1
|
Borrega-Roman L, Hoare BL, Kosar M, Sarott RC, Patej KJ, Bouma J, Scott-Dennis M, Koers EJ, Gazzi T, Mach L, Barrondo S, Sallés J, Guba W, Kusznir E, Nazaré M, Rufer AC, Grether U, Heitman LH, Carreira EM, Sykes DA, Veprintsev DB. A universal cannabinoid CB1 and CB2 receptor TR-FRET kinetic ligand-binding assay. Front Pharmacol 2025; 16:1469986. [PMID: 40271066 PMCID: PMC12015242 DOI: 10.3389/fphar.2025.1469986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 02/11/2025] [Indexed: 04/25/2025] Open
Abstract
Introduction The kinetics of ligand binding to G protein-coupled receptors (GPCRs) is an important optimization parameter in drug discovery. Traditional radioligand assays are labor-intensive, preventing their application at the early stages of drug discovery. Fluorescence-based assays offer several advantages, including a possibility to develop a homogeneous format, continuous data collection, and higher throughput. This study sought to develop a fluorescence-based binding assay to investigate ligand-binding kinetics at human cannabinoid type 1 and 2 receptors (CB1R and CB2R). Methods We synthesized D77, a novel tracer derived from the non-selective cannabinoid Δ8-THC. Using time-resolved Förster resonance energy transfer (TR-FRET), we developed an assay to study ligand-binding kinetics at physiological temperatures. For CB1R, we truncated the first 90 amino acids of its flexible N-terminal domain to reduce the FRET distance between the terbium cryptate (donor) and the fluorescent ligand (acceptor). The full-length CB2R construct was functional without modification due to its shorter N-terminus. The Motulsky-Mahan competition binding model was used to analyze the binding kinetics of the endocannabinoids and several other non-fluorescent ligands. Results The D77 tracer showed nanomolar-range affinity for truncated CB1R (CB1R91-472) and full-length CB2R (CB2R1-360), displaying competitive binding with orthosteric ligands. D77 exhibited rapid dissociation kinetics from both CB1R and CB2R, which were similar to the fastest dissociating reference compounds. This was critical for accurately determining the on- and off-rates of the fastest dissociating compounds. Using D77, we measured the kinetic binding properties of various CB1R and CB2R agonists and antagonists at physiological temperature and sodium ion concentration. Discussion The k on values for molecules binding to CB1R varied by three orders of magnitude, from the slowest (HU308) to the fastest (rimonabant). A strong correlation between k on and affinity was observed for compounds binding to CB1R, indicating that the association rate primarily determines their affinity for CB1R. Unlike CB1R, a stronger correlation was found between the dissociation rate constant k off and the affinity for CB2R, suggesting that both k on and k off dictate the overall affinity for CB2R. Exploring the kinetic parameters of cannabinoid drug candidates could help drug development programs targeting these receptors.
Collapse
Affiliation(s)
- Leire Borrega-Roman
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Bioaraba, Neurofarmacología Celular y Molecular, Vitoria-Gasteiz, Spain
| | - Bradley L. Hoare
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom
| | - Miroslav Kosar
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Roman C. Sarott
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Kacper J. Patej
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Jara Bouma
- Division of Drug Discovery and Safety, Leiden Academic Center for Drug Research, Leiden University and Oncode Institute, Leiden, Netherlands
| | - Morgan Scott-Dennis
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom
| | - Eline J. Koers
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom
| | - Thais Gazzi
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP, Campus BerlinBuch, Berlin, Germany
| | - Leonard Mach
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP, Campus BerlinBuch, Berlin, Germany
| | - Sergio Barrondo
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Bioaraba, Neurofarmacología Celular y Molecular, Vitoria-Gasteiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Joan Sallés
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Bioaraba, Neurofarmacología Celular y Molecular, Vitoria-Gasteiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Wolfgang Guba
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Eric Kusznir
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Marc Nazaré
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP, Campus BerlinBuch, Berlin, Germany
| | - Arne C. Rufer
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Uwe Grether
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Laura H. Heitman
- Division of Drug Discovery and Safety, Leiden Academic Center for Drug Research, Leiden University and Oncode Institute, Leiden, Netherlands
| | - Erick M. Carreira
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - David A. Sykes
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom
| | - Dmitry B. Veprintsev
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom
| |
Collapse
|
2
|
Farbman E, Anis S, Torres-Russotto D. Hope vs Hype III: Should physicians be more open in endorsing cannabis for Parkinson's disease? (PSG Debate 2024). Parkinsonism Relat Disord 2025:107811. [PMID: 40175169 DOI: 10.1016/j.parkreldis.2025.107811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025]
Affiliation(s)
- Eric Farbman
- Community Neurosciences Institute, Fresno, CA, USA
| | - Saar Anis
- Center for Neurological Restoration, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | - Diego Torres-Russotto
- Baptist Health Miami Neuroscience Institute, Florida International University, FL, USA
| |
Collapse
|
3
|
Silva-Llanes I, Rodríguez-López S, González-Naranjo P, Sastre ED, López MG, Páez JA, Campillo N, Lastres-Becker I. Targeting CB2 receptor with a novel antagonist reverses cognitive decline, neurodegeneration and pyroptosis in a TAU-dependent frontotemporal dementia mouse model. Brain Behav Immun 2025; 127:251-268. [PMID: 40081780 DOI: 10.1016/j.bbi.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/20/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025] Open
Abstract
Frontotemporal dementia (FTD) comprises a group of disorders characterized by a progressive decline in behavior or language linked to the degeneration of the frontal and anterior temporal lobes followed by hippocampal atrophy. There are no effective treatments for FTD and for this reason, novel pharmacological targets, such as the endocannabinoid system (ECS), are being explored. Previous results from our laboratory showed a TAUP301L-dependent increase in CB2 receptor expression in hippocampal neurons of a FTD mouse model, alongside the neuroprotective impact of CB2 ablation. In this study, we evaluated the therapeutic potential of a new CB2 antagonist (PGN36) in our TAU-dependent FTD mouse model. Six-month-old mice received stereotaxic injections of an adeno-associated virus expressing human TAUP301L protein (AAV-TAUP301L) into the right hippocampus and were treated daily with PGN36 (5 mg/kg, i.p.) or vehicle for three weeks. By integrating behavioral tests, RNA-seq, qPCR expression analysis, and immunofluorescence in the AAV expressing TAU mouse model, we found that PGN36 treatment reverses key features of the neurodegenerative process triggered by TAUP301L overexpression. PGN36 treatment effectively countered TAUP301L-induced cognitive decline by reducing TAU protein expression levels and restoring markers of synaptic plasticity. Notably, we observed neuroprotection in the dentate gyrus granular layer, which we attribute to the modulation of pyroptosis. This programmed cell death pathway, is triggered by TAUP301L overexpression. PGN36 appears to modulate the pyroptotic cascade, thereby preventing the pyroptosis-induced neuronal loss. These findings collectively underscore the neuroprotective potential of this novel CB2 antagonist treatment against TAU-associated FTD.
Collapse
Affiliation(s)
- Ignacio Silva-Llanes
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid (UAM), Spain; Instituto de Investigaciones Biomédicas "Sols-Morreale" UAM-CSIC, Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Madrid, Spain.
| | - Silvia Rodríguez-López
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid (UAM), Spain; Instituto de Investigaciones Biomédicas "Sols-Morreale" UAM-CSIC, Madrid, Spain.
| | | | - Eric Del Sastre
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid 28029 Madrid, Spain.
| | - Manuela G López
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid 28029 Madrid, Spain.
| | - Juan Antonio Páez
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Nuria Campillo
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Isabel Lastres-Becker
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid (UAM), Spain; Instituto de Investigaciones Biomédicas "Sols-Morreale" UAM-CSIC, Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Madrid, Spain.
| |
Collapse
|
4
|
Ventura ALM, Silva TM, França GR. Cannabinoids Activate Endoplasmic Reticulum Stress Response and Promote the Death of Avian Retinal Müller Cells in Culture. Brain Sci 2025; 15:291. [PMID: 40149812 PMCID: PMC11940308 DOI: 10.3390/brainsci15030291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Activation of cannabinoid CB1 or CB2 receptors induces the death of glial progenitors from the chick retina in culture. Here, by using an enriched retinal glial cell culture, we characterized some mechanisms underlying glial death promoted by cannabinoids. METHODS AND RESULTS Retinal cultures obtained from 8-day-old (E8) chick embryos and maintained for 12-15 days (C12-15) were used. MTT assays revealed that the CB1/CB2 agonist WIN 55,212-2 (WIN) decreased cell viability in the cultures in a time-dependent manner, with a concomitant increase in extracellular LDH activity, suggesting membrane integrity loss. Cell death was also dose-dependently induced by cannabidiol (CBD), Δ9-tetrahydrocannabinol (THC), and CP55940, another CB1/CB2 agonist. In contrast to WIN-induced cell death that was not blocked by either antagonist, the deleterious effect of CBD was blocked by the CB2 receptor antagonist SR144528, but not by PF514273, a CB1 receptor antagonist. WIN-treated cultures showed glial cells with large vacuoles in cytoplasm that were absent in cultures incubated with WIN plus 4-phenyl-butyrate (PBA), a chemical chaperone. Since cannabinoids induced the phosphorylation of eukaryotic initiation factor 2-alfa (eIF2α), these results suggest a process of endoplasmic reticulum (ER) swelling and stress. Incubation of the cultures with WIN for 4 h induced a ~five-fold increase in the number of cells labeled with the ROS indicator CM-H2DCFDA. WIN induced the phosphorylation of JNK but not of p38 in the cultures, and also induced an increase in the number of glial cells expressing cleaved-caspase 3 (c-CASP3). The decrease in cell viability and the expression of c-CASP3 was blocked by salubrinal, an inhibitor of eIF2α dephosphorylation. CONCLUSIONS These data suggest that cannabinoids induce the apoptosis of glial cells in culture by promoting ROS production, ER stress, JNK phosphorylation, and caspase-3 processing. The graphical abstract was created at Biorender.com.
Collapse
Affiliation(s)
- Ana Lúcia Marques Ventura
- Neuroscience Program, Department of Neurobiology, Federal Fluminense University, Niterói CEP 24210-201, RJ, Brazil;
| | - Thayane Martins Silva
- Neuroscience Program, Department of Neurobiology, Federal Fluminense University, Niterói CEP 24210-201, RJ, Brazil;
| | - Guilherme Rapozeiro França
- Department of Physiological Sciences, Federal University of the State of Rio de Janeiro, Rio de Janeiro CEP 20211-040, RJ, Brazil;
| |
Collapse
|
5
|
Thomas NM, Alharbi M, Muripiti V, Banothu J. Quinoline and quinolone carboxamides: A review of anticancer activity with detailed structure-activity relationship analysis. Mol Divers 2025:10.1007/s11030-024-11092-4. [PMID: 39873887 DOI: 10.1007/s11030-024-11092-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/19/2024] [Indexed: 01/30/2025]
Abstract
Quinoline is a highly privileged scaffold with significant pharmacological potential. Introducing a carbonyl group into the quinoline ring generates a quinolone ring, which exhibits promising biological properties. Incorporating a carboxamide linkage at different positions within the quinoline and quinolone frameworks has proven an effective strategy for enhancing pharmacological properties, particularly anticancer potency. Consequently, various scientific communities have explored quinoline and quinolone carboxamides for their anticancer activities, introducing modifications at key positions. This review article aims to compile the anticancer activity of various quinoline and quinolone carboxamide derivatives, accompanied by a detailed structure-activity relationship (SAR) analysis. It also categorizes the data into activities of isolated/fused quinoline and quinolone carboxamide derivatives, which were further subclassified based on the mechanisms of anticancer action. Among the numerous derivatives studied, compounds 8, 19, 31, 34, 40, 68, 108, 116, and 132 have emerged as the most potent anticancer agents, making them strong candidates for further drug design and development. The mechanisms underlying the anticancer activity of these potent compounds have been identified as inhibitors of topoisomerase (8, 19, 31, and 34), protein kinase (40, 108, and 116), human dihydroorotate dehydrogenase (68), and as a cannabinoid receptor 2 agonist (132). We anticipate this review will be valuable to researchers engaged in the structural design and development of quinoline and quinolone carboxamide-based anticancer drugs with high efficacy.
Collapse
Affiliation(s)
- Neethu Mariam Thomas
- Department of Chemistry, National Institute of Technology Calicut, Kozhikode, 673601, Kerala, India
| | - Majed Alharbi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Venkanna Muripiti
- Department of Education, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, 671320, Kerala, India
| | - Janardhan Banothu
- Department of Chemistry, National Institute of Technology Calicut, Kozhikode, 673601, Kerala, India.
| |
Collapse
|
6
|
Koyama S, Etkins J, Jun J, Miller M, So GC, Gisch DL, Eadon MT. Utilization of Cannabidiol in Post-Organ-Transplant Care. Int J Mol Sci 2025; 26:699. [PMID: 39859413 PMCID: PMC11765766 DOI: 10.3390/ijms26020699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Cannabidiol (CBD) is one of the major phytochemical constituents of cannabis, Cannabis sativa, widely recognized for its therapeutic potential. While cannabis has been utilized for medicinal purposes since ancient times, its psychoactive and addictive properties led to its prohibition in 1937, with only the medical use being reauthorized in 1998. Unlike tetrahydrocannabinol (THC), CBD lacks psychoactive and addictive properties, yet the name that suggests its association with cannabis has significantly contributed to its public visibility. CBD exhibits diverse pharmacological properties, most notably anti-inflammatory effects. Additionally, it interacts with key drug-metabolizing enzyme families, including cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT), which mediate phase I and phase II metabolism, respectively. By binding to these enzymes, CBD can inhibit the metabolism of co-administered drugs, which can potentially enhance their toxicity or therapeutic effects. Mild to moderate adverse events associated with CBD use have been reported. Advances in chemical formulation techniques have recently enabled strategies to minimize these effects. This review provides an overview of CBD, covering its historical background, recent clinical trials, adverse event profiles, and interactions with molecular targets such as receptors, channels, and enzymes. We particularly emphasize the mechanisms underlying its anti-inflammatory effects and interaction with drugs relevant to organ transplantation. Finally, we explore recent progress in the chemical formulation of CBD in order to enhance its bioavailability, which will enable decreasing the dose to use and increase its safety and efficacy.
