1
|
Al-Beltagi M, Saeed NK, Bediwy AS, Elbeltagi R. Unraveling the nutritional challenges in epilepsy: Risks, deficiencies, and management strategies: A systematic review. World J Exp Med 2025; 15:104328. [DOI: 10.5493/wjem.v15.i2.104328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/24/2025] [Accepted: 03/18/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Malnutrition and epilepsy share a complex bidirectional relationship, with malnutrition serving as a potential risk factor for epilepsy development, while epilepsy, in turn, often exerts profound effects on nutritional status. Nutritional interventions have emerged as a critical adjunctive approach in epilepsy management.
AIM To explore the multifaceted associations between malnutrition and epilepsy, structured into three primary sections: (1) Elucidating the impact of malnutrition as a risk factor for epilepsy onset; (2) Examining the reciprocal influence of epilepsy on nutritional status, and (3) Evaluating diverse nutritional interventions in the management of epilepsy.
METHODS A systematic search was conducted across PubMed, Scopus, and Web of Science databases utilizing defined keywords related to malnutrition, epilepsy, and nutritional interventions. Inclusion criteria encompassed various study types, including clinical trials, animal models, cohort studies, case reports, meta-analyses, systematic reviews, guidelines, editorials, and review articles. Four hundred sixteen pertinent references were identified, with 198 review articles, 153 research studies, 21 case reports, 24 meta-analyses, 14 systematic reviews, 4 guidelines, and 2 editorials meeting the predefined criteria.
RESULTS The review revealed the intricate interplay between malnutrition and epilepsy, highlighting malnutrition as a potential risk factor in epilepsy development and elucidating how epilepsy often leads to nutritional deficiencies. Findings underscored the importance of nutritional interventions in managing epilepsy, showing their impact on seizure frequency, neuronal function, and overall brain health.
CONCLUSION This systematic review emphasizes the bidirectional relationship between malnutrition and epilepsy while emphasizing the critical role of nutritional management in epilepsy treatment. The multifaceted insights underscore the need for a holistic approach to addressing nutritional aspects alongside conventional epilepsy management strategies.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatrics, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Governmental Hospitals, Manama 12, Bahrain
- Medical Microbiology Section, Department of Pathology, The Royal College of Surgeons in Ireland, Busaiteen 15503, Muharraq, Bahrain
| | - Adel Salah Bediwy
- Department of Pulmonology, Faculty of Medicine, Tanta University, Tanta 31527, Alghrabia, Egypt
- Department of Pulmonology, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Reem Elbeltagi
- Medicine, Royal College of Surgeons in Ireland, Medical University of Bahrain, Busaiteen 15503, Muharraq, Bahrain
| |
Collapse
|
2
|
Franklin ME, Grant JL, Lee GM, Alvarez-Ciara A, Bennett C, Mattis S, Gallardo N, Corrales N, Cui XT, Capadona JR, Streit WJ, Olivier JH, Keane RW, Dietrich WD, de Rivero Vaccari JP, Prasad A. Effects of iron accumulation and its chelation on oxidative stress in intracortical implants. Acta Biomater 2025:S1742-7061(25)00349-6. [PMID: 40355018 DOI: 10.1016/j.actbio.2025.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/29/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Long-term reliability of microelectrodes implanted in the cortex is hindered due to the foreign body response that occurs at the electrode-tissue interface. Following implantation, there is disruption of the blood-brain-barrier and vasculature, resulting in activation of immune cells and release of erythrocytes. As a result of hemolysis, erythrocytes degrade to heme and then to free iron. Excess free iron can participate in the Fenton Reaction, producing reactive oxygen species (ROS). Iron-mediated ROS production can contribute to oxidation of lipids, proteins, and DNA, facilitating a hostile environment of oxidative stress leading to oxidative cellular damage, cytotoxicity, and cell death. The objective of this study was to show the iron accumulation and the downstream effects of oxidative stress at the injury site. A 16-channel microelectrode array (MEA) was implanted in the rat somatosensory cortex. Our results indicated significant elevation of NOX complex subunits across timepoints, suggesting sustained oxidative stress. In a separate group of animals, we administered an iron chelator, deferoxamine mesylate (DFX), to evaluate the effects of chelation on iron accumulation, oxidative stress and damage, and neuronal survival. Results indicate that animals with iron chelation showed reduced ferric iron and markers of oxidative stress and damage corresponding with increased expression of neuronal cell bodies and electrophysiological functional performance. In summary, the study reveals the role of iron in mediating oxidative stress and the effects of modulating iron levels using iron chelation at the electrode-tissue interface. STATEMENT OF SIGNIFICANCE: Iron accumulation has been observed in central nervous system injuries and in neurodegenerative diseases such as Alzheimer's and Parkinson's disease. While the role of iron is studied in various neurodegenerative diseases and traumatic brain injury, iron accumulation and its effect on oxidative stress is not known for intracortical implants where there is a persistent injury due to the presence of a foreign device in the brain tissue. The study seeks to understand the effects of iron accumulation on oxidative stress and damage at the electrode-tissue interface in intracortical implants by using iron chelation as a method of modulating iron levels at the interface.
