1
|
Bokov RO, Sharlo KA, Vilchinskaya NA, Tyganov SA, Turtikova OV, Rozhkov SV, Deviatiiarov RM, Gusev OA, Tomilovskaya ES, Shenkman BS, Orlov OI. Molecular insights into human soleus muscle atrophy development: long-term dry immersion effects on the transcriptomic profile and posttranslational signaling. Physiol Genomics 2025; 57:357-382. [PMID: 40072920 DOI: 10.1152/physiolgenomics.00196.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/27/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025] Open
Abstract
Muscle disuse results in complex signaling alterations followed by structural and functional changes, such as atrophy, force decrease, and slow-to-fast fiber-type shift. Little is known about human skeletal muscle signaling alterations under long-term muscle disuse. In this study, we describe the effects of 21-day dry immersion on human postural soleus muscle. We performed both transcriptomic analysis and Western blots to describe the states of the key signaling pathways regulating soleus muscle fiber size, fiber type, and metabolism. Twenty-one-day dry immersion resulted in both slow-type and fast-type myofibers atrophy, downregulation of rRNA content, and mTOR signaling. Twenty-one-day dry immersion also leads to slow-to-fast fiber-type and gene expression shift, upregulation of p-eEF2, p-CaMKII, p-ACC content and downregulation of NFATc1 nuclear content. It also caused massive gene expression alterations associated with calcium signaling, cytoskeletal parameters, and downregulated mitochondrial signaling (including fusion, fission, and marker of mitochondrial density).NEW & NOTEWORTHY The main findings of our study are as follows: 1) The soleus slow fibers atrophy after 21-day dry immersion (DI) does not exceed that after 7-day DI; 2) The soleus ubiquitin ligases expression after 21-day DI returns to its initial level; 3) The soleus slow fibers atrophy after 21-day DI is accompanied by a mitochondrial apparatus structural markers decrease; 4) The soleus fibers signaling pathways restructuring process during 21-day DI is carried out in a complex manner.
Collapse
Affiliation(s)
- Roman O Bokov
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Kristina A Sharlo
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | | | - Sergey A Tyganov
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Olga V Turtikova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Sergey V Rozhkov
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | | | - Oleg A Gusev
- Life Improvement by Future Technologies Center, Moscow, Russia
| | | | - Boris S Shenkman
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Oleg I Orlov
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Zaripova KA, Belova SP, Kostrominova TY, Shenkman BS, Nemirovskaya TL. Role of PI3 Kinases in Cell Signaling and Soleus Muscle Atrophy During Three Days of Unloading. Int J Mol Sci 2025; 26:414. [PMID: 39796270 PMCID: PMC11720661 DOI: 10.3390/ijms26010414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/20/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
During skeletal muscle unloading, phosphoinositide 3-kinase (PI3K), and especially PI3K gamma (PI3Kγ), can be activated by changes in membrane potential. Activated IP3 can increase the ability of Ca2+ to enter the nucleus through IP3 receptors. This may contribute to the activation of transcription factors that initiate muscle atrophy processes. LY294002 inhibitor was used to study the role of PI3K in the ATP-dependent regulation of skeletal muscle signaling during three days of unloading. Inhibition of PI3K during soleus muscle unloading slows down the atrophic processes and prevents the accumulation of ATP and the expression of the E3 ubiquitin ligase MuRF1 and ubiquitin. It also prevents the increase in the expression of IP3 receptors and regulates the activity of Ca2+-dependent signaling pathways by reducing the mRNA expression of the Ca2+-dependent marker calcineurin (CaN) and decreasing the phosphorylation of CaMKII. It also affects the regulation of markers of anabolic signaling in unloaded muscles: IRS1 and 4E-BP. PI3K is an important mediator of skeletal muscle atrophy during unloading. Developing strategies for the localized skeletal muscle release of PI3K inhibitors might be one of the future treatments for inactivity and disease-induced muscle atrophy.
Collapse
Affiliation(s)
- Ksenia A. Zaripova
- Myology Laboratory, Institute of Biomedical Problems (IBP), RAS, 123007 Moscow, Russia; (K.A.Z.); (S.P.B.)
| | - Svetlana P. Belova
- Myology Laboratory, Institute of Biomedical Problems (IBP), RAS, 123007 Moscow, Russia; (K.A.Z.); (S.P.B.)
| | - Tatiana Y. Kostrominova
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine-Northwest, Gary, IN 46202, USA;
| | - Boris S. Shenkman
- Myology Laboratory, Institute of Biomedical Problems (IBP), RAS, 123007 Moscow, Russia; (K.A.Z.); (S.P.B.)
| | - Tatiana L. Nemirovskaya
- Myology Laboratory, Institute of Biomedical Problems (IBP), RAS, 123007 Moscow, Russia; (K.A.Z.); (S.P.B.)