Collapse
Affiliation(s)
- Sachiko Koyama
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.E.); (J.J.); (D.L.G.); (M.T.E.)
| | - Jumar Etkins
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.E.); (J.J.); (D.L.G.); (M.T.E.)
| | - Joshua Jun
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.E.); (J.J.); (D.L.G.); (M.T.E.)
| | - Matthew Miller
- College of Human Ecology, Cornell University, Ithaca, NY 14850, USA;
| | - Gerald C. So
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.E.); (J.J.); (D.L.G.); (M.T.E.)
| | - Debora L. Gisch
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.E.); (J.J.); (D.L.G.); (M.T.E.)
| | - Michael T. Eadon
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.E.); (J.J.); (D.L.G.); (M.T.E.)
| |
Collapse
|
7
|
Rao VK, Lewis-Bakker MM, Wasilewski E, Clarke HA, Kotra LP. Stereoisomers of cannabidiols and their pharmacological activities - A potentially novel direction for cannabinoids. Bioorg Med Chem 2025; 117:118019. [PMID: 39612769 DOI: 10.1016/j.bmc.2024.118019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024]
Abstract
Cannabidiol (CBD), a bicyclic non-psychoactive cannabinoid biosynthesized by Cannabis spp. of plants, has attracted significant interest in the past decade due to its therapeutic properties. In 2018, the US FDA approved Epidiolex®, a CBD-based drug for the treatment of two rare epileptic seizure disorders. CBD possesses two chiral centers at C3 and C4 on its terpenoid moiety and exhibits cis-trans stereoisomerism along the C3-C4 bond axis. (-)-trans-(3R,4R)-CBD, the natural CBD, is biosynthesized by the cannabis plant, while the unnatural (+)-trans-(3S,4S)-CBD is obtained via chemical synthesis. Both trans isomers exhibit broad in vitro and in vivo biological activities; typically, the unnatural stereoisomer (+)-trans-CBD and its derivatives exhibited more potent activities in comparison to the corresponding (-)-trans isomers. On the other hand, cis-CBD isomers have only been reported recently and can undergo epimerization into trans isomers. There is a significant opportunity to explore unique synthetic methods and biological activities of stereoisomers of CBD that may pave the path for the development of novel therapeutics. Herein, as a novel direction in cannabinoids, we review the chemistry of CBD stereoisomers, their structure-activity relationships, target selectivity and efficacy in animal models.
Collapse
Affiliation(s)
- Vajja Krishna Rao
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | - Ewa Wasilewski
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Hance A Clarke
- Centre for Cannabinoid Therapeutics, University of Toronto and University Health Network, Toronto, Ontario, Canada; Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Lakshmi P Kotra
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Centre for Cannabinoid Therapeutics, University of Toronto and University Health Network, Toronto, Ontario, Canada; Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada.
| |
Collapse
|
8
|
Bukowska B. Current and Potential Use of Biologically Active Compounds Derived from Cannabis sativa L. in the Treatment of Selected Diseases. Int J Mol Sci 2024; 25:12738. [PMID: 39684447 DOI: 10.3390/ijms252312738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Cannabis sativa L. contains numerous compounds with antioxidant and anti-inflammatory properties, including the flavonoids and the cannabinoids, particularly Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD). Cannabinoids have an effect on the endocannabinoid system (ECS), a cellular communication network, and are, hence, widely studied for medical applications. Epidiolex®, a 99% pure oral CBD extract, has been approved by the FDA for the treatment of epilepsy. Nabiximols (Sativex) is an oromucosal spray containing equal volume of THC and CBD, and it is commonly used as an add-on treatment for unresponsive spasticity in multiple sclerosis (MS) patients. Several in vitro and in vivo studies have also shown that cannabinoids can be used to treat various types of cancer, such as melanoma and brain glioblastoma; the first positive clinical trials on the anticancer effect of a THC:CBD blend with temozolomide (TMZ) in the treatment of highly invasive brain cancer are very promising. The cannabinoids exert their anticancer properties in in vitro investigations by the induction of cell death, mainly by apoptosis and cytotoxic autophagy, and the inhibition of cell proliferation. In several studies, cannabinoids have been found to induce tumor regression and inhibit angiogenic mechanisms in vitro and in vivo, as well as in two low-numbered epidemiological studies. They also exhibit antiviral effects by inhibiting ACE2 transcription, blocking viral replication and fusion, and acting as anti-inflammatory agents; indeed, prior CBD consumption (a study of 93,565 persons in Chicago) has also been associated with a much lower incidence of SARS-CoV-2 infections. It is postulated that cannabis extracts can be used in the treatment of many other diseases such as systemic lupus erythematosus, type 1 diabetes, or various types of neurological disorders, e.g., Alzheimer's disease. The aim of this review is to outline the current state of knowledge regarding currently used medicinal preparations derived from C. sativa L. in the treatment of selected cancer and viral diseases, and to present the latest research on the potential applications of its secondary metabolites.
Collapse
Affiliation(s)
- Bożena Bukowska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Street141/143, 90-236 Lodz, Poland
| |
Collapse
|
9
|
Carone M, Premoli M, Bonini SA, Latsi R, Maccarinelli G, Memo M. Behavioral effects of two cannabidiol and cannabigerol-rich formulas on mice. Heliyon 2024; 10:e39938. [PMID: 39583801 PMCID: PMC11582752 DOI: 10.1016/j.heliyon.2024.e39938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024] Open
Abstract
Cannabis sativa L. produces more than 100 specific bioactive compounds, known as cannabinoids. The major non-psychotropic Cannabis constituent is cannabidiol (CBD), which displays beneficial properties in a variety of medical conditions. However, the potential therapeutic role of other minor phytocannabinoids, such as cannabigerol (CBG), and their use in combination with CBD, has remained largely unexplored. In this study, we wanted to assess the in vivo effects of two novel non-psychotropic cannabinoid formulas, both containing relatively high percentages of CBD but differing mainly for CBG content, hereafter called CBG+ and CBG-formulas. We employed different behavioral tests to evaluate the effects of these formulas at three different dosages on mice locomotor activity, anxiety-related behaviors, short-term memory and sociability. We found that these two formulas display unique behavioral profiles: CBG + formula produced an increase in mice locomotor activity and displayed anxiolytic properties, whereas both formulas improved spatial short-term memory and social interactions. The results obtained suggest that different combinations of phytocannabinoids are able to determine different behavioral effects and highlight the importance of studying the effects of less known phytocannabinoids (like CBG), which used in combination with other phytocannabinoids can change the profile of action of other active compounds (such as CBD).
Collapse
Affiliation(s)
| | | | - Sara Anna Bonini
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Rozana Latsi
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Giuseppina Maccarinelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| |
Collapse
|
10
|
Marzęda P, Wróblewska-Łuczka P, Florek-Łuszczki M, Góralczyk A, Łuszczki JJ. Antiproliferative effects of LY-2183240 combined with various chemotherapeutic drugs in an isobolographic in vitro model of malignant melanoma. Eur J Pharmacol 2024; 982:176937. [PMID: 39187040 DOI: 10.1016/j.ejphar.2024.176937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
Despite a great progress in identifying treatment options for patients with malignant melanoma, novel therapies tend to be costly and, in some cases, produce adverse effects forcing the melanoma patients to withdraw drugs. There is a strong need for less expensive drugs with a more favorable spectrum of anticancer actions. This study was designed to assess whether LY-2183240 (a potent inhibitor of both, anandamide cellular reuptake and fatty acid amide hydrolase (FAAH), an enzyme that degrades anandamide) has antiproliferative and cytotoxic effects on various human malignant melanoma cell lines (primary A375 and FM55P, metastatic SK-MEL28 and FM55M2) when administered alone or in combination with docetaxel, paclitaxel, mitoxantrone and cisplatin via the MTT assay. The MTT, LDH and BrdU assays were used to evaluate the potency and safety of LY-2183240, whereas isobolographic analysis of interactions was applied to characterize the interactions of LY-2183240 with the studied chemotherapeutics (docetaxel, paclitaxel, mitoxantrone and cisplatin). The isobolography confirmed that the combinations of LY-2183240 with docetaxel, paclitaxel and mitoxantrone produced additive interactions in all the tested melanoma cell lines. Only two antagonistic interactions for LY-2183240 combined with cisplatin in the A375 and FM55P cell lines were observed by the MTT assay. In conclusion, LY-2183240 can be considered an add-on drug for the treatment of melanoma, when combined with docetaxel, paclitaxel, or mitoxantrone, but not with cisplatin.
Collapse
Affiliation(s)
- Paweł Marzęda
- Department of Occupational Medicine, Medical University of Lublin, 20-090 Lublin, Poland.
| | | | - Magdalena Florek-Łuszczki
- Department of Occupational Medicine, Medical University of Lublin, 20-090 Lublin, Poland; Department of Medical Anthropology, Institute of Rural Health, 20-950 Lublin, Poland.
| | - Agnieszka Góralczyk
- Department of Occupational Medicine, Medical University of Lublin, 20-090 Lublin, Poland.
| | - Jarogniew J Łuszczki
- Department of Occupational Medicine, Medical University of Lublin, 20-090 Lublin, Poland.
| |
Collapse
|
11
|
Benjamin MM, Hanna GS, Dickinson CF, Choo YM, Wang X, Downs-Bowen JA, De R, McBrayer TR, Schinazi RF, Nielson SE, Hevel JM, Pandey P, Doerksen RJ, Townsend DM, Zhang J, Ye Z, Wyer S, Bialousow L, Hamann MT. Cannabinoid-Inspired Inhibitors of the SARS-CoV-2 Coronavirus 2'- O-Methyltransferase (2'- O-MTase) Non-Structural Protein (Nsp10-16). Molecules 2024; 29:5081. [PMID: 39519722 PMCID: PMC11547505 DOI: 10.3390/molecules29215081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
The design and synthesis of antiviral compounds were guided by computationally predicted data against highly conserved non-structural proteins (Nsps) of the SARS-CoV-2 coronavirus. Chromenephenylmethanone-1 (CPM-1), a novel biphenylpyran (BPP), was selected from a unique natural product library based on in silico docking scores to coronavirus Nsps with high specificity to the methyltransferase protein (2'-O-MTase, Nsp10-16), which is responsible for viral mRNA maturation and host innate immune response evasion. To target the 2'-O-MTase, CPM-1, along with intermediate BPP regioisomers, tetrahydrophenylmethanones (TPMs), were synthesized and structurally validated via nuclear magnetic resonance (NMR) data and DP4+ structure probability analyses. To investigate the activity of these BPPs, the following in vitro assays were conducted: SARS-CoV-2 inhibition, biochemical target validation, mutagenicity, and cytotoxicity. CPM-1 possessed notable activity against SARS-CoV-2 with 98.9% inhibition at 10 µM and an EC50 of 7.65 µM, as well as inhibition of SARS-CoV-2's 2'-O-MTase (expressed and purified) with an IC50 of 1.5 ± 0.2 µM. In addition, CPM-1 revealed no cytotoxicity (CC50 of >100 µM) or mutagenicity (no frameshift or base-pair mutations). This study demonstrates the potential of computational modeling for the discovery of natural product prototypes followed by the design and synthesis of drug leads to inhibit the SARS-CoV-2 2'-O-MTase.
Collapse
Affiliation(s)
- Menny M. Benjamin
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, 280 Calhoun St, Charleston, SC 29425, USA; (M.M.B.)
| | - George S. Hanna
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, 280 Calhoun St, Charleston, SC 29425, USA; (M.M.B.)
| | - Cody F. Dickinson
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, 280 Calhoun St, Charleston, SC 29425, USA; (M.M.B.)
| | - Yeun-Mun Choo
- Department of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Xiaojuan Wang
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jessica A. Downs-Bowen
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, HSRB-1, Atlanta, GA 30322, USA
| | - Ramyani De
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, HSRB-1, Atlanta, GA 30322, USA
| | - Tamara R. McBrayer
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, HSRB-1, Atlanta, GA 30322, USA
| | - Raymond F. Schinazi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, HSRB-1, Atlanta, GA 30322, USA
| | | | - Joan M. Hevel
- Department of Chemistry & Biochemistry, Logan, UT 84322, USA
| | - Pankaj Pandey
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Robert J. Doerksen
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA
| | - Danyelle M. Townsend
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St, DD410, Charleston, SC 29425, USA
| | - Jie Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St, DD410, Charleston, SC 29425, USA
| | - Zhiwei Ye
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St, DD410, Charleston, SC 29425, USA
| | - Scott Wyer
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, 280 Calhoun St, Charleston, SC 29425, USA; (M.M.B.)
| | - Lucas Bialousow
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, 280 Calhoun St, Charleston, SC 29425, USA; (M.M.B.)
| | - Mark T. Hamann
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, 280 Calhoun St, Charleston, SC 29425, USA; (M.M.B.)
- Department of Public Health Sciences, Medical University of South Carolina,135 Cannon St, Charleston, SC 29425, USA
| |
Collapse
|
12
|
Basu D. Palmitoylethanolamide, an endogenous fatty acid amide, and its pleiotropic health benefits: A narrative review. J Biomed Res 2024; 38:1-15. [PMID: 39433509 DOI: 10.7555/jbr.38.20240053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
The global nutritional transition has led to high frequency and severity of chronic degenerative diseases worldwide, primarily driven by chronic inflammatory stress. At the mealtimes, various pharmaceutical products aim to prevent such an inflammatory stress, they usually cause various systemic side effects. Therefore, supplementation of natural and safe ingredients is a great strategy to reduce the risk and severity of inflammatory stress-related diseases. As a result, palmitoylethanolamide (PEA), an endocannabinoid-like mediator, has been extensively studied for its myriad of actions, including anti-inflammatory, anti-microbial, immunostimulatory, neuroprotective, and pain-reducing effects with high tolerability and safety of PEA in animals and humans. Because of the multiple molecular targets and mechanisms of action, PEA has shown therapeutic benefits in various diseases, including neurological, psychiatric, ophthalmic, metabolic, oncological, renal, hepatic, immunological, rheumatological, and gastrointestinal conditions. The current review highlights the roles and functions of PEA in various physiological and pathological conditions, further supporting the use of PEA as an important dietary agent.
Collapse
Affiliation(s)
- Debasis Basu
- Healious Global METTA Clinic, Kolkata, West Bengal 700029, India
| |
Collapse
|
13
|
Singh S, Ellioff KJ, Bruchas MR, Land BB, Stella N. Analgesic Properties of Next-Generation Modulators of Endocannabinoid Signaling: Leveraging Modern Tools for the Development of Novel Therapeutics. J Pharmacol Exp Ther 2024; 391:162-173. [PMID: 39060165 PMCID: PMC11493443 DOI: 10.1124/jpet.124.002119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 07/28/2024] Open
Abstract
Targeting the endocannabinoid (eCB) signaling system for pain relief is an important treatment option that is only now beginning to be mechanistically explored. In this review, we focus on two recently appreciated cannabinoid-based targeting strategies, treatments with cannabidiol (CBD) and α/β-hydrolase domain containing 6 (ABHD6) inhibitors, which have the exciting potential to produce pain relief through distinct mechanisms of action and without intoxication. We review evidence on plant-derived cannabinoids for pain, with an emphasis on CBD and its multiple molecular targets expressed in pain pathways. We also discuss the function of eCB signaling in regulating pain responses and the therapeutic promises of inhibitors targeting ABHD6, a 2-arachidonoylglycerol (2-AG)-hydrolyzing enzyme. Finally, we discuss how the novel cannabinoid biosensor GRABeCB2.0 may be leveraged to enable the discovery of targets modulated by cannabinoids at a circuit-specific level. SIGNIFICANCE STATEMENT: Cannabis has been used by humans as an effective medicine for millennia, including for pain management. Recent evidence emphasizes the therapeutic potential of compounds that modulate endocannabinoid signaling. Specifically, cannabidiol and inhibitors of the enzyme ABHD6 represent promising strategies to achieve pain relief by modulating endocannabinoid signaling in pain pathways via distinct, nonintoxicating mechanisms of action.
