radicals produced by cigarette smoking are responsible for tissue damage, heart and lung diseases, and carcinogenesis. The effect of tobacco on the central nervous system (CNS) has received increased attention nowadays in research. Therefore, to explore the molecular interaction of cigarette smoke carcinogens (CSC) 4-(methylnitrosamine)-1-(3-pyridyl)-1-butanol (NNAL), 4-(methylnitrosamine)-1-(3-pyridyl)-1-butanone (NNK), and N'-nitrosonornicotine (NNN) with well-known targets of CNS-related disorders, acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) enzymes, a cascade of the computational study was conducted including molecular docking and molecular dynamics simulations (MDS). The investigated results of NNAL+AChEcomplex, NNK+AChEcomplex, and NNK+BuChEcomplex based on intermolecular energies (∆G) were found to -8.57 kcal/mol, -8.21 kcal/mol, and -8.08 kcal/mol, respectively. MDS deviation and fluctuation plots of the NNAL and NNK interaction with AChE and BuChE have shown significant results. Further, Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) results shown the best total binding energy (Binding∆G) -87.381 (+/-13.119) kJ/mol during NNK interaction with AChE. Our study suggests that CSC is well capable of altering the normal biomolecular mechanism of CNS; thus, obtained data could be useful to design extensive wet laboratory experimentation to know the effects of CSC on human CNS.
Collapse
Affiliation(s)
- Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah, Saudi Arabia.
| | - Ali H Alharbi
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah, Saudi Arabia
| |
Collapse
|
9
|
White A, McGlone A, Gomez-Pastor R. Protein Kinase CK2 and Its Potential Role as a Therapeutic Target in Huntington's Disease. Biomedicines 2022; 10:1979. [PMID: 36009526 PMCID: PMC9406209 DOI: 10.3390/biomedicines10081979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Huntington's Disease (HD) is a devastating neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the HTT gene, for which no disease modifying therapies are currently available. Much of the recent research has focused on developing therapies to directly lower HTT expression, and while promising, these therapies have presented several challenges regarding administration and efficacy. Another promising therapeutic approach is the modulation of HTT post-translational modifications (PTMs) that are dysregulated in disease and have shown to play a key role in HTT toxicity. Among all PTMs, modulation of HTT phosphorylation has been proposed as an attractive therapeutic option due to the possibility of orally administering specific kinase effectors. One of the kinases described to participate in HTT phosphorylation is Protein Kinase CK2. CK2 has recently emerged as a target for the treatment of several neurological and psychiatric disorders, although its role in HD remains controversial. While pharmacological studies in vitro inhibiting CK2 resulted in reduced HTT phosphorylation and increased toxicity, genetic approaches in mouse models of HD have provided beneficial effects. In this review we discuss potential therapeutic approaches related to the manipulation of HTT-PTMs with special emphasis on the role of CK2 as a therapeutic target in HD.
Collapse
Affiliation(s)
| | | | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
10
|
A nop56 Zebrafish Loss-of-Function Model Exhibits a Severe Neurodegenerative Phenotype. Biomedicines 2022; 10:biomedicines10081814. [PMID: 36009362 PMCID: PMC9404972 DOI: 10.3390/biomedicines10081814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
NOP56 belongs to a C/D box small nucleolar ribonucleoprotein complex that is in charge of cleavage and modification of precursor ribosomal RNAs and assembly of the 60S ribosomal subunit. An intronic expansion in NOP56 gene causes Spinocerebellar Ataxia type 36, a typical late-onset autosomal dominant ataxia. Although vertebrate animal models were created for the intronic expansion, none was studied for the loss of function of NOP56. We studied a zebrafish loss-of-function model of the nop56 gene which shows 70% homology with the human gene. We observed a severe neurodegenerative phenotype in nop56 mutants, characterized mainly by absence of cerebellum, reduced numbers of spinal cord neurons, high levels of apoptosis in the central nervous system (CNS) and impaired movement, resulting in death before 7 days post-fertilization. Gene expression of genes related to C/D box complex, balance and CNS development was impaired in nop56 mutants. In our study, we characterized the first NOP56 loss-of-function vertebrate model, which is important to further understand the role of NOP56 in CNS function and development.
