1
|
Shi Y, Lu X, Song Q, Sun H, Shen W, Huang R, Huang J, Wei Y, Xiang F, Wang X, Tuo Y, Lin J, Hu Y. Mechanism of endogenous hormones regulating gallic acid biosynthesis during the development of buds and leaves in tea plant ( Camellia sinensis). FRONTIERS IN PLANT SCIENCE 2025; 16:1553266. [PMID: 40123956 PMCID: PMC11927092 DOI: 10.3389/fpls.2025.1553266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/04/2025] [Indexed: 03/25/2025]
Abstract
Gallic acid (GA), as a precursor of Epigallocatechin-3-gallate (EGCG) biosynthesis in tea plant, is one of the important components of tea flavor and has various health benefits. However, the mechanism of endogenous hormones regulating GA biosynthesis during the development of buds and leaves of tea shoots is still unclear. In this study, the buds and leaves of five different developmental stages of tea shoots were used as test materials to explore the mechanism of endogenous hormone signaling pathway regulating GA biosynthesis. The results showed that the decrease of D-erythrosyl-4-phosphate content and the increase of shikimic acid content affected the accumulation of GA content during the development of tea shoots. Jasmonic acid, abscisic acid, auxin, cytokinin, and gibberellin inhibited GA biosynthesis by down-regulating the expression of two CsaroDEs through twenty-three plant hormone signal transduction factors, such as CsMYC2, CsSNRK2, CsARR-A, and CsDELLA, respectively, which mediated the downregulation of sixteen transcription factors, such as CsMYB44, CsMYB108, and CsC2C2. CsMYC2 and CsSNRK2 co-mediated the downregulation of the expression of CsMYB44 and CsMYB108 in response to changes in endogenous JA and ABA content, respectively, and inhibited the expression of CsaroDE, thereby co-regulating GA biosynthesis. CsMYC2 may be a key interworking site for the endogenous Jasmonic acid and abscisic acid signaling pathways to jointly regulate GA biosynthesis. Our findings revealed the potential mechanism of endogenous hormones regulating GA biosynthesis during the development of buds and leaves of tea shoots and provided a scientific basis for the regulation of tea quality.
Collapse
Affiliation(s)
- Yutao Shi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Tea and Food Sciences, Wuyi University, Wuyishan, China
| | - Xiaofeng Lu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qingying Song
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huan Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wujing Shen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ruiqi Huang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiapeng Huang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanfen Wei
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fumin Xiang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xi Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanming Tuo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinke Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yunfei Hu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
2
|
Feng Z, Li Z, Yan R, Yang N, Liu M, Bai Y, Mao Y, Zhou C, Guo Y, Zeng Y, Ji Y, Lin Y, Chen J, Gao S. Metabolome and Transcriptome Analysis Reveals the Regulatory Effect of Magnesium Treatment on EGCG Biosynthesis in Tea Shoots ( Camellia sinensis). PLANTS (BASEL, SWITZERLAND) 2025; 14:684. [PMID: 40094619 PMCID: PMC11901942 DOI: 10.3390/plants14050684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/15/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025]
Abstract
Epigallocatechin-3-O-gallate (EGCG) is an important ingredient that indicates tea quality and has healthcare functions. Magnesium nutrition can improve the quality and yield of tea plants, but its regulatory role in the biosynthesis of EGCG in tea plants has not been clarified. Herein, we performed a comprehensive analysis of the metabolomics and transcriptomics of the shoots of 'Huangdan' at five magnesium concentrations: L1-L5 (0, 0.15, 0.45, 0.6, and 0.9 mmol/L mg2+, respectively). The results showed that the EGCG content of tea shoots treated with low magnesium concentrations was higher compared to those treated with high magnesium concentrations. The contents of related metabolites such as p-coumaric acid and cyanide in the EGCG synthesis pathway increased in the L4 and L5 treatment groups, while those of dihydroquercetin, dinnamic acid, and epicatechin increased significantly in the L2 and L3 treatment groups. Under the influence of magnesium treatment, the biosynthesis of EGCG was affected by a series of structural genes: CsPAL (HD.01G0005520), HD.02G0024350), Cs4CL (HD.15G0008250, HD.13G0010220), CsDFR (HD.04G0026220), CsANS(HD.12G0016700) with CsaroDE (HD.03G0002480)-positive regulation, and CsPAL (HD.13G0009900, HD.06G0008610), CsC4H (HD.06G0017130), Cs4CL (HD.02G0027390, HD.04G0003270), CsCHS (HD.10G0022640), CsCHI (HD.01G0011100), CsF3'H (HD.15G0015490), CsF3'5'H (HD.13G0004300), CsANS (HD.07G0023630), and Csaro B (HD.01G0028400) with CsSCPL (HD.01G0041070)-negative regulation. Transcription factors MYB 44 and WRKY 17 may play a key role in EGCG biosynthesis, which is significantly induced by magnesium nutrition in tea tree shoots. This study elucidates the effect of magnesium nutrition on EGCG biosynthesis in tea plants and provides key candidate transcription factors to provide a reference for further research on high-EGCG tea varieties to improve tea quality.
Collapse
Affiliation(s)
- Zixuan Feng
- Anxi College of Tea Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.F.); (Z.L.); (R.Y.); (N.Y.); (M.L.); (Y.B.); (Y.M.); (C.Z.); (Y.G.); (Y.Z.); (Y.J.)
- Fujian Collaborative Innovation Center for Green Cultivation and Processing of Tea Tree in Colleges and Universities, Quanzhou 362406, China
| | - Zhuan Li
- Anxi College of Tea Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.F.); (Z.L.); (R.Y.); (N.Y.); (M.L.); (Y.B.); (Y.M.); (C.Z.); (Y.G.); (Y.Z.); (Y.J.)
