1
|
Hu Y, Huang Y, Zong L, Lin J, Liu X, Ning S. Emerging roles of ferroptosis in pulmonary fibrosis: current perspectives, opportunities and challenges. Cell Death Discov 2024; 10:301. [PMID: 38914560 PMCID: PMC11196712 DOI: 10.1038/s41420-024-02078-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024] Open
Abstract
Pulmonary fibrosis (PF) is a chronic interstitial lung disorder characterized by abnormal myofibroblast activation, accumulation of extracellular matrix (ECM), and thickening of fibrotic alveolar walls, resulting in deteriorated lung function. PF is initiated by dysregulated wound healing processes triggered by factors such as excessive inflammation, oxidative stress, and coronavirus disease (COVID-19). Despite advancements in understanding the disease's pathogenesis, effective preventive and therapeutic interventions are currently lacking. Ferroptosis, an iron-dependent regulated cell death (RCD) mechanism involving lipid peroxidation and glutathione (GSH) depletion, exhibits unique features distinct from other RCD forms (e.g., apoptosis, necrosis, and pyroptosis). Imbalance between reactive oxygen species (ROS) production and detoxification leads to ferroptosis, causing cellular dysfunction through lipid peroxidation, protein modifications, and DNA damage. Emerging evidence points to the crucial role of ferroptosis in PF progression, driving macrophage polarization, fibroblast proliferation, and ECM deposition, ultimately contributing to alveolar cell death and lung tissue scarring. This review provides a comprehensive overview of the latest findings on the involvement and signaling mechanisms of ferroptosis in PF pathogenesis, emphasizing potential novel anti-fibrotic therapeutic approaches targeting ferroptosis for PF management.
Collapse
Affiliation(s)
- Yixiang Hu
- Department of Clinical Pharmacy, The Affiliated Xiangtan Center Hospital of Hunan University, Xiangtan, 411100, China
| | - Ying Huang
- Zhongshan Hospital of Traditional Chinese Medicine Afflilated to Guangzhou University of Chinese Medicine, Zhongshan, 528400, China
| | - Lijuan Zong
- Department of Rehabilitation Medicine, Zhongda Hospital of Southeast University, Nanjing, 210096, China
| | - Jiaxin Lin
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - Xiang Liu
- Department of Clinical Pharmacy, The Affiliated Xiangtan Center Hospital of Hunan University, Xiangtan, 411100, China.
| | - Shipeng Ning
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China.
| |
Collapse
|
2
|
Ju S, Tan Y, Wang Q, Zhou L, Wang K, Wen C, Wang M. Antioxidant and anti‑inflammatory effects of esculin and esculetin (Review). Exp Ther Med 2024; 27:248. [PMID: 38682114 PMCID: PMC11046185 DOI: 10.3892/etm.2024.12536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/19/2024] [Indexed: 05/01/2024] Open
Abstract
Fraxinus chinensis Roxb is a deciduous tree, which is distributed worldwide and has important medicinal value. In Asia, the bark of Fraxinus chinensis Roxb is a commonly used traditional Chinese medicine called Qinpi. Esculetin is a coumarin compound derived from the bark of Fraxinus chinensis Roxb and its glycoside form is called esculin. The aim of the present study was to systematically review relevant literature on the antioxidant and anti-inflammatory effects of esculetin and esculin. Esculetin and esculin can promote the expression of various endogenous antioxidant proteins, such as superoxide dismutase, glutathione peroxidase and glutathione reductase. This is associated with the activation of the nuclear factor erythroid-derived factor 2-related factor 2 signaling pathway. The anti-inflammatory effects of esculetin and esculin are associated with the inhibition of the nuclear factor κ-B and mitogen-activated protein kinase inflammatory signaling pathways. In various inflammatory models, esculetin and esculin can reduce the expression levels of various proinflammatory factors such as tumor necrosis factor-α, interleukin (IL)-1β and IL-6, thereby inhibiting the development of inflammation. In summary, esculetin and esculin may be promising candidates for the treatment of numerous diseases associated with inflammation and oxidative stress, such as ulcerative colitis, acute lung and kidney injury, lung cancer, acute kidney injury.