Collapse
|
11
|
Oliveira Miranda C. Mesenchymal stem cells for lysosomal storage and polyglutamine disorders: Possible shared mechanisms. Eur J Clin Invest 2022; 52:e13707. [PMID: 34751953 DOI: 10.1111/eci.13707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/28/2021] [Accepted: 11/07/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Mesenchymal stem cells' (MSC) therapeutic potential has been investigated for the treatment of several neurodegenerative diseases. The fact these cells can mediate a beneficial effect in different neurodegenerative contexts strengthens their competence to target diverse mechanisms. On the other hand, distinct disorders may share similar mechanisms despite having singular neuropathological characteristics. METHODS We have previously shown that MSC can be beneficial for two disorders, one belonging to the groups of Lysosomal Storage Disorders (LSDs) - the Krabbe Disease or Globoid Cell Leukodystrophy, and the other to the family of Polyglutamine diseases (PolyQs) - the Machado-Joseph Disease or Spinocerebellar ataxia type 3. We gave also input into disease characterization since neuropathology and MSC's effects are intrinsically associated. This review aims at describing MSC's multimode of action in these disorders while emphasizing to possible mechanistic alterations they must share due to the accumulation of cellular toxic products. RESULTS Lysosomal storage disorders and PolyQs have different aetiology and associated symptoms, but both result from the accumulation of undegradable products inside neuronal cells due to inefficient clearance by the endosomal/lysosomal pathway. Moreover, numerous cellular mechanisms that become compromised latter are also shared by these two disease groups. CONCLUSIONS Here, we emphasize MSC's effect in improving proteostasis and autophagy cycling turnover, neuronal survival, synaptic activity and axonal transport. LSDs and PolyQs, though rare in their predominance, collectively affect many people and require our utmost dedication and efforts to get successful therapies due to their tremendous impact on patient s' lives and society.
Collapse
Affiliation(s)
- Catarina Oliveira Miranda
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
12
|
Ghanekar SD, Kuo SH, Staffetti JS, Zesiewicz TA. Current and Emerging Treatment Modalities for Spinocerebellar Ataxias. Expert Rev Neurother 2022; 22:101-114. [PMID: 35081319 DOI: 10.1080/14737175.2022.2029703] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Spinocerebellar ataxias (SCA) are a group of rare neurodegenerative diseases that dramatically affect the lives of affected individuals and their families. Despite having a clear understanding of SCA's etiology, there are no current symptomatic or neuroprotective treatments approved by the FDA. AREAS COVERED Research efforts have greatly expanded the possibilities for potential treatments, including both pharmacological and non-pharmacological interventions. Great attention is also being given to novel therapeutics based in gene therapy, neurostimulation, and molecular targeting. This review article will address the current advances in the treatment of SCA and what potential interventions are on the horizon. EXPERT OPINION SCA is a highly complex and multifaceted disease family with the majority of research emphasizing symptomatic pharmacologic therapies. As pre-clinical trials for SCA and clinical trials for other neurodegenerative conditions illuminate the efficacy of disease modifying therapies such as AAV-mediated gene therapy and ASOs, the potential for addressing SCA at the pre-symptomatic stage is increasingly promising.
Collapse
Affiliation(s)
- Shaila D Ghanekar
- University of South Florida (USF) Department of Neurology, USF Ataxia Research Center, Tampa, Florida, USA.,James A Haley Veteran's Hospital, Tampa, Florida, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, New York, USA.,Initiative for Columbia Ataxia and Tremor, New York, New York, USA
| | - Joseph S Staffetti
- University of South Florida (USF) Department of Neurology, USF Ataxia Research Center, Tampa, Florida, USA.,James A Haley Veteran's Hospital, Tampa, Florida, USA
| | - Theresa A Zesiewicz
- University of South Florida (USF) Department of Neurology, USF Ataxia Research Center, Tampa, Florida, USA.,James A Haley Veteran's Hospital, Tampa, Florida, USA
| |
Collapse
|
13
|
Anti-Excitotoxic Effects of N-Butylidenephthalide Revealed by Chemically Insulted Purkinje Progenitor Cells Derived from SCA3 iPSCs. Int J Mol Sci 2022; 23:ijms23031391. [PMID: 35163312 PMCID: PMC8836169 DOI: 10.3390/ijms23031391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 12/04/2022] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is characterized by the over-repetitive CAG codon in the ataxin-3 gene (ATXN3), which encodes the mutant ATXN3 protein. The pathological defects of SCA3 such as the impaired aggresomes, autophagy, and the proteasome have been reported previously. To date, no effective treatment is available for SCA3 disease. This study aimed to study anti-excitotoxic effects of n-butylidenephthalide by chemically insulted Purkinje progenitor cells derived from SCA3 iPSCs. We successfully generated Purkinje progenitor cells (PPs) from SCA3 patient-derived iPSCs. The PPs, expressing both neural and Purkinje progenitor's markers, were acquired after 35 days of differentiation. In comparison with the PPs derived from control iPSCs, SCA3 iPSCs-derived PPs were more sensitive to the excitotoxicity induced by quinolinic acid (QA). The observations of QA-treated SCA3 PPs showing neural degeneration including neurite shrinkage and cell number decrease could be used to quickly and efficiently identify drug candidates. Given that the QA-induced neural cell death of SCA3 PPs was established, the activity of calpain in SCA3 PPs was revealed. Furthermore, the expression of cleaved poly (ADP-ribose) polymerase 1 (PARP1), a marker of apoptotic pathway, and the accumulation of ATXN3 proteolytic fragments were observed. When SCA3 PPs were treated with n-butylidenephthalide (n-BP), upregulated expression of calpain 2 and concurrent decreased level of calpastatin could be reversed, and the overall calpain activity was accordingly suppressed. Such findings reveal that n-BP could not only inhibit the cleavage of ATXN3 but also protect the QA-induced excitotoxicity from the Purkinje progenitor loss.