| |
Collapse
|
3
|
Bernasconi R, Soodla K, Sirp A, Zovo K, Kuhtinskaja M, Lukk T, Vendelin M, Birkedal R. Higher AMPK activation in mouse oxidative compared with glycolytic muscle does not correlate with LKB1 or CaMKKβ expression. Am J Physiol Endocrinol Metab 2025; 328:E21-E33. [PMID: 39607028 DOI: 10.1152/ajpendo.00261.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/14/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
AMP-activated protein kinase (AMPK) is an energy-sensing serine/threonine kinase involved in metabolic regulation. It is phosphorylated by the upstream liver kinase B1 (LKB1) or calcium/calmodulin-dependent kinase kinase 2 (CaMKKβ). In cultured cells, AMPK activation correlates with LKB1 activity. The phosphorylation activates AMPK, shifting metabolism toward catabolism and promoting mitogenesis. In muscles, inactivity reduces AMPK activation, shifting the phenotype of oxidative muscles toward a more glycolytic profile. Here, we compared the basal level of AMPK activation in glycolytic and oxidative muscles and analyzed whether this relates to LKB1 or CaMKKβ. Using Western blotting, we assessed AMPK expression and phosphorylation in soleus, gastrocnemius (GAST), extensor digitorum longus (EDL), and heart from C57BL6J mice. We also assessed LKB1 and CaMKKβ expression, and CaMKKβ activity in tissue homogenates. AMPK activation was higher in oxidative (soleus and heart) than in glycolytic muscles (gastrocnemius and EDL). This correlated with AMPK α1-isoform expression, but not LKB1 and CaMKKβ. LKB1 expression was sex dependent and lower in male than female muscles. CaMKKβ expression was very low in skeletal muscles and did not phosphorylate AMPK in muscle lysates. The higher AMPK activation in oxidative muscles is in line with the fact that activated AMPK maintains an oxidative phenotype. However, this could not be explained by LKB1 and CaMKKβ. These results suggest that the regulation of AMPK activation is more complex in muscle than in cultured cells. As AMPK has been proposed as a therapeutic target for several diseases, future research should consider AMPK isoform expression and localization, and energetic compartmentalization.NEW & NOTEWORTHY It is important to understand how AMP-activated kinase, AMPK, is regulated, as it is a potential therapeutic target for several diseases. AMPK is activated by liver kinase B1, LKB1, and calcium/calmodulin-dependent kinase kinase 2, CaMKKβ. In cultured cells, AMPK activation correlates with LKB1 expression. In contrast, we show that AMPK-activation was higher in oxidative than glycolytic muscle, without correlating with LKB1 or CaMKKβ expression. Thus, AMPK regulation is more complex in highly compartmentalized muscle cells.
Collapse
Affiliation(s)
- Romain Bernasconi
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Kärol Soodla
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Alex Sirp
- Laboratory of Molecular Neurobiology, Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Kairit Zovo
- Laboratory of Wood Chemistry, Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Maria Kuhtinskaja
- Laboratory of Analytical Chemistry, Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Tiit Lukk
- Laboratory of Wood Chemistry, Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Marko Vendelin
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Rikke Birkedal
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
4
|
Jackson MJ. Reactive oxygen species in age-related musculoskeletal decline: implications for nutritional intervention. Proc Nutr Soc 2024:1-9. [PMID: 39512110 DOI: 10.1017/s0029665124004877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Musculoskeletal disorders and age-related musculoskeletal decline are major contributors to the burden of ill health seen in older subjects. Despite this increased burden, these chronic disorders of old age receive a relatively small proportion of national research funds. Much has been learned about fundamental processes involved in ageing from basic science research and this is leading to identification of key pathways that mediate ageing which may help the search for interventions to reduce age-related musculoskeletal decline. This short review will focus on the role of reactive oxygen species in age-related skeletal muscle decline and on the implications of this work for potential nutritional interventions in sarcopenia. The key physiological role of reactive oxygen species is now known to be in mediating redox signalling in muscle and other tissues and ageing leads to disruption of such pathways. In muscle, this is reflected in an age-related attenuation of specific adaptations and responses to contractile activity that impacts the ability of skeletal muscle from ageing individuals to respond to exercise. These pathways provides potential targets for identification of logical interventions that may help maintain muscle mass and function during ageing.