Collapse
Affiliation(s)
- Simar Singh
- Departments of Pharmacology (S.S., K.J.E., M.R.B., B.B.L., N.S.), Anesthesiology and Pain Medicine (M.R.B.), and Psychiatry and Behavioral Sciences (N.S.), and Center of Excellence in Neuroscience of Addiction, Pain, and Emotion (S.S., K.J.E., M.R.B., B.B.L., N.S.), University of Washington, Seattle, Washington
| | - Kaylin J Ellioff
- Departments of Pharmacology (S.S., K.J.E., M.R.B., B.B.L., N.S.), Anesthesiology and Pain Medicine (M.R.B.), and Psychiatry and Behavioral Sciences (N.S.), and Center of Excellence in Neuroscience of Addiction, Pain, and Emotion (S.S., K.J.E., M.R.B., B.B.L., N.S.), University of Washington, Seattle, Washington
| | - Michael R Bruchas
- Departments of Pharmacology (S.S., K.J.E., M.R.B., B.B.L., N.S.), Anesthesiology and Pain Medicine (M.R.B.), and Psychiatry and Behavioral Sciences (N.S.), and Center of Excellence in Neuroscience of Addiction, Pain, and Emotion (S.S., K.J.E., M.R.B., B.B.L., N.S.), University of Washington, Seattle, Washington
| | - Benjamin B Land
- Departments of Pharmacology (S.S., K.J.E., M.R.B., B.B.L., N.S.), Anesthesiology and Pain Medicine (M.R.B.), and Psychiatry and Behavioral Sciences (N.S.), and Center of Excellence in Neuroscience of Addiction, Pain, and Emotion (S.S., K.J.E., M.R.B., B.B.L., N.S.), University of Washington, Seattle, Washington
| | - Nephi Stella
- Departments of Pharmacology (S.S., K.J.E., M.R.B., B.B.L., N.S.), Anesthesiology and Pain Medicine (M.R.B.), and Psychiatry and Behavioral Sciences (N.S.), and Center of Excellence in Neuroscience of Addiction, Pain, and Emotion (S.S., K.J.E., M.R.B., B.B.L., N.S.), University of Washington, Seattle, Washington
| |
Collapse
|
14
|
Aswad M, Pechkovsky A, Ghanayiem N, Hamza H, Dotan Y, Louria-Hayon I. High-CBD Extract (CBD-X) in Asthma Management: Reducing Th2-Driven Cytokine Secretion and Neutrophil/Eosinophil Activity. Pharmaceuticals (Basel) 2024; 17:1382. [PMID: 39459021 PMCID: PMC11510504 DOI: 10.3390/ph17101382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Asthma is a chronic inflammatory disorder of the airways affecting over 10% of the global population. It is characterized by airway inflammation, mucus hypersecretion, and bronchial hyperresponsiveness, driven predominantly by type 2 helper T cells (Th2) and type 2 innate lymphoid cells (ILC2s) in a subset of patients. However, a significant portion of asthmatic individuals present with "type 2-low" asthma that is often refractory to standard inhaled corticosteroid (ICS) therapy. Therefore, developing innovative therapeutic strategies has become essential. Recent studies have highlighted cannabidiol (CBD) as a promising anti-inflammatory agent capable of modulating immune responses. This study investigates the therapeutic potential of a high-CBD extract (CBD-X) in asthma. METHODS We evaluated the effects of CBD-X on cells involved in asthma pathogenesis using primary human Th2 cells, neutrophils, and asthma mouse model. RESULTS Our findings indicate that CBD-X extract inhibits Th2 differentiation and reduces the secretion of IL-5 and IL-13, which are crucial cytokines in asthma. Additionally, CBD-X significantly reduces pro-inflammatory cytokines IL-8 and IL-6 in neutrophils and impairs their migration, a critical step in airway inflammation. In a murine asthma model, CBD-X administration led to marked downregulation of IgE and pro-asthmatic cytokines, along with reduced leukocyte, eosinophil, and neutrophil infiltration in lung tissues. CONCLUSIONS These results suggest that CBD-X extract could offer a novel and complementary approach to managing both type 2-high and type 2-low asthma by targeting key inflammatory pathways and modulating immune cell behavior.
Collapse
Affiliation(s)
- Miran Aswad
- Medical Cannabis Research and Innovation Center, Rambam Health Care Campus, Haifa 3109601, Israel
- Clinical Research Institute at Rambam (CRIR), Rambam Health Care Campus, Haifa 3109601, Israel
| | - Antonina Pechkovsky
- Medical Cannabis Research and Innovation Center, Rambam Health Care Campus, Haifa 3109601, Israel
- Clinical Research Institute at Rambam (CRIR), Rambam Health Care Campus, Haifa 3109601, Israel
| | - Narmeen Ghanayiem
- Medical Cannabis Research and Innovation Center, Rambam Health Care Campus, Haifa 3109601, Israel
- Clinical Research Institute at Rambam (CRIR), Rambam Health Care Campus, Haifa 3109601, Israel
| | - Haya Hamza
- Medical Cannabis Research and Innovation Center, Rambam Health Care Campus, Haifa 3109601, Israel
- Clinical Research Institute at Rambam (CRIR), Rambam Health Care Campus, Haifa 3109601, Israel
| | - Yaniv Dotan
- Clinical Research Institute at Rambam (CRIR), Rambam Health Care Campus, Haifa 3109601, Israel
- Institute of Pulmonology, Rambam Health Care Campus, Haifa 3109601, Israel
| | - Igal Louria-Hayon
- Medical Cannabis Research and Innovation Center, Rambam Health Care Campus, Haifa 3109601, Israel
- Clinical Research Institute at Rambam (CRIR), Rambam Health Care Campus, Haifa 3109601, Israel
| |
Collapse
|
15
|
Singh S, Sarroza D, English A, McGrory M, Dong A, Zweifel L, Land BB, Li Y, Bruchas MR, Stella N. Pharmacological Characterization of the Endocannabinoid Sensor GRAB eCB2.0. Cannabis Cannabinoid Res 2024; 9:1250-1266. [PMID: 38064488 PMCID: PMC11535446 DOI: 10.1089/can.2023.0036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
Introduction: The endocannabinoids (eCBs), 2-arachidonoylglycerol (2-AG) and arachidonoyl ethanolamine (AEA), are produced by separate enzymatic pathways, activate cannabinoid (CB) receptors with distinct pharmacological profiles, and differentially regulate pathophysiological processes. The genetically encoded sensor, GRABeCB2.0, detects real-time changes in eCB levels in cells in culture and preclinical model systems; however, its activation by eCB analogues produced by cells and by phyto-CBs remains uncharacterized, a current limitation when interpreting changes in its response. This information could provide additional utility for the tool in in vivo pharmacology studies of phyto-CB action. Materials and Methods: GRABeCB2.0 was expressed in cultured HEK293 cells. Live cell confocal microscopy and high-throughput fluorescent signal measurements. Results: 2-AG increased GRABeCB2.0 fluorescent signal (EC50=85 nM), and the cannabinoid 1 receptor (CB1R) antagonist, SR141716 (SR1), decreased GRABeCB2.0 signal (IC50=3.3 nM), responses that mirror their known potencies at the CB1R. GRABeCB2.0 fluorescent signal also increased in response to AEA (EC50=815 nM), the eCB analogues 2-linoleoylglycerol and 2-oleoylglycerol (EC50=632 and 868 nM, respectively), Δ9-tetrahydrocannabinol (Δ9-THC), and Δ8-THC (EC50=1.6 and 2.0 μM, respectively), and the artificial CB1R agonist, CP55,940 (CP; EC50=82 nM); however their potencies were less than what has been described at CB1R. Cannabidiol (CBD) did not affect basal GRABeCB2.0 fluorescent signal and yet reduced the 2-AG stimulated GRABeCB2.0 responses (IC50=9.7 nM). Conclusions: 2-AG and SR1 modulate the GRABeCB2.0 fluorescent signal with EC50 values that mirror their potencies at CB1R, whereas AEA, eCB analogues, THC, and CP increase GRABeCB2.0 fluorescent signal with EC50 values significantly lower than their potencies at CB1R. CBD reduces the 2-AG response without affecting basal signal, suggesting that GRABeCB2.0 retains the negative allosteric modulator (NAM) property of CBD at CB1R. This study describes the pharmacological profile of GRABeCB2.0 to improve interpretation of changes in fluorescent signal in response to a series of known eCBs and CB1R ligands.
Collapse
Affiliation(s)
- Simar Singh
- Department of Pharmacology, Pain, and Emotion, School of Medicine, University of Washington, Seattle, Washington, USA
- Center for Cannabis Research, Pain, and Emotion, School of Medicine, University of Washington, Seattle, Washington, USA
- Center for the Neurobiology of Addiction, Pain, and Emotion, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Dennis Sarroza
- Department of Pharmacology, Pain, and Emotion, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Anthony English
- Department of Pharmacology, Pain, and Emotion, School of Medicine, University of Washington, Seattle, Washington, USA
- Center for Cannabis Research, Pain, and Emotion, School of Medicine, University of Washington, Seattle, Washington, USA
- Center for the Neurobiology of Addiction, Pain, and Emotion, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Maya McGrory
- Department of Pharmacology, Pain, and Emotion, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Ao Dong
- Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Larry Zweifel
- Department of Pharmacology, Pain, and Emotion, School of Medicine, University of Washington, Seattle, Washington, USA
- Center for Cannabis Research, Pain, and Emotion, School of Medicine, University of Washington, Seattle, Washington, USA
- Center for the Neurobiology of Addiction, Pain, and Emotion, School of Medicine, University of Washington, Seattle, Washington, USA
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Benjamin B. Land
- Department of Pharmacology, Pain, and Emotion, School of Medicine, University of Washington, Seattle, Washington, USA
- Center for Cannabis Research, Pain, and Emotion, School of Medicine, University of Washington, Seattle, Washington, USA
- Center for the Neurobiology of Addiction, Pain, and Emotion, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Yulong Li
- Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Michael R. Bruchas
- Department of Pharmacology, Pain, and Emotion, School of Medicine, University of Washington, Seattle, Washington, USA
- Center for Cannabis Research, Pain, and Emotion, School of Medicine, University of Washington, Seattle, Washington, USA
- Center for the Neurobiology of Addiction, Pain, and Emotion, School of Medicine, University of Washington, Seattle, Washington, USA
- Department of Anesthesiology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Nephi Stella
- Department of Pharmacology, Pain, and Emotion, School of Medicine, University of Washington, Seattle, Washington, USA
- Center for Cannabis Research, Pain, and Emotion, School of Medicine, University of Washington, Seattle, Washington, USA
- Center for the Neurobiology of Addiction, Pain, and Emotion, School of Medicine, University of Washington, Seattle, Washington, USA
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
16
|
Maes M, Rachayon M, Jirakran K, Sughondhabirom A, Almulla AF, Sodsai P. Role of T and B lymphocyte cannabinoid type 1 and 2 receptors in major depression and suicidal behaviours. Acta Neuropsychiatr 2024; 36:287-298. [PMID: 37681553 DOI: 10.1017/neu.2023.35] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Early flow cytometry studies revealed T cell activation in major depressive disorder (MDD). MDD is characterised by activation of the immune-inflammatory response system (IRS) and the compensatory immunoregulatory system (CIRS), including deficits in T regulatory (Treg) cells. This study examines the number of cannabinoid type 1 (CB1) and type 2 (CB2) receptor-bearing T/B lymphocytes in MDD, and the effects of in vitro cannabidiol (CBD) administration on CB1/CB2-bearing immunocytes. Using flow cytometry, we determined the percentage of CD20+CB2+, CD3+CB2+, CD4+CB2+, CD8+CB2+ and FoxP3+CB1+ cells in 19 healthy controls and 29 MDD patients in 5 conditions: baseline, stimulation with anti-CD3/CD28 with or without 0.1 µg/mL, 1.0 µg/mL, or 10.0 µg/mL CBD. CB2+ was significantly higher in CD20+ than CD3+ and CD4+ and CD 8+ cells. Stimulation with anti-CD3/CD8 increases the number of CB2-bearing CD3+, CD4+ and CD8+ cells, as well as CB1-bearing FoxP3+ cells. There was an inverse association between the number of reduced CD4+ CB2+ and IRS profiles, including M1 macrophage, T helper-(Th)-1 and Th-17 phenotypes. MDD is characterised by lowered basal FoxP3+ CB1+% and higher CD20+ CB2+%. 33.2% of the variance in the depression phenome (including severity of depression, anxiety and current suicidal behaviours) is explained by CD20+ CB2+ % (positively) and CD3+ CB2+% (inversely). All five immune cell populations were significantly increased by 10 µg/mL of CBD administration. Reductions in FoxP3+ CB1+% and CD3+ /CD4+ CB2+% contribute to deficits in immune homoeostasis in MDD, while increased CD20+CB2+% may contribute to the pathophysiology of MDD by activating T-independent humoral immunity.
Collapse
Affiliation(s)
- Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China,Chengdu610072, China
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University Plovdiv, Plovdiv, Bulgaria
- Kyung Hee University, Seoul, Korea
| | - Muanpetch Rachayon
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Ketsupar Jirakran
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
- Department of Pediatrics, Faculty of Medicine, Maximizing Thai Children's Developmental Potential Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Atapol Sughondhabirom
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Abbas F Almulla
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Pimpayao Sodsai
- Department of Immunology, Faculty of Medicine, Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| |
Collapse
|
17
|
Faiz MB, Naeem F, Irfan M, Aslam MA, Estevinho LM, Ateşşahin DA, Alshahrani AM, Calina D, Khan K, Sharifi-Rad J. Exploring the therapeutic potential of cannabinoids in cancer by modulating signaling pathways and addressing clinical challenges. Discov Oncol 2024; 15:490. [PMID: 39331301 PMCID: PMC11436528 DOI: 10.1007/s12672-024-01356-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
For centuries, cannabinoids have been utilized for their medicinal properties, particularly in Asian and South-Asian countries. Cannabis plants, known for their psychoactive and non-psychoactive potential, were historically used for spiritual and remedial healing. However, as cannabis became predominantly a recreational drug, it faced prohibition. Recently, the therapeutic potential of cannabinoids has sparked renewed research interest, extending their use to various medical conditions, including cancer. This review aims to highlight current data on the involvement of cannabinoids in cancer signaling pathways, emphasizing their potential in cancer therapy and the need for further investigation into the underlying mechanisms. A comprehensive literature review was conducted using databases such as PubMed/MedLine, Google Scholar, Web of Science, Scopus, and Embase. The search focused on peer-reviewed articles, review articles, and clinical trials discussing the anticancer properties of cannabinoids. Inclusion criteria included studies in English on the mechanisms of action and clinical efficacy of cannabinoids in cancer. Cannabinoids, including Δ9-THC, CBD, and CBG, exhibit significant anticancer activities such as apoptosis induction, autophagy stimulation, cell cycle arrest, anti-proliferation, anti-angiogenesis, and metastasis inhibition. Clinical trials have demonstrated cannabinoids' efficacy in tumor regression and health improvement in palliative care. However, challenges such as variability in cannabinoid composition, psychoactive effects, regulatory barriers, and lack of standardized dosing remain. Cannabinoids show promising potential as anticancer agents through various mechanisms. Further large-scale, randomized controlled trials are essential to validate these findings and establish standardized therapeutic protocols. Future research should focus on elucidating detailed mechanisms, optimizing dosing, and exploring cannabinoids as primary chemotherapeutic agents.