Collapse
Affiliation(s)
- Shaohua Ju
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| | - Youli Tan
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| | - Qiang Wang
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| | - Ling Zhou
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| | - Kun Wang
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| | - Chenghong Wen
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| | - Mingjian Wang
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
3
|
Muhammad Firdaus FI, Nashihah AK, Mohd Fauzi MB, Manira M, Aminuddin S, Lokanathan Y. Application of Conditioned Medium for In Vitro Modeling and Repair of Respiratory Tissue. APPLIED SCIENCES 2023; 13:5862. [DOI: 10.3390/app13105862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Background: The idea of exploring respiratory therapy in vitro predominantly guided by cell-secreted substances has gained ground in recent years. A conditioned medium (CM) consists of protein milieu that contains a diverse spectrum of cytokines, chemokines, angiogenic agents, and growth factors. This review evaluated the efficacy of using CM collected in an in vitro respiratory epithelial model. Methods: Twenty-six papers were included in this review: twenty-one cellular response studies on respiratory secretome application and five studies involving animal research. Results: The CM produced by differentiated cells from respiratory and non-respiratory systems, such as mesenchymal stem cells (MSC), exhibited the similar overall effect of improving proliferation and regeneration. Not only could differentiated cells from respiratory tissues increase proliferation, migration, and attachment, but the CM was also able to protect the respiratory epithelium against cytotoxicity. Most non-respiratory tissue CM was used as a treatment model to determine the effects of the therapy, while only one study used particle-based CM and reported decreased epithelial cell tight junctions, which harmed the epithelial barrier. Conclusion: As it resolves the challenges related to cell development and wound healing while simultaneously generally reducing the danger of immunological compatibility and tumorigenicity, CM might be a potential regenerative therapy in numerous respiratory illnesses. However, additional research is required to justify using CM in respiratory epithelium clinical practice.
Collapse
Affiliation(s)
- Fairuz Izan Muhammad Firdaus
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Ab. Karim Nashihah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mh. Busra Mohd Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Maarof Manira
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Saim Aminuddin
- Graduate School of Medicine, KPJ Healthcare University College, Kota Seriemas, Nilai 71800, Malaysia
- KPJ Ampang Puteri Specialist Hospital, Ampang 68000, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
4
|
Birsa ML, Sarbu LG. Health Benefits of Key Constituents in Cichorium intybus L. Nutrients 2023; 15:1322. [PMID: 36986053 PMCID: PMC10058675 DOI: 10.3390/nu15061322] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
The genus Cichorium (Asteraceae) that originates from the Mediterranean area consists of six species (Cichorium intybus, Cichorium frisee, Cichorium endivia, Cichorium grouse, Cichorium chico and Cichorium pumilum). Cichorium intybus L., commonly known as chicory, has a rich history of being known as a medicinal plant and coffee substitute. A variety of key constituents in chicory play important roles as antioxidant agents. The herb is also used as a forage plant for animals. This review highlights the bioactive composition of C. intybus L. and summarizes the antioxidant activity associated with the presence of inulin, caffeic acid derivatives, ferrulic acid, caftaric acid, chicoric acid, chlorogenic and isochlorogenic acids, dicaffeoyl tartaric acid, sugars, proteins, hydroxycoumarins, flavonoids and sesquiterpene lactones. It also covers the plant's occurrence, agriculture improvement, natural biosynthesis, geographical distribution and waste valorization.