Collapse
|
14
|
Parambi DGT, Alharbi KS, Kumar R, Harilal S, Batiha GES, Cruz-Martins N, Magdy O, Musa A, Panda DS, Mathew B. Gene Therapy Approach with an Emphasis on Growth Factors: Theoretical and Clinical Outcomes in Neurodegenerative Diseases. Mol Neurobiol 2022; 59:191-233. [PMID: 34655056 PMCID: PMC8518903 DOI: 10.1007/s12035-021-02555-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/05/2021] [Indexed: 12/11/2022]
Abstract
The etiology of many neurological diseases affecting the central nervous system (CNS) is unknown and still needs more effective and specific therapeutic approaches. Gene therapy has a promising future in treating neurodegenerative disorders by correcting the genetic defects or by therapeutic protein delivery and is now an attraction for neurologists to treat brain disorders, like Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, spinal muscular atrophy, spinocerebellar ataxia, epilepsy, Huntington's disease, stroke, and spinal cord injury. Gene therapy allows the transgene induction, with a unique expression in cells' substrate. This article mainly focuses on the delivering modes of genetic materials in the CNS, which includes viral and non-viral vectors and their application in gene therapy. Despite the many clinical trials conducted so far, data have shown disappointing outcomes. The efforts done to improve outcomes, efficacy, and safety in the identification of targets in various neurological disorders are also discussed here. Adapting gene therapy as a new therapeutic approach for treating neurological disorders seems to be promising, with early detection and delivery of therapy before the neuron is lost, helping a lot the development of new therapeutic options to translate to the clinic.
Collapse
Affiliation(s)
- Della Grace Thomas Parambi
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Al Jouf-2014, Sakaka, Saudi Arabia
| | - Khalid Saad Alharbi
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Al Jouf-2014, Sakaka, Saudi Arabia
| | - Rajesh Kumar
- Kerala University of Health Sciences, Thrissur, Kerala 680596 India
| | - Seetha Harilal
- Kerala University of Health Sciences, Thrissur, Kerala 680596 India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 Al Beheira Egypt
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | - Omnia Magdy
- Department of Clinical Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al Jouf-2014 Kingdom of Saudi Arabia
- Pharmacognosy Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341 Kingdom of Saudi Arabia
| | - Arafa Musa
- Pharmacognosy Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341 Kingdom of Saudi Arabia
- Pharmacognosy Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11371 Egypt
| | - Dibya Sundar Panda
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Al Jouf, Sakaka, 72341 Kingdom of Saudi Arabia
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041 India
| |
Collapse
|
15
|
Johnson SL, Libohova K, Blount JR, Sujkowski AL, Prifti MV, Tsou WL, Todi SV. Targeting the VCP-binding motif of ataxin-3 improves phenotypes in Drosophila models of Spinocerebellar Ataxia Type 3. Neurobiol Dis 2021; 160:105516. [PMID: 34563642 PMCID: PMC8693084 DOI: 10.1016/j.nbd.2021.105516] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/23/2021] [Accepted: 09/21/2021] [Indexed: 11/28/2022] Open
Abstract
Of the family of polyglutamine (polyQ) neurodegenerative diseases, Spinocerebellar Ataxia Type 3 (SCA3) is the most common. Like other polyQ diseases, SCA3 stems from abnormal expansions in the CAG triplet repeat of its disease gene resulting in elongated polyQ repeats within its protein, ataxin-3. Various ataxin-3 protein domains contribute to its toxicity, including the valosin-containing protein (VCP)-binding motif (VBM). We previously reported that VCP, a homo-hexameric protein, enhances pathogenic ataxin-3 aggregation and exacerbates its toxicity. These findings led us to explore the impact of targeting the SCA3 protein by utilizing a decoy protein comprising the N-terminus of VCP (N-VCP) that binds ataxin-3's VBM. The notion was that N-VCP would reduce binding of ataxin-3 to VCP, decreasing its aggregation and toxicity. We found that expression of N-VCP in Drosophila melanogaster models of SCA3 ameliorated various phenotypes, coincident with reduced ataxin-3 aggregation. This protective effect was specific to pathogenic ataxin-3 and depended on its VBM. Increasing the amount of N-VCP resulted in further phenotype improvement. Our work highlights the protective potential of targeting the VCP-ataxin-3 interaction in SCA3, a key finding in the search for therapeutic opportunities for this incurable disorder.