Collapse
Affiliation(s)
- Manal Bint Faiz
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Faiza Naeem
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Irfan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Muhammad Adeel Aslam
- Department of Forensic Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Leticia M Estevinho
- Mountain Research Center, CIMO, Polytechnic Institute of Bragança, Campus Santa Apolónia, 5300-253, Bragança, Portugal
| | - Dilek Arslan Ateşşahin
- Baskil Vocational School, Department of Plant and Animal Production, Fırat University, 23100, Elazıg, Turkey
| | - Asma M Alshahrani
- Department of Clinical Pharmacy, College of Pharmacy, Shaqra University, Dawadimi, Saudi Arabia
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Khushbukhat Khan
- Cancer Clinical Research Unit, Trials360, Lahore, 54000, Pakistan.
| | - Javad Sharifi-Rad
- Centro de Estudios Tecnológicos y Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
18
|
Lo JO, Hedges JC, Chou WH, Tager KR, Bachli ID, Hagen OL, Murphy SK, Hanna CB, Easley CA. Influence of substance use on male reproductive health and offspring outcomes. Nat Rev Urol 2024; 21:534-564. [PMID: 38664544 DOI: 10.1038/s41585-024-00868-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 04/30/2024]
Abstract
The prevalence of substance use globally is rising and is highest among men of reproductive age. In Africa, and South and Central America, cannabis use disorder is most prevalent and in Eastern and South-Eastern Europe, Central America, Canada and the USA, opioid use disorder predominates. Substance use might be contributing to the ongoing global decline in male fertility, and emerging evidence has linked paternal substance use with short-term and long-term adverse effects on offspring development and outcomes. This trend is concerning given that substance use is increasing, including during the COVID-19 pandemic. Preclinical studies have shown that male preconception substance use can influence offspring brain development and neurobehaviour through epigenetic mechanisms. Additionally, human studies investigating paternal health behaviours during the prenatal period suggest that paternal tobacco, opioid, cannabis and alcohol use is associated with reduced offspring mental health, in particular hyperactivity and attention-deficit hyperactivity disorder. The potential effects of paternal substance use are areas in which to focus public health efforts and health-care provider counselling of couples or individuals interested in conceiving.
Collapse
Affiliation(s)
- Jamie O Lo
- Department of Urology, Oregon Heath & Science University, Portland, OR, USA.
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA.
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA.
| | - Jason C Hedges
- Department of Urology, Oregon Heath & Science University, Portland, OR, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Wesley H Chou
- Department of Urology, Oregon Heath & Science University, Portland, OR, USA
| | - Kylie R Tager
- Department of Environmental Health Science, University of Georgia College of Public Health, Athens, GA, USA
| | - Ian D Bachli
- Department of Environmental Health Science, University of Georgia College of Public Health, Athens, GA, USA
| | - Olivia L Hagen
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Carol B Hanna
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Charles A Easley
- Department of Environmental Health Science, University of Georgia College of Public Health, Athens, GA, USA
| |
Collapse
|
19
|
Barrera-Conde M, Ramon-Duaso C, González-Parra JA, Veza-Estevez E, Chevaleyre V, Piskorowski RA, de la Torre R, Busquets-García A, Robledo P. Adolescent cannabinoid exposure rescues phencyclidine-induced social deficits through modulation of CA2 transmission. Prog Neurobiol 2024; 240:102652. [PMID: 38955325 DOI: 10.1016/j.pneurobio.2024.102652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Psychotic disorders entail intricate conditions marked by disruptions in cognition, perception, emotions, and social behavior. Notably, psychotic patients who use cannabis tend to show less severe deficits in social behaviors, such as the misinterpretation of social cues and the inability to interact with others. However, the biological underpinnings of this epidemiological interaction remain unclear. Here, we used the NMDA receptor blocker phencyclidine (PCP) to induce psychotic-like states and to study the impact of adolescent cannabinoid exposure on social behavior deficits and synaptic transmission changes in hippocampal area CA2, a region known to be active during social interactions. In particular, adolescent mice underwent 7 days of subchronic treatment with the synthetic cannabinoid, WIN 55, 212-2 (WIN) followed by one injection of PCP. Using behavioral, biochemical, and electrophysiological approaches, we showed that PCP persistently reduced sociability, decreased GAD67 expression in the hippocampus, and induced GABAergic deficits in proximal inputs from CA3 and distal inputs from the entorhinal cortex (EC) to CA2. Notably, WIN exposure during adolescence specifically restores adult sociability deficits, the expression changes in GAD67, and the GABAergic impairments in the EC-CA2 circuit, but not in the CA3-CA2 circuit. Using a chemogenetic approach to target EC-CA2 projections, we demonstrated the involvement of this specific circuit on sociability deficits. Indeed, enhancing EC-CA2 transmission was sufficient to induce sociability deficits in vehicle-treated mice, but not in animals treated with WIN during adolescence, suggesting a mechanism by which adolescent cannabinoid exposure rescues sociability deficits caused by enhanced EC-CA2 activity in adult mice.
Collapse
Affiliation(s)
- Marta Barrera-Conde
- Integrative Pharmacology and Systems Neuroscience, Neuroscience Research Program, Hospital del Mar Research Institute, Barcelona, Spain; Department of Medicine and Life Sciences, University Pompeu Fabra, Barcelona, Spain
| | - Carla Ramon-Duaso
- Cell-Type Mechanisms in Normal and Pathological Behavior Research Group, Neuroscience Programme, Hospital del Mar Research Institute, Barcelona, Spain
| | - Jose Antonio González-Parra
- Cell-Type Mechanisms in Normal and Pathological Behavior Research Group, Neuroscience Programme, Hospital del Mar Research Institute, Barcelona, Spain
| | - Emma Veza-Estevez
- Integrative Pharmacology and Systems Neuroscience, Neuroscience Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Vivien Chevaleyre
- Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, GHU Paris Psychiatry and Neuroscience, Paris, France
| | - Rebecca A Piskorowski
- Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, GHU Paris Psychiatry and Neuroscience, Paris, France
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neuroscience, Neuroscience Research Program, Hospital del Mar Research Institute, Barcelona, Spain; Department of Medicine and Life Sciences, University Pompeu Fabra, Barcelona, Spain; Centro de Investigación Biomédica en Red - Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Arnau Busquets-García
- Cell-Type Mechanisms in Normal and Pathological Behavior Research Group, Neuroscience Programme, Hospital del Mar Research Institute, Barcelona, Spain.
| | - Patricia Robledo
- Integrative Pharmacology and Systems Neuroscience, Neuroscience Research Program, Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
20
|
Maglaviceanu A, Peer M, Rockel J, Bonin RP, Fitzcharles MA, Ladha KS, Bhatia A, Leroux T, Kotra L, Kapoor M, Clarke H. The State of Synthetic Cannabinoid Medications for the Treatment of Pain. CNS Drugs 2024; 38:597-612. [PMID: 38951463 DOI: 10.1007/s40263-024-01098-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/26/2024] [Indexed: 07/03/2024]
Abstract
Synthetic cannabinoids are compounds made in the laboratory to structurally and functionally mimic phytocannabinoids from the Cannabis sativa L. plant, including delta-9-tetrahydrocannabinol (THC). Synthetic cannabinoids (SCs) can signal via the classical endogenous cannabinoid system (ECS) and the greater endocannabidiome network, highlighting their signalling complexity and far-reaching effects. Dronabinol and nabilone, which mimic THC signalling, have been approved by the Food and Drug Administration (FDA) for treating nausea associated with cancer chemotherapy and/or acquired immunodeficiency syndrome (AIDS). However, there is ongoing interest in these two drugs as potential analgesics for a variety of other clinical conditions, including neuropathic pain, spasticity-related pain, and nociplastic pain syndromes including fibromyalgia, osteoarthritis, and postoperative pain, among others. In this review, we highlight the signalling mechanisms of FDA-approved synthetic cannabinoids, discuss key clinical trials that investigate their analgesic potential, and illustrate challenges faced when bringing synthetic cannabinoids to the clinic.
Collapse
Affiliation(s)
- Anca Maglaviceanu
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Miki Peer
- Department of Anesthesia and Pain Management, University Health Network, Sinai Health System, and Women's College Hospital, Toronto, ON, Canada
| | - Jason Rockel
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Robert P Bonin
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
- University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada
| | - Mary-Ann Fitzcharles
- Department of Rheumatology, McGill University, Montreal, Canada
- Alan Edwards Pain Management Unit, McGill University, Montreal, Canada
| | - Karim S Ladha
- Department of Anesthesia, St. Michael's Hospital, Toronto, Canada
- Department of Anaesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
- Centre for Cannabinoid Therapeutics, University Health Network, Toronto, ON, Canada
| | - Anuj Bhatia
- Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Anaesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON, Canada
- Department of Anaesthesia and Pain Management, Toronto Western Hospital-University Health Network, Toronto, ON, Canada
- Centre for Cannabinoid Therapeutics, University Health Network, Toronto, ON, Canada
| | - Timothy Leroux
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Lakshmi Kotra
- Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
- Centre for Cannabinoid Therapeutics, University Health Network, Toronto, ON, Canada
| | - Mohit Kapoor
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Centre for Cannabinoid Therapeutics, University Health Network, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Hance Clarke
- Krembil Research Institute, University Health Network, Toronto, Canada.
- Department of Anesthesia, St. Michael's Hospital, Toronto, Canada.
- Department of Anaesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada.
- Centre for Cannabinoid Therapeutics, University Health Network, Toronto, ON, Canada.
- Department of Anaesthesia and Pain Management, Toronto General Hospital, Toronto, ON, Canada.
- Transitional Pain Service, Pain Research Unit, Department of Anaesthesia and Pain Management, Toronto General Hospital, Toronto, ON, M5G 2C4, Canada.
| |
Collapse
|
21
|
Singh S, Sarroza D, English A, Whittington D, Dong A, Malamas M, Makriyannis A, van der Stelt M, Li Y, Zweifel L, Bruchas MR, Land BB, Stella N. P2X 7 receptor-dependent increase in endocannabinoid 2-arachidonoyl glycerol production by neuronal cells in culture: Dynamics and mechanism. Br J Pharmacol 2024; 181:2459-2477. [PMID: 38581262 PMCID: PMC11936313 DOI: 10.1111/bph.16348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND AND PURPOSE Neurotransmission and neuroinflammation are controlled by local increases in both extracellular ATP and the endocannabinoid 2-arachidonoyl glycerol (2-AG). While it is known that extracellular ATP stimulates 2-AG production in cells in culture, the dynamics and molecular mechanisms that underlie this response remain poorly understood. Detection of real-time changes in eCB levels with the genetically encoded sensor, GRABeCB2.0, can address this shortfall. EXPERIMENTAL APPROACH 2-AG and arachidonoylethanolamide (AEA) levels in Neuro2a (N2a) cells were measured by LC-MS, and GRABeCB2.0 fluorescence changes were detected using live-cell confocal microscopy and a 96-well fluorescence plate reader. KEY RESULTS 2-AG and AEA increased GRABeCB2.0 fluorescence in N2a cells with EC50 values of 81 and 58 nM, respectively; both responses were reduced by the cannabinoid receptor type 1 (CB1R) antagonist SR141617 and absent in cells expressing the mutant-GRABeCB2.0. ATP increased only 2-AG levels in N2a cells, as measured by LC-MS, and induced a transient increase in the GRABeCB2.0 signal within minutes primarily via activation of P2X7 receptors (P2X7R). This response was dependent on diacylglycerol lipase β activity, partially dependent on extracellular calcium and phospholipase C activity, but not controlled by the 2-AG hydrolysing enzyme, α/β-hydrolase domain containing 6 (ABHD6). CONCLUSIONS AND IMPLICATIONS Considering that P2X7R activation increases 2-AG levels within minutes, our results show how these molecular components are mechanistically linked. The specific molecular components in these signalling systems represent potential therapeutic targets for the treatment of neurological diseases, such as chronic pain, that involve dysregulated neurotransmission and neuroinflammation.
Collapse
Affiliation(s)
- Simar Singh
- Department of Pharmacology, University of Washington, Seattle, USA
| | - Dennis Sarroza
- Department of Pharmacology, University of Washington, Seattle, USA
| | - Anthony English
- Department of Pharmacology, University of Washington, Seattle, USA
| | - Dale Whittington
- Department of Medicinal Chemistry, University of Washington, Seattle, USA
| | - Ao Dong
- Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Michael Malamas
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | | | - Yulong Li
- Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Larry Zweifel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, USA
- Center for Cannabis Research, University of Washington, Seattle, USA
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, USA
| | - Michael R. Bruchas
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, USA
- Center for Cannabis Research, University of Washington, Seattle, USA
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, USA
| | - Benjamin B. Land
- Department of Pharmacology, University of Washington, Seattle, USA
- Center for Cannabis Research, University of Washington, Seattle, USA
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, USA
| | - Nephi Stella
- Department of Pharmacology, University of Washington, Seattle, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, USA
- Center for Cannabis Research, University of Washington, Seattle, USA
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, USA
| |
Collapse
|
22
|
Metz TD. Science Lagging Behind Rapid Cannabis Legalization and Commercialization. Obstet Gynecol 2024; 144:153-155. [PMID: 39024609 DOI: 10.1097/aog.0000000000005646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Affiliation(s)
- Torri D Metz
- Dr. Metz is the Deputy Editor, Obstetrics, for Obstetrics & Gynecology, and is from the University of Utah Health, Salt Lake City, Utah;
| |
Collapse
|
23
|
Qi A, Han X, Quitalig M, Wu J, Christov PP, Jeon K, Jana S, Kim K, Engers DW, Lindsley CW, Rodriguez AL, Niswender CM. The cannabinoid CB 2 receptor positive allosteric modulator EC21a exhibits complicated pharmacology in vitro. J Recept Signal Transduct Res 2024; 44:151-159. [PMID: 39575892 PMCID: PMC11636628 DOI: 10.1080/10799893.2024.2431986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 12/07/2024]
Abstract
Schizophrenia is a complex disease involving the dysregulation of numerous brain circuits and patients exhibit positive symptoms (hallucinations, delusions), negative symptoms (anhedonia), and cognitive impairments. We have shown that the antipsychotic efficacy of positive allosteric modulators (PAMs) of both the M4 muscarinic receptor and metabotropic glutamate receptor 1 (mGlu1) involve the retrograde activation of the presynaptic cannabinoid type-2 (CB2) receptor, indicating that CB2 activation or potentiation could result in a novel therapeutic strategy for schizophrenia. We used two complementary assays, receptor-mediated phosphoinositide hydrolysis and GIRK channel activation, to characterize a CB2 PAM scaffold, represented by the compound EC21a, to explore its potential as a starting point to optimize therapeutics for schizophrenia. These studies revealed that EC21a acts as an allosteric inverse agonist at CB2 in both assays and exhibits a mixed allosteric agonist/negative allosteric modulator profile at CB1 depending upon the assay used for profiling. A series of compounds related to EC21a also functioned as CB2 inverse agonists. Overall, these results suggest that EC21a exhibits complicated and potentially assay-dependent pharmacology, which may impact interpretation of in vivo studies.