Collapse
Affiliation(s)
- Malcolm J Jackson
- MRC-Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
5
|
Minibayeva FV, Rassabina AE, Zakirjanova GF, Fedorov NS, Khabibrakhmanova VR, Galeeva EI, Kuznetsova EA, Malomouzh AI, Petrov AM. Protective properties of melanin from lichen Lobaria pulmonaria (L.) HOFFM. In models of oxidative stress in skeletal muscle. Fitoterapia 2024; 177:106127. [PMID: 39019238 DOI: 10.1016/j.fitote.2024.106127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/16/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Melanin is a dark pigment from the group of phenolic or indole polymers with inherent biocompatibility and antioxidant capacity. In extremophilic lichen Lobaria pulmonaria, melanin is responsible for protective properties against hostile environments. Herein, the ability of melanin extracted from L. pulmonaria to counteract oxidative stress and related damages was studied in the mouse diaphragm, the main respiratory muscle. Initial in vitro experiments demonstrated ultraviolet (UV)-absorbing, antioxidant and metal chelating activities of melanin. This melanin can form nanoparticles and stabile colloidal system at concentration of 5 μg/ml. Pretreatment of the muscle with melanin (5 μg/ml) markedly reduced UV-induced increase in intracellular and extracellular reactive oxygen species (ROS) as well as antimycin A-mediated enhancement in mitochondrial ROS production accompanied by lipid peroxidation and membrane asymmetry loss. In addition, melanin attenuated suppression of neuromuscular transmission and alterations of contractile responses provoked by hydrogen peroxide. Thus, this study shed the light on the perspectives of the application of a lichen melanin as a protective component for treatment of skeletal muscle disorders, which are accompanied with an increased ROS production.
Collapse
Affiliation(s)
- Farida V Minibayeva
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia.
| | - Anna E Rassabina
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia
| | - Guzalia F Zakirjanova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia
| | - Nikita S Fedorov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia
| | - Venera R Khabibrakhmanova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia
| | - Ekaterina I Galeeva
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia
| | - Eva A Kuznetsova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia
| | - Artem I Malomouzh
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia; Kazan National Research Technical University, 10, K. Marx St., Kazan 420111, Russia
| | - Alexey M Petrov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia; Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; Kazan State Mediсal University, 49 Butlerova Street, Kazan 420012, Russia.
| |
Collapse
|
6
|
Braun JL, Fajardo VA. Spaceflight increases sarcoplasmic reticulum Ca 2+ leak and this cannot be counteracted with BuOE treatment. NPJ Microgravity 2024; 10:78. [PMID: 39030182 PMCID: PMC11271499 DOI: 10.1038/s41526-024-00419-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Spending time in a microgravity environment is known to cause significant skeletal muscle atrophy and weakness via muscle unloading, which can be partly attributed to Ca2+ dysregulation. The sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) pump is responsible for bringing Ca2+ from the cytosol into its storage site, the sarcoplasmic reticulum (SR), at the expense of ATP. We have recently demonstrated that, in the soleus of space-flown mice, the Ca2+ uptake ability of the SERCA pump is severely impaired and this may be attributed to increases in reactive oxygen/nitrogen species (RONS), to which SERCA is highly susceptible. The purpose of this study was therefore to investigate whether treatment with the antioxidant, Manganese(III) meso-tetrakis(N-n-butoxyethylpyridinium-2-yl)porphyrin, MnTnBuOE-2-PyP5+ (BuOE), could attenuate muscle atrophy and SERCA dysfunction. We received soleus muscles from the rodent research 18 mission which had male mice housed on the international space station for 35 days and treated with either saline or BuOE. Spaceflight significantly reduced the soleus:body mass ratio and significantly increased SERCA's ionophore ratio, a measure of SR Ca2+ leak, and 4-HNE content (marker of RONS), none of which could be rescued by BuOE treatment. In conclusion, we find that spaceflight induces significant soleus muscle atrophy and SR Ca2+ leak that cannot be counteracted with BuOE treatment. Future work should investigate alternative therapeutics that are specifically aimed at increasing SERCA activation or reducing Ca2+ leak.
Collapse
Affiliation(s)
- Jessica L Braun
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Val A Fajardo
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada.
| |
Collapse
|
7
|
Zaripova KA, Belova SP, Kostrominova TY, Shenkman BS, Nemirovskaya TL. P2Y1 and P2Y2 receptors differ in their role in the regulation of signaling pathways during unloading-induced rat soleus muscle atrophy. Arch Biochem Biophys 2024; 751:109844. [PMID: 38043889 DOI: 10.1016/j.abb.2023.109844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/02/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
The current study aimed to investigate the hypothesis that purinergic receptors P2Y1 and P2Y2 play a regulatory role in gene expression in unloaded muscle. ATP is released from cells through pannexin channels, and it interacts with P2Y1 and P2Y2 receptors, leading to the activation of markers of protein catabolism and a reduction in protein synthesis. To test this hypothesis thirty-two rats were randomly divided into four groups (8 per group): a non-treated control group (C), a group subjected to three days of hindlimb unloading with a placebo (HS), a group subjected to three days of hindlimb unloading treated with a P2Y1 receptor inhibitor, MRS2179 (HSM), and a group subjected to three days of hindlimb unloading treated with a P2Y2 receptor inhibitor, AR-C 118925XX (HSA). This study revealed several key findings following three days of soleus muscle unloading: 1: Inhibition of P2Y1 or P2Y2 receptors prevented the accumulation of ATP, the increase in IP3 receptor content, and the decrease in the phosphorylation of GSK-3beta. This inhibition also mitigated the reduction in the rate of protein synthesis. However, it had no significant effect on the markers of mTORC1-dependent signaling. 2: Blocking P2Y1 receptors prevented the unloading-induced upregulation of phosphorylated p38MAPK and partially reduced the increase in MuRF1mRNA expression. 3: Blocking P2Y2 receptors prevented muscle atrophy during unloading, partially maintained the levels of phosphorylated ERK1/2, reduced the increase in mRNA expression of MAFbx, ubiquitin, and IL-6 receptor, prevented the decrease in phosphorylated AMPK, and attenuated the increase in phosphorylated p70S6K. Taken together, these results suggest that the prevention of muscle atrophy during unloading, as achieved by the P2Y2 receptor inhibitor, is likely mediated through a reduction in catabolic processes and maintenance of energy homeostasis. In contrast, the P2Y1 receptor appears to play a relatively minor role in muscle atrophy during unloading.