Collapse
Affiliation(s)
| | - Laura G. Sarbu
- Department of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I Blvd., 700506 Iasi, Romania
| |
Collapse
|
5
|
Tian M, Xia P, Yan L, Gou X, Yu H, Zhang X. Human functional genomics reveals toxicological mechanism underlying genotoxicants-induced inflammatory responses under low doses exposure. CHEMOSPHERE 2023; 314:137658. [PMID: 36584827 DOI: 10.1016/j.chemosphere.2022.137658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/10/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Understanding the toxicological mechanisms of chemicals is essential for accurate assessments of environmental health risks. Inflammation could play a critical role in the adverse health outcomes caused by genotoxicants; however, the toxicological mechanisms underlying genotoxicants-induced inflammatory response are still limited. Here, functional genomics CRISPR screens were performed to enhance the mechanistic understanding of the genotoxicants-induced inflammatory response at low doses exposure. Key genes and pathways associated with the activities of immune cells and the production of cytokines were identified by CRISPR screens of 6 model genotoxicants. Gene network analysis revealed that three genes (TLR10, HCAR2 and TRIM6) were involved in the regulation of neutrophil apoptosis and cytokine release, and TLR10 shared a similar functional pattern with HCAR2 and TRIM6. Furthermore, adverse outcome pathway (AOP) network analysis revealed that TLR10 was involved in the molecular initiating events (MIEs) or key events (KEs) in the inflammatory response AOPs of all the 6 genotoxicants, which provided mechanistic links between TLR10 and genotoxicants-induced inflammation and respiratory diseases. Finally, functional validation tests demonstrated that TLR10 exhibited inhibitory effects on genotoxicants-induced inflammatory responses in both epithelial and immune cells. This study highlights the powerful utility of the integration of CRISPR screen and AOP network analysis in illuminating the toxicological causal mechanisms of environmental chemicals.
Collapse
Affiliation(s)
- Mingming Tian
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Pu Xia
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Lu Yan
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Xiao Gou
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
6
|
Zhang A, Zou Y, Xu Q, Tian S, Wang J, Li Y, Dong R, Zhang L, Jiang J, Wang L, Tao K, Meng Z, Liu Y. Investigation of the Pharmacological Effect and Mechanism of Jinbei Oral Liquid in the Treatment of Idiopathic Pulmonary Fibrosis Using Network Pharmacology and Experimental Validation. Front Pharmacol 2022; 13:919388. [PMID: 35784749 PMCID: PMC9240387 DOI: 10.3389/fphar.2022.919388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/06/2022] [Indexed: 12/02/2022] Open
Abstract
Overview: Idiopathic pulmonary fibrosis (IPF) is a disease caused by many factors, eventually resulting in lung function failure. Jinbei oral liquid (JBOL) is a traditional Chinese clinical medicine used to treat pulmonary diseases. However, the pharmacological effects and mechanism of the action of JBOL on IPF remain unclear. This study investigated the protective effects and mechanism of the action of JBOL on IPF using network pharmacology analysis, followed by in vivo and in vitro experimental validation. Methods: The components of JBOL and their targets were screened using the TCMSP database. IPF-associated genes were obtained using DisGeNET and Drugbank. The common targets of JBOL and IPF were identified with the STRING database, and a protein-protein interaction (PPI) network was constructed. GO and KEGG analyses were performed. Sprague-Dawley rats were injected with bleomycin (BLM) to establish an IPF model and treated orally with JBOL at doses of 5.4, 10.8, and 21.6 ml/kg. A dose of 54 mg/kg of pirfenidone was used as a control. All rats were treated for 28 successive days. Dynamic pulmonary compliance (Cdyn), minute ventilation volume (MVV), vital capacity (VC), and lung resistance (LR) were used to evaluate the efficacy of JBOL. TGF-β-treated A549 cells were exposed to JBOL, and epithelial-to-mesenchymal transition (EMT) changes were assessed. Western blots were performed. Results: Two hundred seventy-eight compounds and 374 targets were screened, and 103 targets related to IPF were identified. Core targets, including MAPK1 (ERK2), MAPK14 (p38), JUN, IL-6, AKT, and others, were identified by constructing a PPI network. Several pathways were involved, including the MAPK pathway. Experimentally, JBOL increased the levels of the pulmonary function indices (Cdyn, MVV, and VC) in a dose-dependent manner and reduced the RL level in the BLM-treated rats. JBOL increased the epithelial marker E-cadherin and suppressed the mesenchymal marker vimentin expression in the TGF-β-treated A549 cells. The suppression of ERK1/2, JNK, and p38 phosphorylation by JBOL was validated. Conclusion: JBOL had therapeutic effects against IPF by regulating pulmonary function and EMT through a systemic network mechanism, thus supporting the need for future clinical trials of JBOL.