Collapse
MESH Headings
- Allosteric Regulation/drug effects
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Humans
- Schizophrenia/drug therapy
- Schizophrenia/pathology
- Schizophrenia/metabolism
- Schizophrenia/genetics
- Animals
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/genetics
- CHO Cells
- Antipsychotic Agents/pharmacology
- Cricetulus
Collapse
Affiliation(s)
- Aidong Qi
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Xueqing Han
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Marc Quitalig
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Jessica Wu
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Plamen P Christov
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - KyuOk Jeon
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Somnath Jana
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Kwangho Kim
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Darren W Engers
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Craig W Lindsley
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Alice L Rodriguez
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Colleen M Niswender
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
24
|
Piercey CJ, Hetelekides E, Karoly HC. Simultaneous cannabis and psychedelic use among festival and concert attendees in Colorado: characterizing enhancement and adverse reactions using mixed methods. J Cannabis Res 2024; 6:29. [PMID: 38992787 PMCID: PMC11238454 DOI: 10.1186/s42238-024-00235-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/01/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Most studies examining the simultaneous use of cannabis with other drugs have focused on cannabis and alcohol, with fewer studies examining simultaneous use of cannabis with other drugs. The United States is currently experiencing an upward trend in psychedelic use and there is an increasing need to characterize cannabis and psychedelic drug interactions to best inform public health recommendations. MATERIALS AND METHODS A mixed methods field study design was used to survey participants (N = 128) on their lifetime co-use of cannabis with other drugs. Participants who reported lifetime co-use of cannabis and psychedelics (N = 63) were then asked open-ended questions about their most recent simultaneous co-use experience (i.e., how cannabis enhanced their psychedelic experience and whether they experienced any adverse reactions). We conducted a thematic analysis of responses describing how cannabis enhanced the psychedelic experience (N = 54). However, due to low response rate for participants reporting an adverse reaction (N = 7, 11.1%), responses to this question were not analyzed thematically and are instead presented individually. RESULTS Themes included tension reduction and balancing of drug effects (N = 27, 50%), enhancement to psychological processes (N = 11, 20.4%), intensified psychedelic drug effects (N = 12, 22.2%), enhanced psychedelic come-down experience (N = 8, 14.8%), and overall ambiguous enhancement (N = 7, 13%). Among participants reporting an adverse reaction, individual responses included increased anxiety and intensity of the experience, decreased sociability, increased negative affect, sleepiness, disassociation, and confusion. CONCLUSION Additional research is warranted to better characterize cannabis and psychedelic drug interactions to best inform public health recommendations.
Collapse
Affiliation(s)
- Cianna J Piercey
- Department of Psychology, Colorado State University, Fort Collins, CO, 80521, USA.
| | | | - Hollis C Karoly
- Department of Psychology, Colorado State University, Fort Collins, CO, 80521, USA
| |
Collapse
|
25
|
Galeano M, Vaccaro F, Irrera N, Caradonna E, Borgia F, Li Pomi F, Squadrito F, Vaccaro M. Melanoma and cannabinoids: A possible chance for cancer treatment. Exp Dermatol 2024; 33:e15144. [PMID: 39039940 DOI: 10.1111/exd.15144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
The endocannabinoid system is composed by a complex and ubiquitous network of endogenous lipid ligands, enzymes for their synthesis and degradation, and receptors, which can also be stimulated by exogenous compounds, such as those derived from the Cannabis sativa. Cannabis and its bioactive compounds, including cannabinoids and non-cannabinoids, have been extensively studied in different conditions. Recent data have shown that the endocannabinoid system is responsible for maintaining the homeostasis of various skin functions such as proliferation, differentiation and release of inflammatory mediators. Because of their role in regulating these key processes, cannabinoids have been studied for the treatment of skin cancers and melanoma; their anti-tumour effects regulate skin cancer progression and are mainly related to the inhibition of tumour growth, proliferation, invasion and angiogenesis, through apoptosis and autophagy induction. This review aims at summarising the current field of research on the potential uses of cannabinoids in the melanoma field.
Collapse
Affiliation(s)
- Mariarosaria Galeano
- Department of Human Pathology and Evolutive Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Federico Vaccaro
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Messina, Italy
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Emanuela Caradonna
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Francesco Borgia
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Federica Li Pomi
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Mario Vaccaro
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
26
|
Khan I, Kaur S, Rishi AK, Boire B, Aare M, Singh M. Cannabidiol and Beta-Caryophyllene Combination Attenuates Diabetic Neuropathy by Inhibiting NLRP3 Inflammasome/NFκB through the AMPK/sirT3/Nrf2 Axis. Biomedicines 2024; 12:1442. [PMID: 39062016 PMCID: PMC11274582 DOI: 10.3390/biomedicines12071442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/27/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND In this study, we investigated in detail the role of cannabidiol (CBD), beta-caryophyllene (BC), or their combinations in diabetic peripheral neuropathy (DN). The key factors that contribute to DN include mitochondrial dysfunction, inflammation, and oxidative stress. METHODS Briefly, streptozotocin (STZ) (55 mg/kg) was injected intraperitoneally to induce DN in Sprague-Dawley rats, and we performed procedures involving Randall Sellito calipers, a Von Frey aesthesiometer, a hot plate, and cold plate methods to determine mechanical and thermal hyperalgesia in vivo. The blood flow to the nerves was assessed using a laser Doppler device. Schwann cells were exposed to high glucose (HG) at a dose of 30 mM to induce hyperglycemia and DCFDA, and JC1 and Mitosox staining were performed to determine mitochondrial membrane potential, reactive oxygen species, and mitochondrial superoxides in vitro. The rats were administered BC (30 mg/kg), CBD (15 mg/kg), or combination via i.p. injections, while Schwann cells were treated with 3.65 µM CBD, 75 µM BC, or combination to assess their role in DN amelioration. RESULTS Our results revealed that exposure to BC and CBD diminished HG-induced hyperglycemia in Schwann cells, in part by reducing mitochondrial membrane potential, reactive oxygen species, and mitochondrial superoxides. Furthermore, the BC and CBD combination treatment in vivo could prevent the deterioration of the mitochondrial quality control system by promoting autophagy and mitochondrial biogenesis while improving blood flow. CBD and BC treatments also reduced pain hypersensitivity to hyperalgesia and allodynia, with increased antioxidant and anti-inflammatory action in diabetic rats. These in vivo effects were attributed to significant upregulation of AMPK, sirT3, Nrf2, PINK1, PARKIN, LC3B, Beclin1, and TFAM functions, while downregulation of NLRP3 inflammasome, NFκB, COX2, and p62 activity was noted using Western blotting. CONCLUSIONS the present study demonstrated that STZ and HG-induced oxidative and nitrosative stress play a crucial role in the pathogenesis of diabetic neuropathy. We find, for the first time, that a CBD and BC combination ameliorates DN by modulating the mitochondrial quality control system.
Collapse
Affiliation(s)
- Islauddin Khan
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (I.K.); (S.K.); (B.B.); (M.A.)
| | - Sukhmandeep Kaur
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (I.K.); (S.K.); (B.B.); (M.A.)
| | - Arun K. Rishi
- John D. Dingell Veterans Affairs Medical Center, Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Breana Boire
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (I.K.); (S.K.); (B.B.); (M.A.)
| | - Mounika Aare
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (I.K.); (S.K.); (B.B.); (M.A.)
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (I.K.); (S.K.); (B.B.); (M.A.)
| |
Collapse
|
27
|
Carrascosa AJ, Navarrete F, Saldaña R, García-Gutiérrez MS, Montalbán B, Navarro D, Gómez-Guijarro FM, Gasparyan A, Murcia-Sánchez E, Torregrosa AB, Pérez-Doblado P, Gutiérrez L, Manzanares J. Cannabinoid Analgesia in Postoperative Pain Management: From Molecular Mechanisms to Clinical Reality. Int J Mol Sci 2024; 25:6268. [PMID: 38892456 PMCID: PMC11172912 DOI: 10.3390/ijms25116268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Postoperative pain (POP) is a challenging clinical phenomenon that affects the majority of surgical patients and demands effective management to mitigate adverse outcomes such as persistent pain. The primary goal of POP management is to alleviate suffering and facilitate a seamless return to normal function for the patient. Despite compelling evidence of its drawbacks, opioid analgesia remains the basis of POP treatment. Novel therapeutic approaches rely on multimodal analgesia, integrating different pharmacological strategies to optimize efficacy while minimizing adverse effects. The recognition of the imperative role of the endocannabinoid system in pain regulation has prompted the investigation of cannabinoid compounds as a new therapeutic avenue. Cannabinoids may serve as adjuvants, enhancing the analgesic effects of other drugs and potentially replacing or at least reducing the dependence on other long-term analgesics in pain management. This narrative review succinctly summarizes pertinent information on the molecular mechanisms, clinical therapeutic benefits, and considerations associated with the plausible use of various cannabinoid compounds in treating POP. According to the available evidence, cannabinoid compounds modulate specific molecular mechanisms intimately involved in POP. However, only two of the eleven clinical trials that evaluated the efficacy of different cannabinoid interventions showed positive results.
Collapse
Affiliation(s)
- Antonio J. Carrascosa
- Servicio de Anestesiologia y Reanimación, Hospital Universitario 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain; (A.J.C.); (R.S.); (B.M.); (F.M.G.-G.); (E.M.-S.); (P.P.-D.)
| | - Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Raquel Saldaña
- Servicio de Anestesiologia y Reanimación, Hospital Universitario 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain; (A.J.C.); (R.S.); (B.M.); (F.M.G.-G.); (E.M.-S.); (P.P.-D.)
| | - María S. García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Belinda Montalbán
- Servicio de Anestesiologia y Reanimación, Hospital Universitario 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain; (A.J.C.); (R.S.); (B.M.); (F.M.G.-G.); (E.M.-S.); (P.P.-D.)
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Fernando M. Gómez-Guijarro
- Servicio de Anestesiologia y Reanimación, Hospital Universitario 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain; (A.J.C.); (R.S.); (B.M.); (F.M.G.-G.); (E.M.-S.); (P.P.-D.)
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Elena Murcia-Sánchez
- Servicio de Anestesiologia y Reanimación, Hospital Universitario 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain; (A.J.C.); (R.S.); (B.M.); (F.M.G.-G.); (E.M.-S.); (P.P.-D.)
| | - Abraham B. Torregrosa
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Paloma Pérez-Doblado
- Servicio de Anestesiologia y Reanimación, Hospital Universitario 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain; (A.J.C.); (R.S.); (B.M.); (F.M.G.-G.); (E.M.-S.); (P.P.-D.)
| | - Luisa Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
28
|
Shivshankar S, Nimely J, Puhl H, Iyer MR. Pharmacological Evaluation of Cannabinoid Receptor Modulators Using GRAB eCB2.0 Sensor. Int J Mol Sci 2024; 25:5012. [PMID: 38732230 PMCID: PMC11084632 DOI: 10.3390/ijms25095012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/08/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Cannabinoid receptors CB1R and CB2R are G-protein coupled receptors acted upon by endocannabinoids (eCBs), namely 2-arachidonoylglycerol (2-AG) and N-arachidonoyl ethanolamine (AEA), with unique pharmacology and modulate disparate physiological processes. A genetically encoded GPCR activation-based sensor that was developed recently-GRABeCB2.0-has been shown to be capable of monitoring real-time changes in eCB levels in cultured cells and preclinical models. However, its responsiveness to exogenous synthetic cannabinoid agents, particularly antagonists and allosteric modulators, has not been extensively characterized. This current study expands upon the pharmacological characteristics of GRABeCB2.0 to enhance the understanding of fluorescent signal alterations in response to various functionally indiscriminate cannabinoid ligands. The results from this study could enhance the utility of the GRABeCB2.0 sensor for in vitro as well as in vivo studies of cannabinoid action and may aid in the development of novel ligands.
Collapse
Affiliation(s)
- Samay Shivshankar
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, MD 20852, USA
| | - Josephine Nimely
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, MD 20852, USA
| | - Henry Puhl
- Laboratory of Biophotonics and Quantum Biology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, MD 20852, USA;
| | - Malliga R. Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, MD 20852, USA
| |
Collapse
|
29
|
Richardson B, Clarke C, Blundell J, Bambico FR. Therapeutic-like activity of cannabidiolic acid methyl ester in the MK-801 mouse model of schizophrenia: Role for cannabinoid CB1 and serotonin-1A receptors. Eur J Neurosci 2024; 59:2403-2415. [PMID: 38385841 DOI: 10.1111/ejn.16278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/15/2024] [Accepted: 01/27/2024] [Indexed: 02/23/2024]
Abstract
Schizophrenia is a psychotic disorder with an increasing prevalence and incidence over the last two decades. The condition presents with a diverse array of positive, negative, and cognitive impairments. Conventional treatments often yield unsatisfactory outcomes, especially with negative symptoms. We investigated the role of prefrontocortical (PFC) N-methyl-D-aspartate receptors (NMDARs) in the pathophysiology and development of schizophrenia. We explored the potential therapeutic effects of cannabidiolic acid (CBDA) methyl ester (HU-580), an analogue of CBDA known to act as an agonist of the serotonin-1A receptor (5-HT1AR) and an antagonist of cannabinoid type 1 receptor (CB1R). C57BL/6 mice were intraperitoneally administered the NMDAR antagonist, dizocilpine (MK-801, .3 mg/kg) once daily for 17 days. After 7 days, they were concurrently given HU-580 (.01 or .05 μg/kg) for 10 days. Behavioural deficits were assessed at two time points. We conducted enzyme-linked immunosorbent assays to measure the concentration of PFC 5-HT1AR and CB1R. We found that MK-801 effectively induced schizophrenia-related behaviours including hyperactivity, social withdrawal, increased forced swim immobility, and cognitive deficits. We discovered that low-dose HU-580 (.01 μg/kg), but not the high dose (.05 μg/kg), attenuated hyperactivity, forced swim immobility and cognitive deficits, particularly in female mice. Our results revealed that MK-801 downregulated both CB1R and 5-HT1AR, an effect that was blocked by both low- and high-dose HU-580. This study sheds light on the potential antipsychotic properties of HU-580, particularly in the context of NMDAR-induced dysfunction. Our findings could contribute significantly to our understanding of schizophrenia pathophysiology and offer a promising avenue for exploring the therapeutic potential of HU-580 and related compounds in alleviating symptoms.
Collapse
MESH Headings
- Animals
- Schizophrenia/drug therapy
- Schizophrenia/chemically induced
- Schizophrenia/metabolism
- Dizocilpine Maleate/pharmacology
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT1A/drug effects
- Male
- Mice
- Female
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB1/agonists
- Mice, Inbred C57BL
- Disease Models, Animal
- Cannabinoids/pharmacology
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Antipsychotic Agents/pharmacology
Collapse
Affiliation(s)
- Brandon Richardson
- Memorial University of Newfoundland and Labrador, St. John's, Newfoundland, Canada
| | - Courtney Clarke
- Memorial University of Newfoundland and Labrador, St. John's, Newfoundland, Canada
| | - Jacqueline Blundell
- Memorial University of Newfoundland and Labrador, St. John's, Newfoundland, Canada
| | - Francis R Bambico
- Memorial University of Newfoundland and Labrador, St. John's, Newfoundland, Canada
| |
Collapse
|
30
|
Müller-Vahl KR. Cannabinoids in the Treatment of Selected Mental Illnesses: Practical Approach and Overview of the Literature. PHARMACOPSYCHIATRY 2024; 57:104-114. [PMID: 38428836 PMCID: PMC11076106 DOI: 10.1055/a-2256-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/17/2024] [Indexed: 03/03/2024]
Abstract
Although an increasing number of patients suffering from mental illnesses self-medicate with cannabis, current knowledge about the efficacy and safety of cannabis-based medicine in psychiatry is still extremely limited. So far, no cannabis-based finished product has been approved for the treatment of a mental illness. There is increasing evidence that cannabinoids may improve symptoms in autism spectrum disorder (ASD), Tourette syndrome (TS), anxiety disorders, and post-traumatic stress disorder (PTSD). According to surveys, patients often use cannabinoids to improve mood, sleep, and symptoms of attention deficit/hyperactivity disorder (ADHD). There is evidence suggesting that tetrahydrocannabinol (THC) and THC-containing cannabis extracts, such as nabiximols, can be used as substitutes in patients with cannabis use disorder.Preliminary evidence also suggests an involvement of the endocannabinoid system (ECS) in the pathophysiology of TS, ADHD, and PTSD. Since the ECS is the most important neuromodulatory system in the brain, it possibly induces beneficial effects of cannabinoids by alterations in other neurotransmitter systems. Finally, the ECS is an important stress management system. Thus, cannabinoids may improve symptoms in patients with mental illnesses by reducing stress.Practically, cannabis-based treatment in patients with psychiatric disorders does not differ from other indications. The starting dose of THC-containing products should be low (1-2.5 mg THC/day), and the dose should be up-titrated slowly (by 1-2.5 mg every 3-5 days). The average daily dose is 10-20 mg THC. In contrast, cannabidiol (CBD) is mainly used in high doses>400 mg/day.