Collapse
Affiliation(s)
- Ksenia A Zaripova
- Myology Laboratory, Institute of Biomedical Problems, RAS, Moscow, Russia
| | - Svetlana P Belova
- Myology Laboratory, Institute of Biomedical Problems, RAS, Moscow, Russia
| | - Tatiana Y Kostrominova
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine-Northwest, Gary, IN, USA
| | - Boris S Shenkman
- Myology Laboratory, Institute of Biomedical Problems, RAS, Moscow, Russia
| | | |
Collapse
|
8
|
Nosikova I, Riabova A, Kitov V, Tomilovskaya E. Corticospinal excitability after 5-day Dry Immersion in women. Front Neural Circuits 2023; 17:1163346. [PMID: 37811482 PMCID: PMC10556517 DOI: 10.3389/fncir.2023.1163346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
In light of the development of manned astronautics and the increasing participation of women in space flights, the question of female body adaptation to microgravity conditions becomes relevant. Currently, one of the important directions in this issue is to study the effects of support withdrawal as a factor of weightlessness on the human sensorimotor system. Dry Immersion is one of the well-known ground-based models, which adequately reproduces the main physiological effects of space flight. The aim of this study was to evaluate the changes in motor evoked potentials of the lower leg gravity-dependent muscles in women after a 5-day Dry Immersion. We analyzed evoked responses to transcranial and trans-spinal magnetic stimulation. In this method, areas of interest (the motor cortex and lumbosacral thickening of the spinal cord) are stimulated with an electromagnetic stimulus. The experiment was conducted with the participation of 16 healthy female volunteers with a natural menstrual cycle. The thresholds, amplitudes, and latencies of motor potentials evoked by magnetic stimulation were assessed. We showed that 5-day exposure to support withdrawal leads to a decrease in motor-evoked potential thresholds and central motor conduction time, although changes in motor response amplitudes were ambiguous. The data obtained correspond to the results of previous research on Dry Immersion effects on the sensorimotor system in men.
Collapse
Affiliation(s)
- Inna Nosikova
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Alexandra Riabova
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Vladimir Kitov
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Elena Tomilovskaya
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
9
|
Sharlo KA, Lvova ID, Tyganov SA, Sergeeva KV, Kalashnikov VY, Kalashnikova EP, Mirzoev TM, Kalamkarov GR, Shevchenko TF, Shenkman BS. A Prochlorperazine-Induced Decrease in Autonomous Muscle Activity during Hindlimb Unloading Is Accompanied by Preserved Slow Myosin mRNA Expression. Curr Issues Mol Biol 2023; 45:5613-5630. [PMID: 37504270 PMCID: PMC10378404 DOI: 10.3390/cimb45070354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023] Open
Abstract
Skeletal muscle disuse leads to pathological muscle activity as well as to slow-to-fast fiber-type transformation. Fast-type fibers are more fatigable than slow-type, so this transformation leads to a decline in muscle function. Prochlorperazine injections previously were shown to attenuate autonomous rat soleus muscle electrical activity under unloading conditions. In this study, we found that prochlorperazine blocks slow-to-fast fiber-type transformation in disused skeletal muscles of rats, possibly through affecting calcium and ROS-related signaling.
Collapse
Affiliation(s)
- Kristina A Sharlo
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
| | - Irina D Lvova
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
| | - Sergey A Tyganov
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
| | - Ksenia V Sergeeva
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
| | - Vitaly Y Kalashnikov
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
| | - Ekaterina P Kalashnikova
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
| | - Timur M Mirzoev
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
| | - Grigoriy R Kalamkarov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Tatiana F Shevchenko
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Boris S Shenkman
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
| |
Collapse
|
10
|
Mechanotransduction for Muscle Protein Synthesis via Mechanically Activated Ion Channels. Life (Basel) 2023; 13:life13020341. [PMID: 36836698 PMCID: PMC9962945 DOI: 10.3390/life13020341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Cell mechanotransduction, the ability to detect physical forces and convert them into a series of biochemical events, is important for a wide range of physiological processes. Cells express an array of mechanosensors transducing physical forces into intracellular signaling cascades, including ion channels. Ion channels that can be directly activated by mechanical cues are known as mechanically activated (MA), or stretch-activated (SA), channels. In response to repeated exposures to mechanical stimulation in the form of resistance training, enhanced protein synthesis and fiber hypertrophy are elicited in skeletal muscle, whereas a lack of mechanical stimuli due to inactivity/mechanical unloading leads to reduced muscle protein synthesis and fiber atrophy. To date, the role of MA channels in the transduction of mechanical load to intracellular signaling pathways regulating muscle protein synthesis is poorly described. This review article will discuss MA channels in striated muscle, their regulation, and putative roles in the anabolic processes in muscle cells/fibers in response to mechanical stimuli.