Collapse
Affiliation(s)
- Melissa E Franklin
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - Jordan L Grant
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - Grant M Lee
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | | | - Cassie Bennett
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - Serene Mattis
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - Nicolas Gallardo
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - Natalie Corrales
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Wolfgang J Streit
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | | | - Robert W Keane
- Department of Cellular Physiology and Molecular Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA; Center for Cognitive Neuroscience and Aging University of Miami Miller School of Medicine, Miami, FL, USA; The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - W Dalton Dietrich
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA; The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Juan Pablo de Rivero Vaccari
- Department of Cellular Physiology and Molecular Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA; Center for Cognitive Neuroscience and Aging University of Miami Miller School of Medicine, Miami, FL, USA; The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Abhishek Prasad
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA; The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
3
|
Dhivya K, Sarumathy S, Manigandan G. A randomized, controlled trial to evaluate the efficacy of pyridoxine and ascorbic acid on cognitive function and quality of life in post-menopausal women. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04205-9. [PMID: 40299018 DOI: 10.1007/s00210-025-04205-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 04/20/2025] [Indexed: 04/30/2025]
Abstract
This study is conducted to investigate and contrast the effect of pyridoxine and ascorbic acid on mild cognitive impairment and quality of life in post-menopausal women. A randomized, controlled trial was carried out involving post-menopausal women with mild cognitive impairment. A total of 180 eligible participants were randomized to group A (25 mg of pyridoxine), group B (100 mg of ascorbic acid), and group C (not receiving any drug). The intervention time was 6 months. The Montreal cognitive assessment (MoCA) scale was utilized to assess cognitive function. Serum beta-amyloid (Aβ) 42 and homocysteine (Hcy) levels were measured. We used the menopause-specific quality of life (MENQOL) questionnaire to evaluate the quality of life (QOL) of post-menopausal women. Both pyridoxine and ascorbic acid have improved total MoCA scores (p = 0.0323 and p = 0.0074) compared to baseline. The Hcy level was reduced significantly in pyridoxine than in ascorbic acid (p = 0.0060). The serum Aβ 42 decreased significantly with pyridoxine and ascorbic acid (p = 0.0311 and p = 0.0042). In the MENQOL score, ascorbic acid has significantly reduced the score of the physical domain (p = 0.0020). However, a significant reduction in the overall score of MENQOL was not noticed before and after the treatment of pyridoxine and ascorbic acid (p = 0.3724 and p = 0.0732). Pyridoxine is more effective than ascorbic acid in lowering Hcy levels among post-menopausal women. Pyridoxine and ascorbic acid have been shown to improve cognitive function, and further long-term research is imperative to validate these findings. The trial was registered in the Clinical Trial Registry of India and registration no. is CTRI/2023/03/051131. Registered on: 28/03/2023-trial registered prospectively.
Collapse
Affiliation(s)
- K Dhivya
- Department of Pharmacy Practice, SRM College of Pharmacy, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur-603203, Chengalpattu, Tamil Nadu, India
| | - S Sarumathy
- Department of Pharmacy Practice, SRM College of Pharmacy, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur-603203, Chengalpattu, Tamil Nadu, India.