Collapse
Affiliation(s)
- Kirsten R. Müller-Vahl
- Clinic of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover
Medical School, Hannover, Germany
| |
Collapse
|
31
|
Dutta S, Shukla D. Characterization of binding kinetics and intracellular signaling of new psychoactive substances targeting cannabinoid receptor using transition-based reweighting method. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.29.560261. [PMID: 37873328 PMCID: PMC10592854 DOI: 10.1101/2023.09.29.560261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
New psychoactive substances (NPS) targeting cannabinoid receptor 1 pose a significant threat to society as recreational abusive drugs that have pronounced physiological side effects. These greater adverse effects compared to classical cannabinoids have been linked to the higher downstream β-arrestin signaling. Thus, understanding the mechanism of differential signaling will reveal important structure-activity relationship essential for identifying and potentially regulating NPS molecules. In this study, we simulate the slow (un)binding process of NPS MDMB-Fubinaca and classical cannabinoid HU-210 from CB1 using multi-ensemble simulation to decipher the effects of ligand binding dynamics on downstream signaling. The transition-based reweighing method is used for the estimation of transition rates and underlying thermodynamics of (un)binding processes of ligands with nanomolar affinities. Our analyses reveal major interaction differences with transmembrane TM7 between NPS and classical cannabinoids. A variational autoencoder-based approach, neural relational inference (NRI), is applied to assess the allosteric effects on intracellular regions attributable to variations in binding pocket interactions. NRI analysis indicate a heightened level of allosteric control of NPxxY motif for NPS-bound receptors, which contributes to the higher probability of formation of a crucial triad interaction (Y7.53-Y5.58-T3.46) necessary for stronger β-arrestin signaling. Hence, in this work, MD simulation, data-driven statistical methods, and deep learning point out the structural basis for the heightened physiological side effects associated with NPS, contributing to efforts aimed at mitigating their public health impact.
Collapse
Affiliation(s)
- Soumajit Dutta
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
| |
Collapse
|
32
|
Bo Y, Zhao X, Li L. Cardiotoxic effects of common and emerging drugs: role of cannabinoid receptors. Clin Sci (Lond) 2024; 138:413-434. [PMID: 38505994 DOI: 10.1042/cs20231156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/23/2024] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
Drug-induced cardiotoxicity has become one of the most common and detrimental health concerns, which causes significant loss to public health and drug resources. Cannabinoid receptors (CBRs) have recently achieved great attention for their vital roles in the regulation of heart health and disease, with mounting evidence linking CBRs with the pathogenesis and progression of drug-induced cardiotoxicity. This review aims to summarize fundamental characteristics of two well-documented CBRs (CB1R and CB2R) from aspects of molecular structure, signaling and their functions in cardiovascular physiology and pathophysiology. Moreover, we describe the roles of CB1R and CB2R in the occurrence of cardiotoxicity induced by common drugs such as antipsychotics, anti-cancer drugs, marijuana, and some emerging synthetic cannabinoids. We highlight the 'yin-yang' relationship between CB1R and CB2R in drug-induced cardiotoxicity and propose future perspectives for CBR-based translational medicine toward cardiotoxicity curation and clinical monitoring.
Collapse
Affiliation(s)
- Yiming Bo
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xin Zhao
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Liliang Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
33
|
Pagano S, Valenti C, Negri P, Billi M, Di Michele A, Bruscoli S, Febo M, Coniglio M, Marinucci L. Acute and chronic cannabidiol treatment: In vitro toxicological aspects on human oral cells. Food Chem Toxicol 2024; 185:114513. [PMID: 38342230 DOI: 10.1016/j.fct.2024.114513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
Cannabidiol is gaining increasing interest for its potential anti-inflammatory, immunomodulatory, and antineoplastic effects. The purpose of this study is to investigate the biological effects of acute and chronic CBD administration on gingival fibroblasts and oral keratinocytes. Viability, morphology, migration, apoptosis and cell cycle, and expression of related genes (p53, BCL2, p21, and BAX) and of endocannabinoid system receptors (CB1, CB2 and GPR55) with real-time PCR and DNA damage with phospho-γ-H2AX immunofluorescence detection were analyzed. Concentrations between 100 μM and 0.001 μM were used: 50 μM (toxic dose), 25 μM (viability promoter), and 1 μM (nontoxic), were selected for subsequent chronic analysis. Acute treatment reveals significant effects than chronic, in particular in fibroblasts: concentrations ≥50 μM are highly cytotoxic, with increased apoptosis and reduced migration. Cell death correlates with increased p53 and BAX, followed by arrest in G0/G1 phase, with elevated p21 levels, suggesting a time- and dose-dependent damage. An increase in H2AX phosphorylation was observed with 25 μM and 50 μM, while 1 μM was biocompatible. Keratinocytes showed less cytotoxic effect than fibroblasts. Induced cell damage was dose- and time-related, with less damage after chronic treatment. Further investigations are needed with longer time frames to evaluate CBD dose- and time-dependent effects to identify an effective therapeutic dose.
Collapse
Affiliation(s)
- Stefano Pagano
- Department of Medicine and Surgery, Faculty of Dentistry, University of Perugia, S. Andrea delle Fratte, 06156, Perugia, Italy.
| | - Chiara Valenti
- Department of Medicine and Surgery, Faculty of Dentistry, University of Perugia, S. Andrea delle Fratte, 06156, Perugia, Italy; CISAS "Giuseppe Colombo", University of Padua, Via Venezia, 15, 35131, Padua, Italy.
| | - Paolo Negri
- Department of Medicine and Surgery, Faculty of Dentistry, University of Perugia, S. Andrea delle Fratte, 06156, Perugia, Italy.
| | - Monia Billi
- Department of Medicine and Surgery, Section of General Pathology, University of Perugia, S. Andrea delle Fratte, 06156, Perugia, Italy.
| | - Alessandro Di Michele
- Department of Physics and Geology, University of Perugia, Via Pascoli, 06123, Perugia, Italy.
| | - Stefano Bruscoli
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, S. Andrea delle Fratte, 06156, Perugia, Italy.
| | - Marta Febo
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, S. Andrea delle Fratte, 06156, Perugia, Italy.
| | - Maddalena Coniglio
- Department of Medicine and Surgery, Faculty of Dentistry, University of Perugia, S. Andrea delle Fratte, 06156, Perugia, Italy.
| | - Lorella Marinucci
- Department of Medicine and Surgery, Section of Biosciences and Medical Embryology, University of Perugia, S. Andrea delle Fratte, 06156, Perugia, Italy.
| |
Collapse
|
34
|
An D, Carrazoni GS, Souto das Neves BH, D’Hooge R, Peigneur S, Tytgat J. The Sobering Sting: Oleoyl Serotonin Is a Novel Stephanoconus Snail Venom-Derived Antagonist of Cannabinoid Receptors That Counteracts Learning and Memory Deficits. Biomedicines 2024; 12:454. [PMID: 38398056 PMCID: PMC10887214 DOI: 10.3390/biomedicines12020454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Cannabinoid receptors (CB1 and CB2) are promising targets for a better understanding of neurological diseases. Nevertheless, only a few ligands of CB have reached clinical application so far. Venoms are considered as interesting sources of novel biologically active compounds. Here, we describe an endocannabinoid-like molecule, oleoyl serotonin (OS), present in the venom of Stephanoconus snails. Using electrophysiological assays, it was shown that OS inhibits CB1 and CB2. Structure-activity relationship studies using a chimeric CB1/2 revealed that the domain encompassing the transmembrane helix V (TMHV)- intracellular loop 3 (ICL3)-TMHVI of the CB2 is critical for the binding and function of OS. We concluded that OS binds to sites of the CB2 that are different from the binding sites of the non-selective CB agonist WIN55,212-2. Behavioral assays in mice showed that OS counteracted learning and memory deficits caused by WIN55,212-2. Furthermore, a selectivity screening of OS showed high selectivity for CB over various ion channels and receptors. Overall, OS may represent a new approach to the prevention and treatment of learning and memory cognition impairment in neurological diseases.
Collapse
Affiliation(s)
- Dongchen An
- Toxicology and Pharmacology, KU Leuven, Campus Gasthuisberg, ON2, Herestraat 49, Box-922, 3000 Leuven, Belgium
| | - Guilherme Salgado Carrazoni
- Laboratory of Biological Psychology, KU Leuven, Tiensestraat 102, Box-3714, 3000 Leuven, Belgium; (G.S.C.); (B.-H.S.d.N.); (R.D.)
| | - Ben-Hur Souto das Neves
- Laboratory of Biological Psychology, KU Leuven, Tiensestraat 102, Box-3714, 3000 Leuven, Belgium; (G.S.C.); (B.-H.S.d.N.); (R.D.)
| | - Rudi D’Hooge
- Laboratory of Biological Psychology, KU Leuven, Tiensestraat 102, Box-3714, 3000 Leuven, Belgium; (G.S.C.); (B.-H.S.d.N.); (R.D.)
| | - Steve Peigneur
- Toxicology and Pharmacology, KU Leuven, Campus Gasthuisberg, ON2, Herestraat 49, Box-922, 3000 Leuven, Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, Campus Gasthuisberg, ON2, Herestraat 49, Box-922, 3000 Leuven, Belgium
| |
Collapse
|
35
|
Guo Y, Wei R, Deng J, Guo W. Research progress in the management of vascular disease with cannabidiol: a review. J Cardiothorac Surg 2024; 19:6. [PMID: 38172934 PMCID: PMC10765825 DOI: 10.1186/s13019-023-02476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024] Open
Abstract
The morbidity and mortality rates associated with vascular disease (VD) have been gradually increasing. Currently, the most common treatment for VD is surgery, with the progress in drug therapy remaining slow. Cannabidiol (CBD) is a natural extract of Cannabis sativa L. with sedative, analgesic, and nonaddictive properties. CBD binds to 56 cardiovascular-related receptors and exerts extensive regulatory effects on the cardiovascular system, making it a potential pharmacological agent for the management of VD. However, most CBD studies have focused on neurological and cardiac diseases, and research on the management of VD with CBD is still rare. In this review, we summarize the currently available data on CBD in the management of VD, addressing four aspects: the major molecular targets of CBD in VD management, pharmacokinetic properties, therapeutic effects of CBD on common VDs, and side effects. The findings indicate that CBD has anti-anxiety, anti-oxidation, and anti-inflammatory properties and can inhibit abnormal proliferation and apoptosis of vascular smooth muscle and endothelial cells; these effects suggest CBD as a therapeutic agent for atherosclerosis, stress-induced hypertension, diabetes-related vasculopathy, ischemia-reperfusion injury, and vascular damage caused by smoking and alcohol abuse. This study provides a theoretical basis for further research on CBD in the management of VD.
Collapse
Affiliation(s)
- Yilong Guo
- Medical School of Chinese PLA, Beijing, 100037, China
- Department of Vascular and Endovascular Surgery, The First Medical Centre of PLA General Hospital, 28#, Fuxing Road, Beijing, 100037, China
| | - Ren Wei
- Department of Vascular and Endovascular Surgery, The First Medical Centre of PLA General Hospital, 28#, Fuxing Road, Beijing, 100037, China
| | - Jianqing Deng
- Senior Department of Cardiology, The Six Medical Centre of PLA General Hospital, Beijing, 100037, China
| | - Wei Guo
- Medical School of Chinese PLA, Beijing, 100037, China.
- Department of Vascular and Endovascular Surgery, The First Medical Centre of PLA General Hospital, 28#, Fuxing Road, Beijing, 100037, China.
| |
Collapse
|
36
|
Joshi N, Mariam H, Kamath A. Cannabinoids for the Treatment of Glaucoma: A Review. Med Cannabis Cannabinoids 2024; 7:183-192. [PMID: 39474241 PMCID: PMC11521503 DOI: 10.1159/000541461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/11/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Glaucoma is an ocular disease with significant health burden. Despite the availability of many antiglaucoma drugs, a significant proportion of patients may experience worsening of the disease. Hence, there is a need for newer antiglaucoma drugs. SUMMARY Natural and synthetic derivatives of cannabis plants have been studied in the treatment of glaucoma since the 1970s. This review describes the potential mechanisms of the cannabinoids in the treatment of glaucoma, summarizes the findings of clinical studies describing the efficacy of these compounds, and describes the adverse effects observed with the various cannabinoid formulations evaluated in clinical studies of glaucoma in healthy volunteers and patients. The implications of these findings in terms of the potential clinical status of cannabinoids in the treatment of glaucoma and the challenges involved have also been described. KEY MESSAGES Cannabinoids lower intraocular pressure. However, the effect is short-lived. There is also a lack of well-formulated ocular delivery system. The available evidence is inadequate to recommend the use of cannabinoids for the routine treatment of glaucoma.
Collapse
Affiliation(s)
- Neeraj Joshi
- Department of Pharmacology, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Haifa Mariam
- Department of Pharmacology, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Ashwin Kamath
- Department of Pharmacology, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
37
|
Navarro G, Sotelo E, Raïch I, Loza MI, Brea J, Majellaro M. A Robust and Efficient FRET-Based Assay for Cannabinoid Receptor Ligands Discovery. Molecules 2023; 28:8107. [PMID: 38138600 PMCID: PMC10745346 DOI: 10.3390/molecules28248107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The identification of new modulators for Cannabinoid Receptors (CBRs) has garnered significant attention in drug discovery over recent years, owing to their manifold pathophysiological implications. In the context of hit identification, the availability of robust and sensitive high-throughput screening assays is essential to enhance the likelihood of success. In this study, we present the development and validation of a Tag-lite® binding assay designed for screening hCB1/hCB2 binding, employing a dual fluorescent ligand, CELT-335. Representative ligands for CBRs, exhibiting diverse affinity and functional profiles, were utilized as reference compounds to validate the robustness and efficiency of the newly developed Tag-lite® binding assay protocol. The homogeneous format, coupled with the sensitivity and optimal performance of the fluorescent ligand CELT-335, establishes this assay as a viable and reliable method for screening in hit and lead identification campaigns.