Collapse
Affiliation(s)
- Aijun Zhang
- Institute of Chinese Materia Medica, Shandong Hongji-tang Pharmaceutical Group Co., Ltd., Jinan, China
| | - Yixuan Zou
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingcui Xu
- Institute of Chinese Materia Medica, Shandong Hongji-tang Pharmaceutical Group Co., Ltd., Jinan, China
| | - Shuo Tian
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yilin Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Renchao Dong
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liangzong Zhang
- Institute of Chinese Materia Medica, Shandong Hongji-tang Pharmaceutical Group Co., Ltd., Jinan, China
| | - Juanjuan Jiang
- Institute of Chinese Materia Medica, Shandong Hongji-tang Pharmaceutical Group Co., Ltd., Jinan, China
| | - Lili Wang
- Institute of Chinese Materia Medica, Shandong Hongji-tang Pharmaceutical Group Co., Ltd., Jinan, China
| | - Kai Tao
- Institute of Chinese Materia Medica, Shandong Hongji-tang Pharmaceutical Group Co., Ltd., Jinan, China
| | - Zhaoqing Meng
- Institute of Chinese Materia Medica, Shandong Hongji-tang Pharmaceutical Group Co., Ltd., Jinan, China
| | - Yanqiu Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
7
|
Jin XW, Wang QZ, Zhao Y, Liu BK, Zhang X, Wang XJ, Lu GL, Pan JW, Shao Y. An experimental model of the epithelial to mesenchymal transition and pro-fibrogenesis in urothelial cells related to bladder pain syndrome/interstitial cystitis. Transl Androl Urol 2022; 10:4120-4131. [PMID: 34984178 PMCID: PMC8661263 DOI: 10.21037/tau-21-392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
Background Suitable in vitro models are needed to investigate urothelial epithelial to mesenchymal transition (EMT) and pro-fibrogenesis phenotype in bladder pain syndrome/interstitial cystitis (BPS/IC). This study is to establish a novel experimental BPS/IC cell model and explore how different concentrations of tumor necrosis factor (TNF)-α influence the EMT and pro-fibrogenesis phenotype of urothelial cells. Methods SV-HUC-1 urothelial cells were cultured with 2, 10, or 50 ng/mL TNF-α to mimic chronic inflammatory stimulation. The EMT and pro-fibrogenesis phenotype, including production of collagen I and pro-fibrosis cytokines, were estimated after 72 h of culture. Results The bladder urothelial cells of BPS/IC exhibited upregulated vimentin, TNF-α and TNF receptor, downregulated E-cadherin, and increased collagen I. Higher concentrations of TNF-α (10 and 50 ng/mL) produced an obvious mesenchymal morphology, enhanced invasion and migratory capacity, increased expression of vimentin, and decreased expression of E-cadherin. Collagen I was increased in cells treated with 2 and 10 ng/mL TNF-α after 72 h. Secretion of interleukin (IL)-6 and IL-8 was promoted with 10 and 50 ng/mL TNF-α, while that of IL-1β or transforming growth factor-β was unaffected. Slug and Smad2 were upregulated by TNF-α after 72 h. The Smad pathway was activated most strongly with 10 ng/mL TNF-α and Slug pathway activation was positively correlated with the concentration of TNF-α. Conclusions Sustained 10 ng/mL TNF-α stimulation induced the EMT and pro-fibrogenesis phenotype resembling BPS/IC in SV-HUC-1 cells. Minor inflammatory stimulation induced the pro-fibrogenesis phenotype while severe inflammatory stimulation was more likely to produce significant EMT changes. Different degrees of activation of the Slug and Smad pathways may underlie this phenomenon.