| | - G Manigandan
- PM Medical Centre, Walajapet-632513, Ranipet, Tamil Nadu, India
| |
Collapse
|
4
|
Yuan M, Wang F, Sun T, Bian X, Zhang Y, Guo C, Yu L, Yao Z. Vitamin B 6 alleviates chronic sleep deprivation-induced hippocampal ferroptosis through CBS/GSH/GPX4 pathway. Biomed Pharmacother 2024; 174:116547. [PMID: 38599059 DOI: 10.1016/j.biopha.2024.116547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/19/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Several studies have found that sleep deprivation (SD) can lead to neuronal ferroptosis and affect hippocampal function. However, there are currently no effective interventions. Vitamin B6 is a co-factor for key enzymes in the transsulfuration pathway which is critical for maintaining cell growth in the presence of cysteine deprivation. The results showed that SD inhibited cystine-glutamate antiporter light chain subunit xCT protein expression and caused cysteine deficiency, which reduced the synthesis of the glutathione (GSH) to trigger neuronal ferroptosis. Nissl staining further revealed significant neuronal loss and shrinkage in the CA1 and CA3 regions of the hippocampus in SD mice. Typical ferroptotic indicators characterized by lipid peroxidation and iron accumulation were showed in the hippocampus after sleep deprivation. As expected, vitamin B6 could alleviate hippocampal ferroptosis by upregulating the expression of cystathionine beta-synthase (CBS) in the transsulfuration pathway, thereby replenishing the intracellular deficient GSH and restoring the expression of GPX4. Similar anti-ferroptotic effects of vitamin B6 were demonstrated in HT-22 cells treated with ferroptosis activator erastin. Furthermore, vitamin B6 had no inhibitory effect on erastin-induced ferroptosis in CBS-knockout HT22 cells. Our findings suggested chronic sleep deprivation caused hippocampal ferroptosis by disrupting the cyst(e)ine/GSH/GPX4 axis. Vitamin B6 alleviated sleep deprivation-induced ferroptosis by enhancing CBS expression in the transsulfuration pathway.
Collapse
Affiliation(s)
- Man Yuan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Feng Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Tieqiang Sun
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xiangyu Bian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yuxian Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Changjiang Guo
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Lixia Yu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Zhanxin Yao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| |
Collapse
|
5
|
Zandifar A, Mousavi S, Schmidt NB, Badrfam R, Seif E, Qorbani M, Mehrabani Natanzi M. Efficacy of vitamins B1 and B6 as an adjunctive therapy to lithium in bipolar-I disorder: A double-blind, randomized, placebo-controlled, clinical trial. J Affect Disord 2024; 345:103-111. [PMID: 37866735 DOI: 10.1016/j.jad.2023.10.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 09/08/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND The use of adjunctive therapy for bipolar disorder is increasingly considered to increase the efficacy of standard treatments. In this randomized clinical trial, we evaluated the effect of vitamins B1 and B6 in separate treatment arms on mood symptoms, cognitive status, and sleep quality in hospitalized patients with bipolar disorder in manic episodes. METHOD In addition to receiving standard lithium treatment, participants (N = 66) were randomized to one of three conditions: 100 mg of vitamin B1, 40 mg of vitamin B6, or placebo. Outcomes were assessed one and 8 weeks of daily treatment, including the Young Mania Rating Scale (YMRS), Pittsburgh Sleep Quality Scale (PSQI), and Mini-Mental State Examination (MMSE). This study was performed between December 2020 and September 2021 based on the registration code number IRCT20200307046712N1. RESULTS Vitamin B6 had a significant effect (P value < 0.025 as significant) on mood improvement compared to placebo (F (1, 27.42) = 30.25, P < 0.001, r = 0.72), but vitamin B1 had no significant effect on mood improvement compared to Placebo (F (1/35.68) = 4.76, P = 0.036, r = 0.34). The contrasts between groups on PSQI showed a significant effect (P value < 0.025 as significant) of vitamin B6 over placebo for sleep status improvement (F (1/32.91) = 16.24, P < 0.001, r = 0.57) and also a significant effect of vitamin B1 over placebo (F (1/41.21) = 13.32, P < 0.001, r = 0.49). CONCLUSIONS The use of vitamin B6 as an adjunctive therapy to lithium can be associated with the improvement of mood symptoms in patients with bipolar disorder in the midst of a manic episode.