Collapse
Affiliation(s)
- Gemma Navarro
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain
- Institute of Neuroscience of the University of Barcelona, 08035 Barcelona, Spain
| | - Eddy Sotelo
- Department of Organic Chemistry, Center for Research in Biological Chemistry and Molecular Materials (CiQUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Iu Raïch
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain
- Institute of Neuroscience of the University of Barcelona, 08035 Barcelona, Spain
| | - María Isabel Loza
- Research Center in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Jose Brea
- Research Center in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Maria Majellaro
- Celtarys Research SL, Avda. Mestre Mateo, 2, 15706 Santiago de Compostela, Spain
| |
Collapse
|
38
|
Wilson G, Yang L, Su X, Ding S, Li L, Yang Y, Wang X, Wang W, Sa Y, Zhang Y, Chen J, Ma X. Exploring the therapeutic potential of natural compounds modulating the endocannabinoid system in various diseases and disorders: review. Pharmacol Rep 2023; 75:1410-1444. [PMID: 37906390 DOI: 10.1007/s43440-023-00544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023]
Abstract
Cannabinoid receptors, endogenous cannabinoids (endocannabinoids), and the enzymes involved in the biosynthesis and degradation of the endocannabinoids make up the endocannabinoid system (ECS). The components of the ECS are proven to modulate a vast bulk of various physiological and pathological processes due to their abundance throughout the human body. Such discoveries have attracted the researchers' attention and emerged as a potential therapeutical target for the treatment of various diseases. In the present article, we reviewed the discoveries of natural compounds, herbs, herbs formula, and their therapeutic properties in various diseases and disorders by modulating the ECS. We also summarize the molecular mechanisms through which these compounds elicit their properties by interacting with the ECS based on the existing findings. Our study provides the insight into the use of natural compounds that modulate ECS in various diseases and disorders, which in turn may facilitate future studies exploiting natural lead compounds as novel frameworks for designing more effective and safer therapeutics.
Collapse
Affiliation(s)
- Gidion Wilson
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Lingling Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Xiaojuan Su
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Shuqin Ding
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Liuyan Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Youyue Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Xiaoying Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Weibiao Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Yuping Sa
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Yue Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Jianyu Chen
- Fujian University of Traditional Chinese Medicine, No. 1, Huatuo Road, Minhoushangjie, Fuzhou, 350122, China.
| | - Xueqin Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China.
| |
Collapse
|
39
|
Peters EN, Yardley H, Harrison A, Eglit GM, Antonio J, Turcotte C, Bonn-Miller MO. A randomized, double-blind, placebo-controlled, repeated-dose pilot study of the safety, tolerability, and preliminary effects of a cannabidiol (CBD)- and cannabigerol (CBG)-based beverage powder to support recovery from delayed onset muscle soreness (DOMS). J Int Soc Sports Nutr 2023; 20:2280113. [PMID: 37947792 PMCID: PMC10653658 DOI: 10.1080/15502783.2023.2280113] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Cannabinoid-containing products are marketed to athletes as promoting recovery, in spite of a lack of data on their safety and effects. This randomized, double-blind, placebo-controlled, repeated-dose pilot study tested the safety, tolerability, and preliminary effects on recovery of a formulation containing cannabidiol (CBD; 35 mg), cannabigerol (CBG; 50 mg), beta caryophyllene (BCP; 25 mg), branched-chain amino acids (BCAAs; 3.8 g), and magnesium citrate (420 mg). METHODS Exercise-trained individuals (N = 40) underwent an experimental induction of delayed onset muscle soreness (DOMS) and completed follow-up visits 24-, 48-, and 72-hours post-DOMS. Participants were randomized to active or placebo formulation, and consumed the formulation twice per day for 3.5 days. RESULTS There was one adverse event (AE) in the active group (diarrhea) and two AEs in placebo (dry mouth; eye rash/swollen eye). There was 100% self-reported compliance with formulation consumption across the two groups. For the primary outcome of interest, the estimate of effect for ratings of average soreness/discomfort 72 hours post-DOMS between active and placebo groups was -1.33 (85% confidence interval = -2.55, -0.10), suggesting moderate evidence of a treatment difference. The estimate of effect for the outcome of ratings of interference of soreness, discomfort, or stiffness on daily activities at work or home 48 hours post-DOMS was -1.82 (95% confidence interval = -3.64, -0.01), indicating a treatment difference of potential clinical importance. There was no significant effect between active and placebo groups on objective measures of recovery, sleep quality, or mood disturbance. CONCLUSIONS The tested formulation reduced interference of DOMS on daily activities, demonstrating its improvement on a functional aspect of recovery.
Collapse
Affiliation(s)
| | - Helena Yardley
- Canopy Growth Corporation, Smiths Falls, Ontario, Canada
| | - Amy Harrison
- Canopy Growth Corporation, Smiths Falls, Ontario, Canada
| | | | - Jose Antonio
- Nova Southeastern University, Exercise and Sport Science, Davie, FL, USA
| | | | | |
Collapse
|
40
|
Kwon IS, Hwang YN, Park JH, Na HH, Kwon TH, Park JS, Kim KC. Metallothionein Family Proteins as Regulators of Zinc Ions Synergistically Enhance the Anticancer Effect of Cannabidiol in Human Colorectal Cancer Cells. Int J Mol Sci 2023; 24:16621. [PMID: 38068944 PMCID: PMC10705991 DOI: 10.3390/ijms242316621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Cannabidiol (CBD) is a chemical obtained from Cannabis sativa; it has therapeutic effects on anxiety and cognition and anti-inflammatory properties. Although pharmacological applications of CBD in many types of tumors have recently been reported, the mechanism of action of CBD is not yet fully understood. In this study, we perform an mRNA-seq analysis to identify the target genes of CBD after determining the cytotoxic concentrations of CBD using an MTT assay. CBD treatment regulated the expression of genes related to DNA repair and cell division, with metallothionein (MT) family genes being identified as having highly increased expression levels induced by CBD. It was also found that the expression levels of MT family genes were decreased in colorectal cancer tissues compared to those in normal tissues, indicating that the downregulation of MT family genes might be highly associated with colorectal tumor progression. A qPCR experiment revealed that the expression levels of MT family genes were increased by CBD. Moreover, MT family genes were regulated by CBD or crude extract but not by other cannabinoids, suggesting that the expression of MT family genes was specifically induced by CBD. A synergistic effect between CBD and MT gene transfection or zinc ion treatment was found. In conclusion, MT family genes as novel target genes could synergistically increase the anticancer activity of CBD by regulating the zinc ions in human colorectal cancer cells.
Collapse
Affiliation(s)
- In-Seo Kwon
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Kangwon, Republic of Korea; (I.-S.K.); (Y.-N.H.); (J.-H.P.); (H.-H.N.)
| | - Yu-Na Hwang
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Kangwon, Republic of Korea; (I.-S.K.); (Y.-N.H.); (J.-H.P.); (H.-H.N.)
| | - Ju-Hee Park
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Kangwon, Republic of Korea; (I.-S.K.); (Y.-N.H.); (J.-H.P.); (H.-H.N.)
| | - Han-Heom Na
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Kangwon, Republic of Korea; (I.-S.K.); (Y.-N.H.); (J.-H.P.); (H.-H.N.)
- Kangwon Center for System Imaging, Chuncheon 24341, Kangwon, Republic of Korea
| | - Tae-Hyung Kwon
- Chuncheon Bioindustry Foundation, Chuncheon 24232, Kangwon, Republic of Korea;
| | - Jin-Sung Park
- Korean Pharmacopuncture Institute, Seoul 07525, Republic of Korea;
| | - Keun-Cheol Kim
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Kangwon, Republic of Korea; (I.-S.K.); (Y.-N.H.); (J.-H.P.); (H.-H.N.)
- Kangwon Center for System Imaging, Chuncheon 24341, Kangwon, Republic of Korea
| |
Collapse
|
41
|
Rathod SS, Agrawal YO, Nakhate KT, Meeran MFN, Ojha S, Goyal SN. Neuroinflammation in the Central Nervous System: Exploring the Evolving Influence of Endocannabinoid System. Biomedicines 2023; 11:2642. [PMID: 37893016 PMCID: PMC10604915 DOI: 10.3390/biomedicines11102642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Neuroinflammation is a complex biological process that typically originates as a protective response in the brain. This inflammatory process is triggered by the release of pro-inflammatory substances like cytokines, prostaglandins, and reactive oxygen and nitrogen species from stimulated endothelial and glial cells, including those with pro-inflammatory functions, in the outer regions. While neuronal inflammation is common in various central nervous system disorders, the specific inflammatory pathways linked with different immune-mediated cell types and the various factors influencing the blood-brain barrier significantly contribute to disease-specific characteristics. The endocannabinoid system consists of cannabinoid receptors, endogenous cannabinoids, and enzymes responsible for synthesizing and metabolizing endocannabinoids. The primary cannabinoid receptor is CB1, predominantly found in specific brain regions such as the brainstem, cerebellum, hippocampus, and cortex. The presence of CB2 receptors in certain brain components, like cultured cerebellar granular cells, Purkinje fibers, and microglia, as well as in the areas like the cerebral cortex, hippocampus, and cerebellum is also evidenced by immunoblotting assays, radioligand binding, and autoradiography studies. Both CB1 and CB2 cannabinoid receptors exhibit noteworthy physiological responses and possess diverse neuromodulatory capabilities. This review primarily aims to outline the distribution of CB1 and CB2 receptors across different brain regions and explore their potential roles in regulating neuroinflammatory processes.
Collapse
Affiliation(s)
- Sumit S. Rathod
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.S.R.); (Y.O.A.); (K.T.N.)
- Department of Pharmacy, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India
| | - Yogeeta O. Agrawal
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.S.R.); (Y.O.A.); (K.T.N.)
| | - Kartik T. Nakhate
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.S.R.); (Y.O.A.); (K.T.N.)
| | - M. F. Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Abu Dhabi P.O. Box 15551, United Arab Emirates;
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Abu Dhabi P.O. Box 15551, United Arab Emirates;
| | - Sameer N. Goyal
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.S.R.); (Y.O.A.); (K.T.N.)
| |
Collapse
|
42
|
Nasrallah D, Garg NK. Studies Pertaining to the Emerging Cannabinoid Hexahydrocannabinol (HHC). ACS Chem Biol 2023; 18:2023-2029. [PMID: 37578929 PMCID: PMC10510108 DOI: 10.1021/acschembio.3c00254] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/03/2023] [Indexed: 08/16/2023]
Abstract
We report studies pertaining to two isomeric hexahydrocannabinols (HHCs), (9R)-HHC and (9S)-HHC, which are derivatives of the psychoactive cannabinoids Δ9- and Δ8-THC. HHCs have been known since the 1940s, but have become increasingly available to the public in the United States and are typically sold as a mixture of isomers. We show that (9R)-HHC and (9S)-HHC can be prepared using hydrogen-atom transfer reduction, with (9R)-HHC being accessed as the major diastereomer. In addition, we report the results of cannabinoid receptor studies for (9R)-HHC and (9S)-HHC. The binding affinity and activity of isomer (9R)-HHC are similar to that of Δ9-THC, whereas (9S)-HHC binds strongly in cannabinoid receptor studies but displays diminished activity in functional assays. This is notable, as our examination of the certificates of analysis for >60 commercially available HHC products show wide variability in HHC isomer ratios (from 0.2:1 to 2.4:1 of (9R)-HHC to (9S)-HHC). These studies suggest the need for greater research and systematic testing of new cannabinoids. Such efforts would help inform cannabis-based policies, ensure the safety of cannabinoids, and potentially lead to the discovery of new medicines.
Collapse
Affiliation(s)
- Daniel
J. Nasrallah
- Department of Chemistry Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Neil K. Garg
- Department of Chemistry Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
43
|
Docampo-Palacios ML, Ramirez GA, Tesfatsion TT, Okhovat A, Pittiglio M, Ray KP, Cruces W. Saturated Cannabinoids: Update on Synthesis Strategies and Biological Studies of These Emerging Cannabinoid Analogs. Molecules 2023; 28:6434. [PMID: 37687263 PMCID: PMC10490552 DOI: 10.3390/molecules28176434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Natural and non-natural hexahydrocannabinols (HHC) were first described in 1940 by Adam and in late 2021 arose on the drug market in the United States and in some European countries. A background on the discovery, synthesis, and pharmacology studies of hydrogenated and saturated cannabinoids is described. This is harmonized with a summary and comparison of the cannabinoid receptor affinities of various classical, hybrid, and non-classical saturated cannabinoids. A discussion of structure-activity relationships with the four different pharmacophores found in the cannabinoid scaffold is added to this review. According to laboratory studies in vitro, and in several animal species in vivo, HHC is reported to have broadly similar effects to Δ9-tetrahydrocannabinol (Δ9-THC), the main psychoactive substance in cannabis, as demonstrated both in vitro and in several animal species in vivo. However, the effects of HHC treatment have not been studied in humans, and thus a biological profile has not been established.
Collapse
Affiliation(s)
- Maite L. Docampo-Palacios
- Colorado Chromatography Labs, 10505 S. Progress Way, Unit 105, Parker, CO 80134, USA; (G.A.R.); (T.T.T.); (A.O.); (M.P.); (K.P.R.)
| | | | | | | | | | | | - Westley Cruces
- Colorado Chromatography Labs, 10505 S. Progress Way, Unit 105, Parker, CO 80134, USA; (G.A.R.); (T.T.T.); (A.O.); (M.P.); (K.P.R.)
| |
Collapse
|
44
|
Nogueira Barradas T, Araujo Cardoso S, de Castro Grimaldi P, Lohan-Codeço M, Escorsim Machado D, Medina de Mattos R, Eurico Nasciutti L, Palumbo A. Development, characterization and evidence of anti-endometriotic activity of Phytocannabinoid-Rich nanoemulsions. Int J Pharm 2023; 643:123049. [PMID: 37196880 DOI: 10.1016/j.ijpharm.2023.123049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
During the last decades, the cannabinoid research for therapeutic purposes has been rapidly advancing, with an ever-growing body of evidence of beneficial effects for a wide sort of conditions, including those related to mucosal and epithelial homeostasis, inflammatory processes, immune responses, nociception, and modulating cell differentiation. β-caryophyllene (BCP) is a lipophilic volatile sesquiterpene, known as non-cannabis-derived phytocannabinoid, with documented anti-inflammatory, anti-proliferative and analgesic effects in both in vitro and in vivo models. Copaiba oil (COPA) is an oil-resin, mainly composed of BCP and other lipophilic and volatile components. COPA is reported to show several therapeutic effects, including anti-endometriotic properties and its use is widespread throughout the Amazonian folk medicine. COPA was nanoencapsulated into nanoemulsions (NE), then evaluated regarding the potential for transvaginal drug delivery and providing endometrial stromal cell proliferation in vitro. Transmission electron microscopy (TEM) showed that spherical NE were obtained with COPA concentration that varied from 5 to 7 wt%, while surfactant was maintained at 7.75 wt%. Dynamic light scattering (DLS) measurements showed droplet sizes of 30.03 ± 1.18, 35.47 ± 2.02, 43.98 ± 4.23 and PdI of 0.189, 0.175 and 0.182, respectively, with stability against coalescence and Ostwald ripening during 90 days. Physicochemical characterization results suggest that NE were able to both improve solubility and loading capacity, and increase thermal stability of COPA volatile components. Moreover, they showed slow and sustained release for up to eight hours, following the Higuchi kinetic model. Endometrial stromal cells from non-endometriotic lesions and ectopic endometrium were treated with different concentrations of COPA-loaded NE for 48 h to evaluate its effect on cell viability and morphology. The results suggested significant decrease in cell viability and morphological modifications in concentrations higher than 150 μg/ml of COPA-loaded NE, but not when cells were treated with the vehicle (without COPA). Given the relevance of Copaifera spp. species in folk medicine and their bio economical importance in the Amazon, the development of novel formulations to overcome the technological limitations related to BCP and COPA, is promising. Our results showed that COPA-loaded NE can lead to a novel, uterus-targeting, more effective and promising natural alternative treatment of endometriosis.