Collapse
Affiliation(s)
- Sean L Johnson
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Kozeta Libohova
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jessica R Blount
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Alyson L Sujkowski
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Matthew V Prifti
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Wei-Ling Tsou
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
16
|
Peng L, Wang S, Chen Z, Peng Y, Wang C, Long Z, Peng H, Shi Y, Hou X, Lei L, Wan L, Liu M, Zou G, Shen L, Xia K, Qiu R, Tang B, Ashizawa T, Klockgether T, Jiang H. Blood Neurofilament Light Chain in Genetic Ataxia: A Meta-Analysis. Mov Disord 2021; 37:171-181. [PMID: 34519102 DOI: 10.1002/mds.28783] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/20/2021] [Accepted: 08/23/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND No comprehensive meta-analysis has ever been performed to assess the value of neurofilament light chain (NfL) as a biomarker in genetic ataxia. OBJECTIVE We conducted a meta-analysis to summarize NfL concentration and evaluate its utility as a biomarker in genetic ataxia. METHODS Studies were included if they reported NfL concentration of genetic ataxia. We used log (mean ± SD) NfL to describe mean raw value of NfL. The effect size of NfL between genetic ataxia and healthy controls (HC) was expressed by mean difference. Correlation between NfL and disease severity was calculated. RESULTS We identified 11 studies of 624 HC and 1006 patients, here referred to as spinocerebellar ataxia (SCA1, 2, 3, 6, and 7), Friedreich ataxia (FRDA), and ataxia telangiectasia (A-T). The concentration of blood NfL (bNfL) elevated with proximity to expected onset, and progressively increased from asymptomatic to preclinical to clinical stage in SCA3. Compared with HC, bNfL levels were significantly higher in SCA1, 2, 3, and 7, FRDA, as well as A-T, and the difference increased with the advancing disease in SCA3. bNfL levels correlated with disease severity in SCA3. There was a significant correlation between bNfL and longitudinal progression in SCA3. Additionally, bNfL increased with age in HC, yet this is probably masked by higher disease-related effects on bNfL in genetic ataxia. CONCLUSIONS bNfL can be used as a potential biomarker to predict disease onset, severity, and progression of genetic ataxia. Reference-value setting of bNfL should be divided according to age. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Linliu Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Shang Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| | - Yun Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Chunrong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhe Long
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Huirong Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuting Shi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xuan Hou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lijing Lei
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Linlin Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Mingjie Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Guangdong Zou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| | - Kun Xia
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Rong Qiu
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| | - Tetsuo Ashizawa
- Neuroscience Research Program, Houston Methodist Research Institute, Houston, Texas, USA.,Stanley H. Appel Department of Neurology, Weill Cornell Medicine at Houston Methodist Hospital, Houston, Texas, USA
| | - Thomas Klockgether
- Department of Neurology, University of Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
17
|
Lin YT, Lin YS, Cheng WL, Chang JC, Chao YC, Liu CS, Wei AC. Transcriptomic and Metabolic Network Analysis of Metabolic Reprogramming and IGF-1 Modulation in SCA3 Transgenic Mice. Int J Mol Sci 2021; 22:ijms22157974. [PMID: 34360740 PMCID: PMC8348158 DOI: 10.3390/ijms22157974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/31/2022] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a genetic neurodegenerative disease for which a cure is still needed. Growth hormone (GH) therapy has shown positive effects on the exercise behavior of mice with cerebellar atrophy, retains more Purkinje cells, and exhibits less DNA damage after GH intervention. Insulin-like growth factor 1 (IGF-1) is the downstream mediator of GH that participates in signaling and metabolic regulation for cell growth and modulation pathways, including SCA3-affected pathways. However, the underlying therapeutic mechanisms of GH or IGF-1 in SCA3 are not fully understood. In the present study, tissue-specific genome-scale metabolic network models for SCA3 transgenic mice were proposed based on RNA-seq. An integrative transcriptomic and metabolic network analysis of a SCA3 transgenic mouse model revealed that metabolic signaling pathways were activated to compensate for the metabolic remodeling caused by SCA3 genetic modifications. The effect of IGF-1 intervention on the pathology and balance of SCA3 disease was also explored. IGF-1 has been shown to invoke signaling pathways and improve mitochondrial function and glycolysis pathways to restore cellular functions. As one of the downregulated factors in SCA3 transgenic mice, IGF-1 could be a potential biomarker and therapeutic target.