Collapse
|
11
|
Metformin Attenuates Slow-to-Fast Fiber Shift and Proteolysis Markers Increase in Rat Soleus after 7 Days of Rat Hindlimb Unloading. Int J Mol Sci 2022; 24:ijms24010503. [PMID: 36613942 PMCID: PMC9820761 DOI: 10.3390/ijms24010503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Muscle unloading leads to signaling alterations that cause muscle atrophy and weakness. The cellular energy sensor AMPK can regulate myofiber-type shift, calcium-dependent signaling and ubiquitin-proteasome system markers. We hypothesized that the prevention of p-AMPK downregulation during the first week of muscle unloading would impede atrophy development and the slow-to-fast shift of soleus muscle fibers, and the aim of the study was to test this hypothesis. Thirty-two male Wistar rats were randomly assigned to four groups: placebo control (C), control rats treated with metformin (C + M), 7 days of hindlimb suspension (HS) + placebo (7HS), and 7 days of HS + metformin administration (7HS + M). In the soleus of the 7HS rats, we detected a slow-to-fast fiber-type shift as well as a significant downregulation of MEF-2D and p300 in the nuclei. In the 7HS group, we also found decreases in p-ACC (AMPK target) protein level and in the expression of E3 ubiquitin ligases and p-CaMK II protein level vs. the C group. The 7-day metformin treatment for soleus muscle unloading (1) prevented slow-to-fast fiber-type shift; (2) counteracted changes in the p-ACC protein level; (3) hindered changes in the nuclear protein level of the slow myosin expression activators MEF-2D and p300, but did not affect NFATc1 signaling; and (4) attenuated the unloading-induced upregulation of MuRF-1, atrogin-1, ubiquitin and myostatin mRNA expression, but did not prevent soleus muscle atrophy. Thus, metformin treatment during muscle disuse could be useful to prevent the decrease in the percentage of slow-type fatigue-resistant muscle fibers.
Collapse
|
12
|
Zaripova KА, Belova SP, Shenkman BS, Nemirovskaya TL. The Role of P2Y Receptors in the Regulation of Atrophic Processes in Rat Skeletal Muscles under Unloading. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022060047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Short-Term Mild Hypoxia Modulates Na,K-ATPase to Maintain Membrane Electrogenesis in Rat Skeletal Muscle. Int J Mol Sci 2022; 23:ijms231911869. [PMID: 36233169 PMCID: PMC9570130 DOI: 10.3390/ijms231911869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
The Na,K-ATPase plays an important role in adaptation to hypoxia. Prolonged hypoxia results in loss of skeletal muscle mass, structure, and performance. However, hypoxic preconditioning is known to protect against a variety of functional impairments. In this study, we tested the possibility of mild hypoxia to modulate the Na,K-ATPase and to improve skeletal muscle electrogenesis. The rats were subjected to simulated high-altitude (3000 m above sea level) hypobaric hypoxia (HH) for 3 h using a hypobaric chamber. Isolated diaphragm and soleus muscles were tested. In the diaphragm muscle, HH increased the α2 Na,K-ATPase isozyme electrogenic activity and stably hyperpolarized the extrajunctional membrane for 24 h. These changes were accompanied by a steady increase in the production of thiobarbituric acid reactive substances as well as a decrease in the serum level of endogenous ouabain, a specific ligand of the Na,K-ATPase. HH also increased the α2 Na,K-ATPase membrane abundance without changing its total protein content; the plasma membrane lipid-ordered phase did not change. In the soleus muscle, HH protected against disuse (hindlimb suspension) induced sarcolemmal depolarization. Considering that the Na,K-ATPase is critical for maintaining skeletal muscle electrogenesis and performance, these findings may have implications for countermeasures in disuse-induced pathology and hypoxic therapy.