Collapse
Affiliation(s)
- Thaís Nogueira Barradas
- Departamento de Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Juiz de Fora (UFJF), R. José Lourenço Kelmer, s/n, Juiz de Fora, Zip Code: 36036-900, Brazil.
| | - Stephani Araujo Cardoso
- Programa de Pós-Graduação em Ciência e Tecnologia de Polímeros, Instituto de Macromoléculas. Universidade Federal do Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, Cidade Universitária, Ilha do Fundão, Rio de Janeiro Zip Code: 21941-902, Brazil
| | - Paloma de Castro Grimaldi
- Instituto Federal do Rio de Janeiro (IFRJ), Rua Senador Furtado, n° 121/125, Maracanã, Rio de Janeiro Zip Code: 20260-100, Brazil
| | - Matheus Lohan-Codeço
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Universidade Federal do Rio de Janeiro (UFRJ), Rua César Pernetta, 1766 (LS.3.01), Cidade Universitária, Ilha do Fundão, Rio de Janeiro Zip Code: 21941-902, Brazil
| | - Daniel Escorsim Machado
- Laboratório de Pesquisa em Ciências Farmacêuticas (LAPESF), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brasil
| | - Romulo Medina de Mattos
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Universidade Federal do Rio de Janeiro (UFRJ), Rua César Pernetta, 1766 (LS.3.01), Cidade Universitária, Ilha do Fundão, Rio de Janeiro Zip Code: 21941-902, Brazil
| | - Luiz Eurico Nasciutti
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Universidade Federal do Rio de Janeiro (UFRJ), Rua César Pernetta, 1766 (LS.3.01), Cidade Universitária, Ilha do Fundão, Rio de Janeiro Zip Code: 21941-902, Brazil
| | - Antonio Palumbo
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Universidade Federal do Rio de Janeiro (UFRJ), Rua César Pernetta, 1766 (LS.3.01), Cidade Universitária, Ilha do Fundão, Rio de Janeiro Zip Code: 21941-902, Brazil
| |
Collapse
|
45
|
Lindner T, Schmidl D, Peschorn L, Pai V, Popa-Cherecheanu A, Chua J, Schmetterer L, Garhöfer G. Therapeutic Potential of Cannabinoids in Glaucoma. Pharmaceuticals (Basel) 2023; 16:1149. [PMID: 37631064 PMCID: PMC10460067 DOI: 10.3390/ph16081149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide. To date, intraocular pressure (IOP) is the only modifiable risk factor in glaucoma treatment, but even in treated patients, the disease can progress. Cannabinoids, which have been known to lower IOP since the 1970s, have been shown to have beneficial effects in glaucoma patients beyond their IOP-lowering properties. In addition to the classical cannabinoid receptors CB1 and CB2, knowledge of non-classical cannabinoid receptors and the endocannabinoid system has increased in recent years. In particular, the CB2 receptor has been shown to mediate anti-inflammatory, anti-apoptotic, and neuroprotective properties, which may represent a promising therapeutic target for neuroprotection in glaucoma patients. Due to their vasodilatory effects, cannabinoids improve blood flow to the optic nerve head, which may suggest a vasoprotective potential and counteract the altered blood flow observed in glaucoma patients. The aim of this review was to assess the available evidence on the effects and therapeutic potential of cannabinoids in glaucoma patients. The pharmacological mechanisms underlying the effects of cannabinoids on IOP, neuroprotection, and ocular hemodynamics have been discussed.
Collapse
Affiliation(s)
- Theresa Lindner
- Department of Clinical Pharmacology, Medical University Vienna, 1090 Vienna, Austria; (T.L.); (D.S.); (L.P.); (V.P.); (L.S.)
| | - Doreen Schmidl
- Department of Clinical Pharmacology, Medical University Vienna, 1090 Vienna, Austria; (T.L.); (D.S.); (L.P.); (V.P.); (L.S.)
| | - Laura Peschorn
- Department of Clinical Pharmacology, Medical University Vienna, 1090 Vienna, Austria; (T.L.); (D.S.); (L.P.); (V.P.); (L.S.)
| | - Viktoria Pai
- Department of Clinical Pharmacology, Medical University Vienna, 1090 Vienna, Austria; (T.L.); (D.S.); (L.P.); (V.P.); (L.S.)
| | - Alina Popa-Cherecheanu
- Department of Ophthalmology, Emergency University Hospital, 050098 Bucharest, Romania;
- Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Jacqueline Chua
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 169856, Singapore;
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Leopold Schmetterer
- Department of Clinical Pharmacology, Medical University Vienna, 1090 Vienna, Austria; (T.L.); (D.S.); (L.P.); (V.P.); (L.S.)
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 169856, Singapore;
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE), Nanyang Technological University, Singapore 639798, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, 1090 Vienna, Austria
- Institute of Molecular and Clinical Ophthalmology, 4031 Basel, Switzerland
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology, Medical University Vienna, 1090 Vienna, Austria; (T.L.); (D.S.); (L.P.); (V.P.); (L.S.)
| |
Collapse
|
46
|
Martinez Naya N, Kelly J, Corna G, Golino M, Abbate A, Toldo S. Molecular and Cellular Mechanisms of Action of Cannabidiol. Molecules 2023; 28:5980. [PMID: 37630232 PMCID: PMC10458707 DOI: 10.3390/molecules28165980] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Cannabidiol (CBD) is the primary non-psychoactive chemical from Cannabis Sativa, a plant used for centuries for both recreational and medicinal purposes. CBD lacks the psychotropic effects of Δ9-tetrahydrocannabinol (Δ9-THC) and has shown great therapeutic potential. CBD exerts a wide spectrum of effects at a molecular, cellular, and organ level, affecting inflammation, oxidative damage, cell survival, pain, vasodilation, and excitability, among others, modifying many physiological and pathophysiological processes. There is evidence that CBD may be effective in treating several human disorders, like anxiety, chronic pain, psychiatric pathologies, cardiovascular diseases, and even cancer. Multiple cellular and pre-clinical studies using animal models of disease and several human trials have shown that CBD has an overall safe profile. In this review article, we summarize the pharmacokinetics data, the putative mechanisms of action of CBD, and the physiological effects reported in pre-clinical studies to give a comprehensive list of the findings and major effects attributed to this compound.
Collapse
Affiliation(s)
- Nadia Martinez Naya
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.A.)
| | - Jazmin Kelly
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.A.)
| | - Giuliana Corna
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 22903, USA; (G.C.); (M.G.)
- Interventional Cardiology Department, Hospital Italiano de Buenos Aires, Buenos Aires 1199, Argentina
| | - Michele Golino
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 22903, USA; (G.C.); (M.G.)
- Department of Medicine and Surgery, University of Insubria, 2110 Varese, Italy
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.A.)
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 22903, USA; (G.C.); (M.G.)
| | - Stefano Toldo
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.A.)
| |
Collapse
|
47
|
Wiciński M, Fajkiel-Madajczyk A, Kurant Z, Gryczka K, Kurant D, Szambelan M, Malinowski B, Falkowski M, Zabrzyński J, Słupski M. The Use of Cannabidiol in Metabolic Syndrome-An Opportunity to Improve the Patient's Health or Much Ado about Nothing? J Clin Med 2023; 12:4620. [PMID: 37510734 PMCID: PMC10380672 DOI: 10.3390/jcm12144620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Cannabis-derived therapies are gaining popularity in the medical world. More and more perfect forms of cannabinoids are sought, which could be used in the treatment of many common diseases, including metabolic syndrome, whose occurrence is also increasing. The purpose of this review was to investigate the usefulness of cannabinoids, mainly cannabidiol (CBD), in individuals with obesity, impaired glucose and lipid metabolism, high blood pressure, and non-alcoholic fatty liver disease (NAFLD). We summarised the most recent research on the broad topic of cannabis-derived influence on metabolic syndrome components. Since there is a lot of work on the effects of Δ9-THC (Δ9-tetrahydrocannabinol) on metabolism and far less on cannabidiol, we felt it needed to be sorted out and summarised in this review. The research results on the use of cannabidiol in obesity are contraindicatory. When it comes to glucose homeostasis, it appears that CBD maintains it, sensitises adipose tissue to insulin, and reduces fasting glucose levels, so it seems to be a potential target in this kind of metabolic disorder, but some research results are inconclusive. CBD shows some promising results in the treatment of various lipid disorders. Some studies have proven its positive effect by decreasing LDL and increasing HDL as well. Despite their probable efficacy, CBD and its derivatives will likely remain an adjunctive treatment rather than a mainstay of therapy. Studies have also shown that CBD in patients with hypertension has positive effects, even though the hypotensive properties of cannabidiol are small. However, CBD can be used to prevent blood pressure surges, stabilise them, and have a protective effect on blood vessels. Results from preclinical studies have shown that the effect of cannabidiol on NAFLD may be potentially beneficial in the treatment of the metabolic syndrome and its components. Nevertheless, there is limited data on CBD and NAFLD in human studies. Because of the numerous confounding factors, the conclusions are unclear, and more research in this field is required.
Collapse
Affiliation(s)
- Michał Wiciński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Anna Fajkiel-Madajczyk
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Zuzanna Kurant
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Karol Gryczka
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Dominik Kurant
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Monika Szambelan
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Bartosz Malinowski
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Michal Falkowski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Jan Zabrzyński
- Department of Orthopedics and Traumatology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Maciej Słupski
- Department of Hepatobiliary and General Surgery, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| |
Collapse
|
48
|
Pennant NM, Hinton CV. The evolution of cannabinoid receptors in cancer. WIREs Mech Dis 2023; 15:e1602. [PMID: 36750231 PMCID: PMC10484301 DOI: 10.1002/wsbm.1602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 02/09/2023]
Abstract
Cannabis sativa (cannabis) has been used as a therapeutic treatment for centuries treating various diseases and disorders. However, racial propaganda led to the criminalization of cannabis in the 1930s preventing opportunities to explore marijuana in therapeutic development. The increase in recreational use of cannabis further grew concern about abuse, and lead to further restrictions and distribution of cannabis in the 1970s when it was declared to be a Schedule I drug in the USA. In the late 1990s in some states, legislation assisted in legalizing the use of cannabis for medical purposes under physician supervision. As it has been proven that cannabinoids and their receptors play an essential role in the regulation of the physiological and biological processes in our bodies. The endocannabinoid system (ECS) is the complex that regulates the cell-signaling system consisting of endogenous cannabinoids (endocannabinoids), cannabinoid receptors, and the enzymes responsible for the synthesis and degradation of the endocannabinoids. The ECS along with phytocannabinoids and synthetic cannabinoids serves to be a beneficial therapeutic target in treating diseases as they play roles in cell homeostasis, cell motility, inflammation, pain-sensation, mood, and memory. Cannabinoids have been shown to inhibit proliferation, metastasis, and angiogenesis and even restore homeostasis in a variety of models of cancer in vitro and in vivo. Cannabis and its receptors have evolved into a therapeutic treatment for cancers. This article is categorized under: Cancer > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Nakea M Pennant
- Biological Sciences, Clark Atlanta University, Atlanta, Georgia, USA
| | - Cimona V Hinton
- Biological Sciences, Clark Atlanta University, Atlanta, Georgia, USA
| |
Collapse
|
49
|
Cho AYH, Chung H, Romero-Parra J, Kumar P, Allarà M, Ligresti A, Gallardo-Garrido C, Pessoa-Mahana H, Faúndez M, Pessoa-Mahana CD. Motifs in Natural Products as Useful Scaffolds to Obtain Novel Benzo[ d]imidazole-Based Cannabinoid Type 2 (CB2) Receptor Agonists. Int J Mol Sci 2023; 24:10918. [PMID: 37446093 DOI: 10.3390/ijms241310918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 07/15/2023] Open
Abstract
The endocannabinoid system (ECS) constitutes a broad-spectrum modulator of homeostasis in mammals, providing therapeutic opportunities for several pathologies. Its two main receptors, cannabinoid type 1 (CB1) and type 2 (CB2) receptors, mediate anti-inflammatory responses; however, their differing patterns of expression make the development of CB2-selective ligands therapeutically more attractive. The benzo[d]imidazole ring is considered to be a privileged scaffold in drug discovery and has demonstrated its versatility in the development of molecules with varied pharmacologic properties. On the other hand, the main psychoactive component of Cannabis sativa, delta-9-tetrahydrocannabinol (THC), can be structurally described as an aliphatic terpenoid motif fused to an aromatic polyphenolic (resorcinol) structure. Inspired by the structure of this phytocannabinoid, we combined different natural product motifs with a benzo[d]imidazole scaffold to obtain a new library of compounds targeting the CB2 receptor. Here, we synthesized 26 new compounds, out of which 15 presented CB2 binding and 3 showed potent agonist activity. SAR analysis indicated that the presence of bulky aliphatic or aromatic natural product motifs at position 2 of the benzo[d]imidazoles ring linked by an electronegative atom is essential for receptor recognition, while substituents with moderate bulkiness at position 1 of the heterocyclic core also participate in receptor recognition. Compounds 5, 6, and 16 were further characterized through in vitro cAMP functional assay, showing potent EC50 values between 20 and 3 nM, and compound 6 presented a significant difference between the EC50 of pharmacologic activity (3.36 nM) and IC50 of toxicity (30-38 µM).
Collapse
Affiliation(s)
- Analia Young Hwa Cho
- Pharmacy Department, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820436, Chile
| | - Hery Chung
- Pharmacy Department, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820436, Chile
| | - Javier Romero-Parra
- Organic Chemistry and Physical Chemistry Department, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Olivos 1007, Santiago 7820436, Chile
| | - Poulami Kumar
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy
| | - Marco Allarà
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy
| | - Alessia Ligresti
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy
| | - Carlos Gallardo-Garrido
- Pharmacy Department, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820436, Chile
| | - Hernán Pessoa-Mahana
- Organic Chemistry and Physical Chemistry Department, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Olivos 1007, Santiago 7820436, Chile
| | - Mario Faúndez
- Pharmacy Department, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820436, Chile
| | - Carlos David Pessoa-Mahana
- Pharmacy Department, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820436, Chile
| |
Collapse
|
50
|
Gräfe EL, Reid HMO, Shkolnikov I, Conway K, Kit A, Acosta C, Christie BR. Women are Taking the Hit: Examining the Unique Consequences of Cannabis Use Across the Female Lifespan. Front Neuroendocrinol 2023; 70:101076. [PMID: 37217080 DOI: 10.1016/j.yfrne.2023.101076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
Cannabis use has risen dramatically in recent years due to global decriminalization and a resurgence in the interest of potential therapeutic benefits. While emerging research is shaping our understanding of the benefits and harms of cannabis, there remains a paucity of data specifically focused on how cannabis affects the female population. The female experience of cannabis use is unique, both in the societal context and because of the biological ramifications. This is increasingly important given the rise in cannabis potency, as well as the implications this has for the prevalence of Cannabis Use Disorder (CUD). Therefore, this scoping review aims to discuss the prevalence of cannabis use and CUD in women throughout their lifespan and provide a balanced prospective on the positive and negative consequences of cannabis use. In doing so, this review will highlight the necessity for continued research that goes beyond sex differences.
Collapse
Affiliation(s)
- E L Gräfe
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - H M O Reid
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - I Shkolnikov
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - K Conway
- Island Medical Program, University of British Columbia, Victoria, British Columbia, Canada
| | - A Kit
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - C Acosta
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - B R Christie
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Island Medical Program, University of British Columbia, Victoria, British Columbia, Canada.
| |
Collapse
|