Collapse
Affiliation(s)
- Yu-Te Lin
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan;
| | - Yong-Shiou Lin
- Institute of ATP, Vascular and Genomic Center, Changhua Christian Hospital, Changhua 50091, Taiwan; (Y.-S.L.); (W.-L.C.); (J.-C.C.)
| | - Wen-Ling Cheng
- Institute of ATP, Vascular and Genomic Center, Changhua Christian Hospital, Changhua 50091, Taiwan; (Y.-S.L.); (W.-L.C.); (J.-C.C.)
| | - Jui-Chih Chang
- Institute of ATP, Vascular and Genomic Center, Changhua Christian Hospital, Changhua 50091, Taiwan; (Y.-S.L.); (W.-L.C.); (J.-C.C.)
| | - Yi-Chun Chao
- Inflammation Research & Drug Development Center, Changhua Christian Hospital, Changhua 50091, Taiwan;
| | - Chin-San Liu
- Institute of ATP, Vascular and Genomic Center, Changhua Christian Hospital, Changhua 50091, Taiwan; (Y.-S.L.); (W.-L.C.); (J.-C.C.)
- Department of Neurology, Changhua Christian Hospital, Changhua 50091, Taiwan
- Graduate Institute of Integrated Medicine College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
- Correspondence: (C.-S.L.); (A.-C.W.); Tel.: +886-4-7238595 (C.-S.L.); +886-2-33668612 (A.-C.W.)
| | - An-Chi Wei
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan;
- Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Correspondence: (C.-S.L.); (A.-C.W.); Tel.: +886-4-7238595 (C.-S.L.); +886-2-33668612 (A.-C.W.)
| |
Collapse
|
18
|
Raj K, Akundi RS. Mutant Ataxin-3-Containing Aggregates (MATAGGs) in Spinocerebellar Ataxia Type 3: Dynamics of the Disorder. Mol Neurobiol 2021; 58:3095-3118. [PMID: 33629274 DOI: 10.1007/s12035-021-02314-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/25/2021] [Indexed: 11/25/2022]
Abstract
Spinocerebellar ataxia type 3 (SCA3) is the most common type of SCA worldwide caused by abnormal polyglutamine expansion in the coding region of the ataxin-3 gene. Ataxin-3 is a multi-faceted protein involved in various cellular processes such as deubiquitination, cytoskeletal organisation, and transcriptional regulation. The presence of an expanded poly(Q) stretch leads to altered processing and misfolding of the protein culminating in the production of insoluble protein aggregates in the cell. Various post-translational modifications affect ataxin-3 fibrillation and aggregation. This review provides an exhaustive assessment of the various pathogenic mechanisms undertaken by the mutant ataxin-3-containing aggregates (MATAGGs) for disease induction and neurodegeneration. This includes in-depth discussion on MATAGG dynamics including their formation, role in neuronal pathogenesis, and the debate over the toxic v/s protective nature of the MATAGGs in disease progression. Additionally, the currently available therapeutic strategies against SCA3 have been reviewed. The shift in the focus of such strategies, from targeting the steps that lead to or reduce aggregate formation to targeting the expression of mutant ataxin-3 itself via RNA-based therapeutics, has also been presented. We also discuss the intriguing promise that various growth and neurotrophic factors, especially the insulin pathway, hold in the modulation of SCA3 progression. These emerging areas show the newer directions through which SCA3 can be targeted including various preclinical and clinical trials. All these advances made in the last three decades since the discovery of the ataxin-3 gene have been critically reviewed here.