Collapse
|
14
|
Nemirovskaya TL, Sharlo KA. Roles of ATP and SERCA in the Regulation of Calcium Turnover in Unloaded Skeletal Muscles: Current View and Future Directions. Int J Mol Sci 2022; 23:ijms23136937. [PMID: 35805949 PMCID: PMC9267070 DOI: 10.3390/ijms23136937] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
A decrease in skeletal muscle contractile activity or its complete cessation (muscle unloading or disuse) leads to muscle fibers’ atrophy and to alterations in muscle performance. These changes negatively affect the quality of life of people who, for one reason or another, are forced to face a limitation of physical activity. One of the key regulatory events leading to the muscle disuse-induced changes is an impairment of calcium homeostasis, which leads to the excessive accumulation of calcium ions in the sarcoplasm. This review aimed to analyze the triggering mechanisms of calcium homeostasis impairment (including those associated with the accumulation of high-energy phosphates) under various types of muscle unloading. Here we proposed a hypothesis about the regulatory mechanisms of SERCA and IP3 receptors activity during muscle unloading, and about the contribution of these mechanisms to the excessive calcium ion myoplasmic accumulation and gene transcription regulation via excitation–transcription coupling.
Collapse
|
15
|
Belova SP, Kalashnikova EP, Tyganov SA, Kostrominova TY, Shenkman BS, Nemirovskaya TL. Effect of enhanced muscle tone on the expression of atrogenes and cytoskeletal proteins during postural muscle unloading. Arch Biochem Biophys 2022; 725:109291. [PMID: 35597296 DOI: 10.1016/j.abb.2022.109291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/21/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
Abstract
Skeletal muscle unloading leads to the decreased electrical activity and decline of muscle tone. AIMS Current study evaluated the effect of muscle tone preservation achieved by tetanus toxin (TeNT) treatment on signaling pathways regulating atrophic processes during unloading. MAIN METHODS Four groups of rats were used: non-treated control (C), control rats with TeNT administration (CT), 7 days of unloading/hindlimb suspension with placebo (HS), and 7 days of unloading with TeNT administration (HST). KEY FINDINGS Absolute and relative force of tetanic contractions was decreased by 65% in soleus muscle of HS rats when compared with C. Treatment with TeNT significantly lessened force decline in soleus muscle of HST rats when compared with HS. TeNT administration increased myosin heavy chain I beta (MyHC Iβ) expression in CT rats and prevented MyHC Iβ loss in HST group when compared with C rats. Desmin content was lower by 31.4% (p < 0.05) in HS group when compared with HST. Calpain-1 expression was increased in HS group when compared with C, CT and HST. There was a decrease in p-p70S6K content (41%, p < 0,05) and an increase in p-eEF2 content (77%, p < 0,05) in HS group when compared with C, while there were no significant differences in the content of these proteins between HST, CT and C groups. SIGNIFICANCE Treatment with TeNT significantly diminished unloading-induced decline of soleus muscle mass and mechanical properties and affected the regulation of MyHC Iβ expression. These effects are mediated by signaling pathways regulating protein synthesis and degradation.
Collapse
Affiliation(s)
- Svetlana P Belova
- Myology Laboratory, Institute of Biomedical Problems, RAS, Moscow, Russia
| | | | - Sergey A Tyganov
- Myology Laboratory, Institute of Biomedical Problems, RAS, Moscow, Russia
| | - Tatiana Y Kostrominova
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine-Northwest, Gary, IN, USA
| | - Boris S Shenkman
- Myology Laboratory, Institute of Biomedical Problems, RAS, Moscow, Russia
| | | |
Collapse
|
16
|
Sharlo KA, Lvova ID, Shenkman BS. Interaction of Oxidative Metabolism and Epigenetic Regulation of Gene Expression under Muscle Functional Unloading. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022030012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Sharlo K, Tyganov SA, Tomilovskaya E, Popov DV, Saveko AA, Shenkman BS. Effects of Various Muscle Disuse States and Countermeasures on Muscle Molecular Signaling. Int J Mol Sci 2021; 23:ijms23010468. [PMID: 35008893 PMCID: PMC8745071 DOI: 10.3390/ijms23010468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle is capable of changing its structural parameters, metabolic rate and functional characteristics within a wide range when adapting to various loading regimens and states of the organism. Prolonged muscle inactivation leads to serious negative consequences that affect the quality of life and work capacity of people. This review examines various conditions that lead to decreased levels of muscle loading and activity and describes the key molecular mechanisms of muscle responses to these conditions. It also details the theoretical foundations of various methods preventing adverse muscle changes caused by decreased motor activity and describes these methods. A number of recent studies presented in this review make it possible to determine the molecular basis of the countermeasure methods used in rehabilitation and space medicine for many years, as well as to identify promising new approaches to rehabilitation and to form a holistic understanding of the mechanisms of gravity force control over the muscular system.