Collapse
Affiliation(s)
- Xing-Wei Jin
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi-Zhang Wang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Zhao
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo-Ke Liu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Zhang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xian-Jin Wang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guo-Liang Lu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-Wei Pan
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Shao
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Jiao W, Qin N, Wang K, Wu D, Yu H, Du L, Wu G, Wu H, Zhao X. LC-MS/MS for determination of aesculetin in rat plasma and its application to a pharmacokinetic study. Biomed Chromatogr 2021; 36:e5233. [PMID: 34519055 DOI: 10.1002/bmc.5233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 01/11/2023]
Abstract
Aesculetin, a coumarin compound present in the sancho tree and chicory, exhibits excellent antioxidant and anti-inflammatory activities in the vascular and immune system. In this study, a rapid and sensitive ultra-high performance liquid chromatography electrospray ionization-tandem mass spectrometry (UHPLC-ESI-MS/MS) method was established and validated for the determination of aesculetin in rat plasma. Plasma samples were prepared by protein precipitation with acetonitrile. Chromatographic separation was performed on an Acquity UPLC HSS T3 C18 column (2.1 × 100 mm, 1.8 μm) with gradient elution at a flow rate of 0.3 ml/min, using mobile phase consisting of 0.1% formic acid (A) and acetonitrile (B). Aesculetin and puerarin (internal standard) were detected by multiple reaction monitoring in negative ion mode. The method was fully validated according to the US Food and Drug Administration guidelines. The calibration curve was linear over the range of 2-1,000 ng/ml with correlation coefficient >0.9980. The carry-over, matrix effect, extraction recovery, dilution effect, intra- and inter-day precision and the accuracy were within acceptable limits. The method was then applied to a pharmacokinetic study of aesculetin in rats. After oral administration at doses of 5, 10 and 20 mg/kg, the plasma concentration reached peaks of 95.7, 219.9, 388.6 ng/ml at times of 1.22-1.78 h. The oral bioavailability was calculated as 15.6-20.3% in rat plasma. The result provided pre-clinical information for further application of aesculetin.
Collapse
Affiliation(s)
- Weijie Jiao
- Department of Pharmacy, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine Zhengzhou, Henan, China
| | - Nan Qin
- Laboratory of Cell Imaging, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Kun Wang
- Department of Pharmacy, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine Zhengzhou, Henan, China
| | - Dongmei Wu
- Department of Pharmacy, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine Zhengzhou, Henan, China
| | - Hongyan Yu
- Department of Pharmacy, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine Zhengzhou, Henan, China
| | - Lei Du
- Department of Pharmacy, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine Zhengzhou, Henan, China
| | - Guiyue Wu
- Department of Pharmacy, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine Zhengzhou, Henan, China
| | - Hong Wu
- Laboratory of Cell Imaging, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xu Zhao
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine Zhengzhou, Henan, China
| |
Collapse
|
9
|
Aesculetin Inhibits Airway Thickening and Mucus Overproduction Induced by Urban Particulate Matter through Blocking Inflammation and Oxidative Stress Involving TLR4 and EGFR. Antioxidants (Basel) 2021; 10:antiox10030494. [PMID: 33809902 PMCID: PMC8004275 DOI: 10.3390/antiox10030494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 12/28/2022] Open
Abstract