Collapse
Affiliation(s)
- Kritika Raj
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, 110021, India
| | - Ravi Shankar Akundi
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, 110021, India.
| |
Collapse
|
19
|
Adipose-Derived Stem Cells Secretome and Its Potential Application in "Stem Cell-Free Therapy". Biomolecules 2021; 11:biom11060878. [PMID: 34199330 PMCID: PMC8231996 DOI: 10.3390/biom11060878] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
Adipose-derived stem cells (ASCs) secrete many cytokines, proteins, growth factors, and extracellular vesicles with beneficial outcomes that can be used in regenerative medicine. It has great potential, and the development of new treatment strategies using the ASCs secretome is of global interest. Besides cytokines, proteins, and growth factors, the therapeutic effect of secretome is hidden in non-coding RNAs such as miR-21, miR-24, and miR-26 carried via exosomes secreted by adequate cells. The whole secretome, including ASC-derived exosomes (ASC-exos) has been proven in many studies to have immunomodulatory, proangiogenic, neurotrophic, and epithelization activity and can potentially be used for neurodegenerative, cardiovascular, respiratory, inflammatory, and autoimmune diseases as well as wound healing treatment. Due to limitations in the use of stem cells in cell-based therapy, its secretome with emphasis on exosomes seems to be a reasonable and safer alternative with increased effectiveness and fewer side effects. Moreover, the great advantage of cell-free therapy is the possibility of biobanking the ASCs secretome. In this review, we focus on the current state of knowledge on the use of the ASCs secretome in stem cell-free therapy.
Collapse
|
20
|
Brooker SM, Edamakanti CR, Akasha SM, Kuo SH, Opal P. Spinocerebellar ataxia clinical trials: opportunities and challenges. Ann Clin Transl Neurol 2021; 8:1543-1556. [PMID: 34019331 PMCID: PMC8283160 DOI: 10.1002/acn3.51370] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/14/2022] Open
Abstract
The spinocerebellar ataxias (SCAs) are a group of dominantly inherited diseases that share the defining feature of progressive cerebellar ataxia. The disease process, however, is not confined to the cerebellum; other areas of the brain, in particular, the brainstem, are also affected, resulting in a high burden of morbidity and mortality. Currently, there are no disease‐modifying treatments for the SCAs, but preclinical research has led to the development of therapeutic agents ripe for testing in patients. Unfortunately, due to the rarity of these diseases and their slow and variable progression, there are substantial hurdles to overcome in conducting clinical trials. While the epidemiological features of the SCAs are immutable, the feasibility of conducting clinical trials is being addressed through a combination of strategies. These include improvements in clinical outcome measures, the identification of imaging and fluid biomarkers, and innovations in clinical trial design. In this review, we highlight current challenges in initiating clinical trials for the SCAs and also discuss pathways for researchers and clinicians to mitigate these challenges and harness opportunities for clinical trial development.
Collapse
Affiliation(s)
- Sarah M Brooker
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Sara M Akasha
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, New York, USA.,Initiative for Columbia Ataxia and Tremor, Columbia University, New York, New York, USA
| | - Puneet Opal
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
21
|
Kim M, Ahn JH, Mun JK, Choi EH, Kim JS, Youn J, Cho JW. Extracerebellar Signs and Symptoms in 117 Korean Patients with Early-Stage Spinocerebellar Ataxia. J Clin Neurol 2021; 17:242-248. [PMID: 33835745 PMCID: PMC8053557 DOI: 10.3988/jcn.2021.17.2.242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 01/07/2023] Open
Abstract
Background and Purpose Spinocerebellar ataxias (SCAs) are the most common form of hereditary ataxias. Extracerebellar signs have been well described and are helpful in differentiating the SCA subtypes. However, there are few reports on the early-stage extracerebellar signs in various SCA subtypes. This study explored the clinical and magnetic resonance imaging (MRI) characteristics of early-stage SCAs in the Korean population. Methods We retrospectively reviewed the medical records of genetically confirmed SCA patients with a disease duration of <5 years. Data on baseline characteristics, extracerebellar signs, and initial MRI findings were organized based on SCA subtypes. Results This study included 117 SCA patients with a median age at onset of 40.6 years. The family history was positive in 71.8% of the patients, and the median disease duration and the score on the Scale for the Assessment and Rating of Ataxia at the initial visit were 2.6 years and 5.0, respectively. SCA3 was the most prevalent subtype, and oculomotor abnormalities were the most frequent extracerebellar signs in early-stage SCAs. Saccadic slowing was characteristic of SCA2 and SCA7, and gaze-evoked nystagmus was prominent in SCA6. Parkinsonism was relatively frequent in SCA8 and SCA3. Decreased visual acuity was specific for SCA7. Dementia was not an early manifestation of SCAs. Brain MRI revealed a pattern of pontocerebellar atrophy in SCA2 and SCA7, while SCA6 demonstrated only cerebellar cortical atrophy. Conclusions SCA patients exhibited diverse extracerebellar signs even in the early stage. Specific extracerebellar signs were characteristic of specific subtypes, which could facilitate differential diagnoses of early-stage SCAs.