Collapse
|
18
|
Gorza L, Germinario E, Tibaudo L, Vitadello M, Tusa C, Guerra I, Bondì M, Salmaso S, Caliceti P, Vitiello L, Danieli-Betto D. Chronic Systemic Curcumin Administration Antagonizes Murine Sarcopenia and Presarcopenia. Int J Mol Sci 2021; 22:ijms222111789. [PMID: 34769220 PMCID: PMC8584127 DOI: 10.3390/ijms222111789] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/28/2022] Open
Abstract
Curcumin administration attenuates muscle disuse atrophy, but its effectiveness against aging-induced, selective loss of mass or force (presarcopenia or asthenia/dynopenia), or combined loss (sarcopenia), remains controversial. A new systemic curcumin treatment was developed and tested in 18-month-old C57BL6J and C57BL10ScSn male mice. The effects on survival, liver toxicity, loss of muscle mass and force, and satellite cell responsivity and commitment were evaluated after 6-month treatment. Although only 24-month-old C57BL10ScSn mice displayed age-related muscle impairment, curcumin significantly increased survival of both strains (+20–35%), without signs of liver toxicity. Treatment prevented sarcopenia in soleus and presarcopenia in EDL of C57BL10ScSn mice, whereas it did not affect healthy-aged muscles of C57BL6J. Curcumin-treated old C57BL10ScSn soleus preserved type-1 myofiber size and increased type-2A one, whereas EDL maintained adult values of total myofiber number and fiber-type composition. Mechanistically, curcumin only partially prevented the age-related changes in protein level and subcellular distribution of major costamere components and regulators. Conversely, it affected satellite cells, by maintaining adult levels of myofiber maturation in old regenerating soleus and increasing percentage of isolated, MyoD-positive satellite cells from old hindlimb muscles. Therefore, curcumin treatment successfully prevents presarcopenia and sarcopenia development by improving satellite cell commitment and recruitment.
Collapse
Affiliation(s)
- Luisa Gorza
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (E.G.); (M.V.); (C.T.); (I.G.); (M.B.); (D.D.-B.)
- Correspondence:
| | - Elena Germinario
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (E.G.); (M.V.); (C.T.); (I.G.); (M.B.); (D.D.-B.)
| | - Lucia Tibaudo
- Department of Biology, University of Padova, 35131 Padova, Italy; (L.T.); (L.V.)
| | - Maurizio Vitadello
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (E.G.); (M.V.); (C.T.); (I.G.); (M.B.); (D.D.-B.)
| | - Chiara Tusa
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (E.G.); (M.V.); (C.T.); (I.G.); (M.B.); (D.D.-B.)
| | - Irene Guerra
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (E.G.); (M.V.); (C.T.); (I.G.); (M.B.); (D.D.-B.)
| | - Michela Bondì
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (E.G.); (M.V.); (C.T.); (I.G.); (M.B.); (D.D.-B.)
| | - Stefano Salmaso
- Department of Pharmaceutical Sciences, University of Padova, 35131 Padova, Italy; (S.S.); (P.C.)
| | - Paolo Caliceti
- Department of Pharmaceutical Sciences, University of Padova, 35131 Padova, Italy; (S.S.); (P.C.)
| | - Libero Vitiello
- Department of Biology, University of Padova, 35131 Padova, Italy; (L.T.); (L.V.)
| | - Daniela Danieli-Betto
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (E.G.); (M.V.); (C.T.); (I.G.); (M.B.); (D.D.-B.)
| |
Collapse
|
19
|
Zaripova KA, Kalashnikova EP, Belova SP, Kostrominova TY, Shenkman BS, Nemirovskaya TL. Role of Pannexin 1 ATP-Permeable Channels in the Regulation of Signaling Pathways during Skeletal Muscle Unloading. Int J Mol Sci 2021; 22:ijms221910444. [PMID: 34638792 PMCID: PMC8508840 DOI: 10.3390/ijms221910444] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle unloading results in atrophy. We hypothesized that pannexin 1 ATP-permeable channel (PANX1) is involved in the response of muscle to unloading. We tested this hypothesis by blocking PANX1, which regulates efflux of ATP from the cytoplasm. Rats were divided into six groups (eight rats each): non-treated control for 1 and 3 days of the experiments (1C and 3C, respectively), 1 and 3 days of hindlimb suspension (HS) with placebo (1H and 3H, respectively), and 1 and 3 days of HS with PANX1 inhibitor probenecid (PRB; 1HP and 3HP, respectively). When compared with 3C group there was a significant increase in ATP in soleus muscle of 3H and 3HP groups (32 and 51%, respectively, p < 0.05). When compared with 3H group, 3HP group had: (1) lower mRNA expression of E3 ligases MuRF1 and MAFbx (by 50 and 38% respectively, p < 0.05) and MYOG (by 34%, p < 0.05); (2) higher phosphorylation of p70S6k and p90RSK (by 51 and 35% respectively, p < 0.05); (3) lower levels of phosphorylated eEF2 (by 157%, p < 0.05); (4) higher level of phosphorylated GSK3β (by 189%, p < 0.05). In conclusion, PANX1 ATP-permeable channels are involved in the regulation of muscle atrophic processes by modulating expression of E3 ligases, and protein translation and elongation processes during unloading.