Collapse
Affiliation(s)
- Atefeh Zandifar
- Department of Psychiatry, Imam Hossein Hospital, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran; Social Determinants of Health Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Shaghayegh Mousavi
- Research Committee, Alborz University of Medical Sciences, Karaj, Alborz, Iran
| | | | - Rahim Badrfam
- Department of Psychiatry, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| | - Ehsan Seif
- Research Committee, Alborz University of Medical Sciences, Karaj, Alborz, Iran
| | - Mostafa Qorbani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Chronic Diseases Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboobeh Mehrabani Natanzi
- Evidence-BASED Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
6
|
Dietary vitamin B6 restriction aggravates neurodegeneration in mice fed a high-fat diet. Life Sci 2022; 309:121041. [DOI: 10.1016/j.lfs.2022.121041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/18/2022]
|
7
|
Hahn KR, Kwon HJ, Yoon YS, Kim DW, Hwang IK. Phosphoglycerate kinase 1 protects against ischemic damage in the gerbil hippocampus. Aging (Albany NY) 2022; 14:8886-8899. [PMID: 36260875 PMCID: PMC9740370 DOI: 10.18632/aging.204343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 10/10/2022] [Indexed: 12/14/2022]
Abstract
Phosphoglycerate kinase 1 (PGK1) is a metabolic enzyme that converts 1,3-diphosphoglycerate to 3-phosphoglycerate. In the current study, we synthesized a PEP-1-PGK1 fusion protein that can cross the blood-brain barrier and cell membrane, and the effects of PEP-1-PGK1 against oxidative stress were investigated HT22 cells and ischemic gerbil brain. The PEP-1-PGK1 protein and its control protein (Con-PGK1) were treated and permeability was evaluated HT22 cells. The PEP-1-PGK1 was introduced into HT22 cells depending on its concentration and incubation time and was gradually degraded over 36 h after treatment. PEP-1-PGK1, but not Con-PGK1, significantly ameliorated H2O2-induced cell damage and reactive oxygen species formation in HT22 cells. Additionally, PEP-1-PGK1, but not Con-PGK1, mitigated ischemia-induced hyperlocomotion 1 d after ischemia and 4 d after ischemia of neuronic cell death. PEP-1-PGK1 treatment significantly alleviated the raised lactate and succinate dehydrogenase activities in the early (15 min to 6 h) and late (4 and 7 d) stages of ischemia, respectively. In addition, PEP-1-PGK1 treatment ameliorated the decrease in ATP and pH levels in the late stage (2-7 d) of ischemia. Nuclear factor erythroid-2-related factor 2 (Nrf2) levels accelerated the ischemia-induced increase in the hippocampus 1 d after ischemia after PEP-1-PGK1 treatment. Neuroprotective and ameliorative effects were prominent at a low concentration (0.1 mg/kg), but not at a high concentration (1 mg/kg), of PEP-1-PGK1. Collectively, low concentrations of PEP-1-PGK1 prevented neuronal stress by increasing energy production.
Collapse
Affiliation(s)
- Kyu Ri Hahn
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
| | - Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, South Korea,Department of Biomedical Sciences, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
8
|
Zhu G, Wang X, Chen L, Lenahan C, Fu Z, Fang Y, Yu W. Crosstalk Between the Oxidative Stress and Glia Cells After Stroke: From Mechanism to Therapies. Front Immunol 2022; 13:852416. [PMID: 35281064 PMCID: PMC8913707 DOI: 10.3389/fimmu.2022.852416] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Stroke is the second leading cause of global death and is characterized by high rates of mortality and disability. Oxidative stress is accompanied by other pathological processes that together lead to secondary brain damage in stroke. As the major component of the brain, glial cells play an important role in normal brain development and pathological injury processes. Multiple connections exist in the pathophysiological changes of reactive oxygen species (ROS) metabolism and glia cell activation. Astrocytes and microglia are rapidly activated after stroke, generating large amounts of ROS via mitochondrial and NADPH oxidase pathways, causing oxidative damage to the glial cells themselves and neurons. Meanwhile, ROS cause alterations in glial cell morphology and function, and mediate their role in pathological processes, such as neuroinflammation, excitotoxicity, and blood-brain barrier damage. In contrast, glial cells protect the Central Nervous System (CNS) from oxidative damage by synthesizing antioxidants and regulating the Nuclear factor E2-related factor 2 (Nrf2) pathway, among others. Although numerous previous studies have focused on the immune function of glial cells, little attention has been paid to the role of glial cells in oxidative stress. In this paper, we discuss the adverse consequences of ROS production and oxidative-antioxidant imbalance after stroke. In addition, we further describe the biological role of glial cells in oxidative stress after stroke, and we describe potential therapeutic tools based on glia cells.