Collapse
Affiliation(s)
- Minkyeong Kim
- Department of Neurology, Gyeongsang National University Hospital, Jinju, Korea
| | - Jong Hyeon Ahn
- Department of Neurology, Samsung Medical Center, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Jun Kyu Mun
- Department of Neurology, Samsung Medical Center, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Eun Hyeok Choi
- Department of Neurology, Samsung Medical Center, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Ji Sun Kim
- Department of Neurology, Samsung Medical Center, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Jinyoung Youn
- Department of Neurology, Samsung Medical Center, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea.,Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jin Whan Cho
- Department of Neurology, Samsung Medical Center, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea.,Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
22
|
Fardghassemi Y, Maios C, Parker JA. Small Molecule Rescue of ATXN3 Toxicity in C. elegans via TFEB/HLH-30. Neurotherapeutics 2021; 18:1151-1165. [PMID: 33782863 PMCID: PMC8423969 DOI: 10.1007/s13311-020-00993-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is a polyglutamine expansion disease arising from a trinucleotide CAG repeat expansion in exon 10 of the gene ATXN3. There are no effective pharmacological treatments for MJD, thus the identification of new pathogenic mechanisms, and the development of novel therapeutics is urgently needed. In this study, we performed a comprehensive, blind drug screen of 3942 compounds (many FDA approved) and identified small molecules that rescued the motor-deficient phenotype in transgenic ATXN3 Caenorhabditis elegans strain. Out of this screen, five lead compounds restoring motility, protecting against neurodegeneration, and increasing the lifespan in ATXN3-CAG89 mutant worms were identified. These compounds were alfacalcidol, chenodiol, cyclophosphamide, fenbufen, and sulfaphenazole. We then investigated how these molecules might exert their neuroprotective properties. We found that three of these compounds, chenodiol, fenbufen, and sulfaphenazole, act as modulators for TFEB/HLH-30, a key transcriptional regulator of the autophagy process, and require this gene for their neuroprotective activities. These genetic-chemical approaches, using genetic C. elegans models for MJD and the screening, are promising tools to understand the mechanisms and pathways causing neurodegeneration, leading to MJD. Positively acting compounds may be promising candidates for investigation in mammalian models of MJD and preclinical applications in the treatment of this disease.
Collapse
Affiliation(s)
- Yasmin Fardghassemi
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9 Canada
- Department of Biochemistry, University of Montreal, Montreal, Quebec H3T 1J4 Canada
| | - Claudia Maios
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9 Canada
- Department of Neuroscience, University of Montreal, Montreal, Quebec H3T 1J4 Canada
| | - J. Alex Parker
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9 Canada
- Department of Biochemistry, University of Montreal, Montreal, Quebec H3T 1J4 Canada
- Department of Neuroscience, University of Montreal, Montreal, Quebec H3T 1J4 Canada
| |
Collapse
|
23
|
Tandon S, Sarkar S. The S6k/4E-BP mediated growth promoting sub-pathway of insulin signalling cascade is essential to restrict pathogenesis of poly(Q) disorders in Drosophila. Life Sci 2021; 275:119358. [PMID: 33744321 DOI: 10.1016/j.lfs.2021.119358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/19/2021] [Accepted: 03/06/2021] [Indexed: 01/05/2023]
Abstract
Human neurodegenerative polyglutamine [poly(Q)] disorders, such as Huntington's disease (HD) and spinocerebellar ataxias (SCA), are characterised by an abnormal expansion of CAG repeats in the affected gene. The mutated proteins misfold and aggregate to form inclusion bodies that sequester important factors involved in cellular transcription, growth, stress and autophagic response and other essential functions. The insulin signalling pathway has been demonstrated as a major modifier and a potential drug target to ameliorate the poly(Q) mediated neurotoxicity in various model systems. Insulin signalling cascade harbours several downstream sub-pathways, which are synergistically involved in discharging indispensable biological functions such as growth and proliferation, metabolism, autophagy, regulation of cell death pathways etc. Hence, it is difficult to conclude whether the mitigation of poly(Q) neurotoxicity is an accumulative outcome of the insulin cascade, or the result of a specific sub-pathway. For the first time, we report that the ligand binding domain of insulin receptor mediated downstream growth promoting sub-pathway plays the pivotal role in operating the rescue event. We show that the growth promoting activity of insulin cascade is essential to minimize the abundance of inclusion bodies, to restrict neurodegeneration, and to restore the cellular transcriptional balance. Subsequently, we noted the involvement of the mTOR/S6k/4E-BP candidates in mitigating poly(Q) mediated neurotoxicity. Due to the conserved cellular functioning of the insulin cascade across species, and availability of several growth promoting molecules, our results in Drosophila poly(Q) models indicate towards a possibility of designing novel therapeutic strategies to restrict the pathogenesis of devastating human poly(Q) disorders.