Collapse
Affiliation(s)
- Ksenia A. Zaripova
- Institute of Biomedical Problems, RAS, 123007 Moscow, Russia; (K.A.Z.); (E.P.K.); (S.P.B.); (B.S.S.)
| | - Ekaterina P. Kalashnikova
- Institute of Biomedical Problems, RAS, 123007 Moscow, Russia; (K.A.Z.); (E.P.K.); (S.P.B.); (B.S.S.)
| | - Svetlana P. Belova
- Institute of Biomedical Problems, RAS, 123007 Moscow, Russia; (K.A.Z.); (E.P.K.); (S.P.B.); (B.S.S.)
| | - Tatiana Y. Kostrominova
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine-Northwest, Gary, IN 46408, USA;
| | - Boris S. Shenkman
- Institute of Biomedical Problems, RAS, 123007 Moscow, Russia; (K.A.Z.); (E.P.K.); (S.P.B.); (B.S.S.)
| | - Tatiana L. Nemirovskaya
- Institute of Biomedical Problems, RAS, 123007 Moscow, Russia; (K.A.Z.); (E.P.K.); (S.P.B.); (B.S.S.)
- Correspondence:
| |
Collapse
|
20
|
Belova SP, Tyganov SA, Mochalova EP, Shenkman BS. Restricted Activity and Protein Synthesis
in Postural and Locomotor Muscles. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021030194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
21
|
Kravtsova VV, Krivoi II. Molecular and Functional Heterogeneity of Na,K-ATPase in the Skeletal Muscle. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021040086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Chronic Ouabain Prevents Na,K-ATPase Dysfunction and Targets AMPK and IL-6 in Disused Rat Soleus Muscle. Int J Mol Sci 2021; 22:ijms22083920. [PMID: 33920198 PMCID: PMC8069997 DOI: 10.3390/ijms22083920] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 12/20/2022] Open
Abstract
Sustained sarcolemma depolarization due to loss of the Na,K-ATPase function is characteristic for skeletal muscle motor dysfunction. Ouabain, a specific ligand of the Na,K-ATPase, has a circulating endogenous analogue. We hypothesized that the Na,K-ATPase targeted by the elevated level of circulating ouabain modulates skeletal muscle electrogenesis and prevents its disuse-induced disturbances. Isolated soleus muscles from rats intraperitoneally injected with ouabain alone or subsequently exposed to muscle disuse by 6-h hindlimb suspension (HS) were studied. Conventional electrophysiology, Western blotting, and confocal microscopy with cytochemistry were used. Acutely applied 10 nM ouabain hyperpolarized the membrane. However, a single injection of ouabain (1 µg/kg) prior HS was unable to prevent the HS-induced membrane depolarization. Chronic administration of ouabain for four days did not change the α1 and α2 Na,K-ATPase protein content, however it partially prevented the HS-induced loss of the Na,K-ATPase electrogenic activity and sarcolemma depolarization. These changes were associated with increased phosphorylation levels of AMP-activated protein kinase (AMPK), its substrate acetyl-CoA carboxylase and p70 protein, accompanied with increased mRNA expression of interleikin-6 (IL-6) and IL-6 receptor. Considering the role of AMPK in regulation of the Na,K-ATPase, we suggest an IL-6/AMPK contribution to prevent the effects of chronic ouabain under skeletal muscle disuse.
Collapse
|
23
|
Gorza L, Sorge M, Seclì L, Brancaccio M. Master Regulators of Muscle Atrophy: Role of Costamere Components. Cells 2021; 10:cells10010061. [PMID: 33401549 PMCID: PMC7823551 DOI: 10.3390/cells10010061] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
The loss of muscle mass and force characterizes muscle atrophy in several different conditions, which share the expression of atrogenes and the activation of their transcriptional regulators. However, attempts to antagonize muscle atrophy development in different experimental contexts by targeting contributors to the atrogene pathway showed partial effects in most cases. Other master regulators might independently contribute to muscle atrophy, as suggested by our recent evidence about the co-requirement of the muscle-specific chaperone protein melusin to inhibit unloading muscle atrophy development. Furthermore, melusin and other muscle mass regulators, such as nNOS, belong to costameres, the macromolecular complexes that connect sarcolemma to myofibrils and to the extracellular matrix, in correspondence with specific sarcomeric sites. Costameres sense a mechanical load and transduce it both as lateral force and biochemical signals. Recent evidence further broadens this classic view, by revealing the crucial participation of costameres in a sarcolemmal “signaling hub” integrating mechanical and humoral stimuli, where mechanical signals are coupled with insulin and/or insulin-like growth factor stimulation to regulate muscle mass. Therefore, this review aims to enucleate available evidence concerning the early involvement of costamere components and additional putative master regulators in the development of major types of muscle atrophy.
Collapse
Affiliation(s)
- Luisa Gorza
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy
- Correspondence:
| | - Matteo Sorge
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.S.); (L.S.); (M.B.)
| | - Laura Seclì
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.S.); (L.S.); (M.B.)
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.S.); (L.S.); (M.B.)
| |
Collapse
|