Collapse
Affiliation(s)
- Ganggui Zhu
- Department of Neurosurgery, Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Luxi Chen
- Department of Medical Genetics, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cameron Lenahan
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Department of Biomedical Science, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Zaixiang Fu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanjian Fang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenhua Yu
- Department of Neurosurgery, Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Jung HY, Kim W, Hahn KR, Kang MS, Kwon HJ, Choi JH, Yoon YS, Kim DW, Yoo DY, Won MH, Hwang IK. Changes in the expression of the B subunit of vacuolar H +-ATPase, in the hippocampus, following transient forebrain ischemia in gerbils. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1482-1487. [PMID: 35317120 PMCID: PMC8917849 DOI: 10.22038/ijbms.2021.59275.13155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/13/2021] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Vacuolar H+-ATPase is a highly conserved enzyme that plays an important role in maintaining an acidic environment for lysosomal function and accumulating neurotransmitters in synaptic vesicles. In the present study, we investigated the time-dependent changes in the expression of vacuolar H+-ATPase V1B2 (ATP6V1B2), a major neuronal subtype of vacuolar H+-ATPase located in the hippocampus, after 5 min of transient forebrain ischemia in gerbils. We also examined the pH and lactate levels in the hippocampus after ischemia to elucidate the correlation between ATP6V1B2 expression and acidosis. MATERIALS AND METHODS Transient forebrain ischemia was induced by occlusion of both common carotid arteries for 5 min and animals were sacrificed at various time points after ischemia for immunohistochemical staining of ATP6V1B2 and measurements of pH and lactate levels in the hippocampus. RESULTS ATP6V1B2 immunoreactivity was found to be transiently increased in the hippocampal CA1 region and dentate gyrus 12-24 hr after ischemia when the pH and lactate levels were decreased. In addition, ATP6V1B2 immunoreactivity significantly increased in the hippocampal CA3 and dentate gyrus, regions relatively resistant to ischemic damage, 4 days after ischemia, when the NeuN-positive, mature neuron numbers were significantly decreased in the hippocampal CA1 region. CONCLUSION These results suggest that ATP6V1B2 expression is transiently increased in the hippocampus following ischemia, which may be intended to compensate for ischemia-related dysfunction of ATP6V1B2 in the hippocampus.
Collapse
Affiliation(s)
- Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, ,Seoul 08826, South Korea
| | - Woosuk Kim
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon 34134, South Korea,Department of Biomedical Sciences, and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Kyu Ri Hahn
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University
| | - Min Soo Kang
- Department of Anatomy, College of Veterinary Medicine, and Veterinary Science Research Institute, Konkuk University, Seoul 05030, South Korea
| | - Hyun Jung Kwon
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon 34134, South Korea
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine, and Veterinary Science Research Institute, Konkuk University, Seoul 05030, South Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University
| | - Dae Won Kim
- Department of Anatomy, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341
| | | | - Moo-Ho Won
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, ,Corresponding author: In Koo Hwang. Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea. Tel: +82 2 8801271;
| |
Collapse
|
10
|
Neuroprotection: Rescue from Neuronal Death in the Brain. Int J Mol Sci 2021; 22:ijms22115525. [PMID: 34073797 PMCID: PMC8197180 DOI: 10.3390/ijms22115525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/21/2022] Open
|
11
|
Jung HY, Kwon HJ, Kim W, Hwang IK, Choi GM, Chang IB, Kim DW, Moon SM. Tat-Endophilin A1 Fusion Protein Protects Neurons from Ischemic Damage in the Gerbil Hippocampus: A Possible Mechanism of Lipid Peroxidation and Neuroinflammation Mitigation as Well as Synaptic Plasticity. Cells 2021; 10:cells10020357. [PMID: 33572372 PMCID: PMC7916150 DOI: 10.3390/cells10020357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/28/2022] Open
Abstract
The present study explored the effects of endophilin A1 (SH3GL2) against oxidative damage brought about by H2O2 in HT22 cells and ischemic damage induced upon transient forebrain ischemia in gerbils. Tat-SH3GL2 and its control protein (Control-SH3GL2) were synthesized to deliver it to the cells by penetrating the cell membrane and blood–brain barrier. Tat-SH3GL2, but not Control-SH3GL2, could be delivered into HT22 cells in a concentration- and time-dependent manner and the hippocampus 8 h after treatment in gerbils. Tat-SH3GL2 was stably present in HT22 cells and degraded with time, by 36 h post treatment. Pre-incubation with Tat-SH3GL2, but not Control-SH3GL2, significantly ameliorated H2O2-induced cell death, DNA fragmentation, and reactive oxygen species formation. SH3GL2 immunoreactivity was decreased in the gerbil hippocampal CA1 region with time after ischemia, but it was maintained in the other regions after ischemia. Tat-SH3GL2 treatment in gerbils appreciably improved ischemia-induced hyperactivity 1 day after ischemia and the percentage of NeuN-immunoreactive surviving cells increased 4 days after ischemia. In addition, Tat-SH3GL2 treatment in gerbils alleviated the increase in lipid peroxidation as assessed by the levels of malondialdehyde and 8-iso-prostaglandin F2α and in pro-inflammatory cytokines such as tumor necrosis factor-α, interleukin-1β, and interleukin-6; while the reduction of protein levels in markers for synaptic plasticity, such as postsynaptic density 95, synaptophysin, and synaptosome associated protein 25 after transient forebrain ischemia was also observed. These results suggest that Tat-SH3GL2 protects neurons from oxidative and ischemic damage by reducing lipid peroxidation and inflammation and improving synaptic plasticity after ischemia.