Collapse
Affiliation(s)
- Shweta Tandon
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India
| | - Surajit Sarkar
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India.
| |
Collapse
|
24
|
An Update on Pharmaceutical Strategies for Oral Delivery of Therapeutic Peptides and Proteins in Adults and Pediatrics. CHILDREN-BASEL 2020; 7:children7120307. [PMID: 33352795 PMCID: PMC7766037 DOI: 10.3390/children7120307] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
While each route of therapeutic drug delivery has its own advantages and limitations, oral delivery is often favored because it offers convenient painless administration, sustained delivery, prolonged shelf life, and often lower manufacturing cost. Its limitations include mucus and epithelial cell barriers in the gastrointestinal (GI) tract that can block access of larger molecules including Therapeutic protein or peptide-based drugs (TPPs), resulting in reduced bioavailability. This review describes these barriers and discusses different strategies used to modify TPPs to enhance their oral bioavailability and/or to increase their absorption. Some seek to stabilize the TTPs to prevent their degradation by proteolytic enzymes in the GI tract by administering them together with protease inhibitors, while others modify TPPs with mucoadhesive polymers like polyethylene glycol (PEG) to allow them to interact with the mucus layer, thereby delaying their clearance. The further barrier provided by the epithelial cell membrane can be overcome by the addition of a cell-penetrating peptide (CPP) and the use of a carrier molecule such as a liposome, microsphere, or nanosphere to transport the TPP-CPP chimera. Enteric coatings have also been used to help TPPs reach the small intestine. Key efficacious TPP formulations that have been approved for clinical use will be discussed.
Collapse
|
25
|
Neves-Carvalho A, Duarte-Silva S, Teixeira-Castro A, Maciel P. Polyglutamine spinocerebellar ataxias: emerging therapeutic targets. Expert Opin Ther Targets 2020; 24:1099-1119. [PMID: 32962458 DOI: 10.1080/14728222.2020.1827394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Six of the most frequent dominantly inherited spinocerebellar ataxias (SCAs) worldwide - SCA1, SCA2, SCA3, SCA6, SCA7, and SCA17 - are caused by an expansion of a polyglutamine (polyQ) tract in the corresponding proteins. While the identification of the causative mutation has advanced knowledge on the pathogenesis of polyQ SCAs, effective therapeutics able to mitigate the severe clinical manifestation of these highly incapacitating disorders are not yet available. AREAS COVERED This review provides a comprehensive and critical perspective on well-established and emerging therapeutic targets for polyQ SCAs; it aims to inspire prospective drug discovery efforts. EXPERT OPINION The landscape of polyQ SCAs therapeutic targets and strategies includes (1) the mutant genes and proteins themselves, (2) enhancement of endogenous protein quality control responses, (3) abnormal protein-protein interactions of the mutant proteins, (4) disturbed neuronal function, (5) mitochondrial function, energy availability and oxidative stress, and (6) glial dysfunction, growth factor or hormone imbalances. Challenges include gaining a clearer definition of therapeutic targets for the drugs in clinical development, the discovery of novel drug-like molecules for challenging key targets, and the attainment of a stronger translation of preclinical findings to the clinic.
Collapse
Affiliation(s)
- Andreia Neves-Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory , Braga, Guimarães, Portugal
| | - Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory , Braga, Guimarães, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory , Braga, Guimarães, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory , Braga, Guimarães, Portugal
| |
Collapse
|