Particulate matter (PM) is a mixture of solid and liquid air pollutant particles suspended in the air, varying in composition, size, and physical features. PM is the most harmful form of air pollution due to its ability to penetrate deep into the lungs and blood streams, causing diverse respiratory diseases. Aesculetin, a coumarin derivative present in the Sancho tree and chicory, is known to have antioxidant and anti-inflammatory effects in the vascular and immune system. However, its effect on PM-induced airway thickening and mucus hypersecretion is poorly understood. The current study examined whether naturally-occurring aesculetin inhibited airway thickening and mucus hypersecretion caused by urban PM10 (uPM10, particles less than 10 μm). Mice were orally administrated with 10 mg/kg aesculetin and exposed to 6 μg/mL uPM10 for 8 weeks. To further explore the mechanism(s) involved in inhibition of uPM10-induced mucus hypersecretion by aesculetin, bronchial epithelial BEAS-2B cells were treated with 1–20 µM aesculetin in the presence of 2 μg/mL uPM10. Oral administration of aesculetin attenuated collagen accumulation and mucus hypersecretion in the small airways inflamed by uPM10. In addition, aesculetin inhibited uPM10-evoked inflammation and oxidant production in lung tissues. Further, aesculetin accompanied the inhibition of induction of bronchial epithelial toll-like receptor 4 (TLR4) and epidermal growth factor receptor (EFGR) elevated by uPM10. The inhibition of TLR4 and EGFR accompanied bronchial mucus hypersecretion in the presence of uPM10. Oxidative stress was responsible for the epithelial induction of TLR4 and EGFR, which was disrupted by aesculetin. These results demonstrated that aesculetin ameliorated airway thickening and mucus hypersecretion by uPM10 inhalation by inhibiting pulmonary inflammation via oxidative stress-stimulated TLR4 and EGFR. Therefore, aesculetin may be a promising agent for treating airway mucosa-associated disorders elicited by urban coarse particulates.
Collapse
|
10
|
Boudreau A, Richard AJ, Harvey I, Stephens JM. Artemisia scoparia and Metabolic Health: Untapped Potential of an Ancient Remedy for Modern Use. Front Endocrinol (Lausanne) 2021; 12:727061. [PMID: 35211087 PMCID: PMC8861327 DOI: 10.3389/fendo.2021.727061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/16/2021] [Indexed: 11/19/2022] Open
Abstract
Botanicals have a long history of medicinal use for a multitude of ailments, and many modern pharmaceuticals were originally isolated from plants or derived from phytochemicals. Among these, artemisinin, first isolated from Artemisia annua, is the foundation for standard anti-malarial therapies. Plants of the genus Artemisia are among the most common herbal remedies across Asia and Central Europe. The species Artemisia scoparia (SCOPA) is widely used in traditional folk medicine for various liver diseases and inflammatory conditions, as well as for infections, fever, pain, cancer, and diabetes. Modern in vivo and in vitro studies have now investigated SCOPA's effects on these pathologies and its ability to mitigate hepatotoxicity, oxidative stress, obesity, diabetes, and other disease states. This review focuses on the effects of SCOPA that are particularly relevant to metabolic health. Indeed, in recent years, an ethanolic extract of SCOPA has been shown to enhance differentiation of cultured adipocytes and to share some properties of thiazolidinediones (TZDs), a class of insulin-sensitizing agonists of the adipogenic transcription factor PPARγ. In a mouse model of diet-induced obesity, SCOPA diet supplementation lowered fasting insulin and glucose levels, while inducing metabolically favorable changes in adipose tissue and liver. These observations are consistent with many lines of evidence from various tissues and cell types known to contribute to metabolic homeostasis, including immune cells, hepatocytes, and pancreatic beta-cells. Compounds belonging to several classes of phytochemicals have been implicated in these effects, and we provide an overview of these bioactives. The ongoing global epidemics of obesity and metabolic disease clearly require novel therapeutic approaches. While the mechanisms involved in SCOPA's effects on metabolic, anti-inflammatory, and oxidative stress pathways are not fully characterized, current data support further investigation of this plant and its bioactives as potential therapeutic agents in obesity-related metabolic dysfunction and many other conditions.
Collapse
Affiliation(s)
- Anik Boudreau
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Allison J. Richard
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Innocence Harvey
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Jacqueline M. Stephens
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
- *Correspondence: Jacqueline M. Stephens,
| |
Collapse
|