Collapse
Affiliation(s)
- Hyo Young Jung
- Department of Anatomy and Cell Biology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (H.Y.J.); (I.K.H.)
| | - Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea;
| | - Woosuk Kim
- Department of Biomedical Sciences, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea;
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (H.Y.J.); (I.K.H.)
| | - Goang-Min Choi
- Department of Thoracic and Cardiovascular Surgery, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon 24253, Korea;
| | - In Bok Chang
- Department of Neurosurgery, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Anyang 14068, Korea;
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea;
- Correspondence: (D.W.K.); or (S.M.M.); Tel.: +82-31-8086-2412 (ext. 2330) (S.M.M.)
| | - Seung Myung Moon
- Department of Neurosurgery, Dongtan Sacred Heart Hospital, College of Medicine, Hallym University, Hwaseong 18450, Korea
- Research Institute for Complementary & Alternative Medicine, Hallym University, Chuncheon 24253, Korea
- Correspondence: (D.W.K.); or (S.M.M.); Tel.: +82-31-8086-2412 (ext. 2330) (S.M.M.)
| |
Collapse
|
12
|
Kim W, Jung HY, Yoo DY, Kwon HJ, Hahn KR, Kim DW, Yoon YS, Choi SY, Hwang IK. Gynura procumbens Root Extract Ameliorates Ischemia-Induced Neuronal Damage in the Hippocampal CA1 Region by Reducing Neuroinflammation. Nutrients 2021; 13:nu13010181. [PMID: 33435613 PMCID: PMC7828071 DOI: 10.3390/nu13010181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 12/18/2022] Open
Abstract
Gynura procumbens has been used in Southeast Asia for the treatment of hypertension, hyperglycemia, and skin problems induced by ultraviolet irradiation. Although considerable studies have reported the biological properties of Gynura procumbens root extract (GPE-R), there are no studies on the effects of GPE-R in brain damages, for example following brain ischemia. In the present study, we screened the neuroprotective effects of GPE-R against ischemic damage and neuroinflammation in the hippocampus based on behavioral, morphological, and biological approaches. Gerbils received oral administration of GPE-R (30 and 300 mg/kg) every day for three weeks and 2 h after the last administration, ischemic surgery was done by occlusion of both common carotid arteries for 5 min. Administration of 300 mg/kg GPE-R significantly reduced ischemia-induced locomotor hyperactivity 1 day after ischemia. Significantly more NeuN-positive neurons were observed in the hippocampal CA1 regions of 300 mg/kg GPE-R-treated animals compared to those in the vehicle-treated group 4 days after ischemia. Administration of GPE-R significantly reduced levels of pro-inflammatory cytokines such as interleukin-1β, -6, and tumor necrosis factor-α 6 h after ischemia/reperfusion. In addition, activated microglia were significantly decreased in the 300 mg/kg GPE-R-treated group four days after ischemia/reperfusion compared to the vehicle-treated group. These results suggest that GPE-R may be one of the possible agents to protect neurons from ischemic damage by reducing inflammatory responses.
Collapse
Affiliation(s)
- Woosuk Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (W.K.); (H.Y.J.); (K.R.H.); (Y.S.Y.)
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (W.K.); (H.Y.J.); (K.R.H.); (Y.S.Y.)
| | - Dae Young Yoo
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea;
| | - Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea; (H.J.K.); (D.W.K.)
| | - Kyu Ri Hahn
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (W.K.); (H.Y.J.); (K.R.H.); (Y.S.Y.)
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea; (H.J.K.); (D.W.K.)
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (W.K.); (H.Y.J.); (K.R.H.); (Y.S.Y.)
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
- Correspondence: (S.Y.C.); (I.K.H.)
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (W.K.); (H.Y.J.); (K.R.H.); (Y.S.Y.)
- Correspondence: (S.Y.C.); (I.K.H.)
| |
Collapse
|