- Fujian Collaborative Innovation Center for Green Cultivation and Processing of Tea Tree in Colleges and Universities, Quanzhou 362406, China
| | - Rui Yan
- Anxi College of Tea Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.F.); (Z.L.); (R.Y.); (N.Y.); (M.L.); (Y.B.); (Y.M.); (C.Z.); (Y.G.); (Y.Z.); (Y.J.)
- Fujian Collaborative Innovation Center for Green Cultivation and Processing of Tea Tree in Colleges and Universities, Quanzhou 362406, China
| | - Nan Yang
- Anxi College of Tea Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.F.); (Z.L.); (R.Y.); (N.Y.); (M.L.); (Y.B.); (Y.M.); (C.Z.); (Y.G.); (Y.Z.); (Y.J.)
| | - Meichen Liu
- Anxi College of Tea Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.F.); (Z.L.); (R.Y.); (N.Y.); (M.L.); (Y.B.); (Y.M.); (C.Z.); (Y.G.); (Y.Z.); (Y.J.)
| | - Yueting Bai
- Anxi College of Tea Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.F.); (Z.L.); (R.Y.); (N.Y.); (M.L.); (Y.B.); (Y.M.); (C.Z.); (Y.G.); (Y.Z.); (Y.J.)
| | - Yuyuan Mao
- Anxi College of Tea Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.F.); (Z.L.); (R.Y.); (N.Y.); (M.L.); (Y.B.); (Y.M.); (C.Z.); (Y.G.); (Y.Z.); (Y.J.)
- Fujian Collaborative Innovation Center for Green Cultivation and Processing of Tea Tree in Colleges and Universities, Quanzhou 362406, China
| | - Chengzhe Zhou
- Anxi College of Tea Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.F.); (Z.L.); (R.Y.); (N.Y.); (M.L.); (Y.B.); (Y.M.); (C.Z.); (Y.G.); (Y.Z.); (Y.J.)
- Fujian Collaborative Innovation Center for Green Cultivation and Processing of Tea Tree in Colleges and Universities, Quanzhou 362406, China
| | - Yuqiong Guo
- Anxi College of Tea Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.F.); (Z.L.); (R.Y.); (N.Y.); (M.L.); (Y.B.); (Y.M.); (C.Z.); (Y.G.); (Y.Z.); (Y.J.)
- Fujian Collaborative Innovation Center for Green Cultivation and Processing of Tea Tree in Colleges and Universities, Quanzhou 362406, China
| | - Yulin Zeng
- Anxi College of Tea Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.F.); (Z.L.); (R.Y.); (N.Y.); (M.L.); (Y.B.); (Y.M.); (C.Z.); (Y.G.); (Y.Z.); (Y.J.)
| | - Yuhang Ji
- Anxi College of Tea Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.F.); (Z.L.); (R.Y.); (N.Y.); (M.L.); (Y.B.); (Y.M.); (C.Z.); (Y.G.); (Y.Z.); (Y.J.)
| | - Yangshun Lin
- Quanzhou Special Talent Innovation Laboratory of Fujian Richun Industrial Co., Ltd., Quanzhou 362000, China;
| | - Jiayong Chen
- Anxi County Tea Industry Development Center, Quanzhou 362300, China;
| | - Shuilian Gao
- Anxi College of Tea Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.F.); (Z.L.); (R.Y.); (N.Y.); (M.L.); (Y.B.); (Y.M.); (C.Z.); (Y.G.); (Y.Z.); (Y.J.)
- Fujian Collaborative Innovation Center for Green Cultivation and Processing of Tea Tree in Colleges and Universities, Quanzhou 362406, China
- Quanzhou Special Talent Innovation Laboratory of Fujian Richun Industrial Co., Ltd., Quanzhou 362000, China;
| |
Collapse
|
3
|
Prabakaran NN, Prasad S, Krishnan K, Venkatabalasubramanian S. Geraniin: A dietary ellagitannin as a modulator of signalling pathways in cancer progression. Fitoterapia 2024; 177:106107. [PMID: 38950635 DOI: 10.1016/j.fitote.2024.106107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Cancer remains a global health challenge, necessitating the exploration of novel therapeutic agents. Current treatment options are unable to overwhelm and cure the cancer burden. Hence, identifying new bioactive molecular entities with potent anticancer activity is the need of the hour. Ellagitannin Geraniin (GN) is one such evidence-based novel bioactive molecular entity (BME) available from different natural sources that can effectively combat cancer. This narrative review attempts to investigate the potential of BME-GN from 2005 to 2023 as an efficient molecular anti-cancer therapeutic against diverse cancers. We provide information on GN's pharmacological advantages, metabolite profile, and capacity to modulate multiple molecular targets involved in the hallmarks of cancer. Using the search terms "Geraniin," "Gallic acid," "Ellagitannin," "pharmacological properties," "health," "antioxidant," "apoptosis," "disease management," "anti-proliferative," "in vitro," "anti-inflammatory," "anti-angiogenic," "in vivo," and "clinical trials," We searched the scientific literature using Scopus, Web of Science, Google Scholar, and PubMed. We removed publications that included overlap or equivalent content and used the most recent review on each issue as our primary reference. From an initial pool of 430 articles, 52 studies met the search criteria. These studies collectively provide substantial in vitro, in vivo, and clinical evidence of GN's potential to combat diverse cancers. Mechanistic insights revealed its involvement in fostering apoptosis, anti-inflammatory, and modulation of key signalling pathways implicated in the hallmarks of cancer. GN's pleiotropic pharmacological and molecular therapeutic properties strongly suggest its potential as a promising anticancer agent.
Collapse
Affiliation(s)
- Naresh Narayanan Prabakaran
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Suvaasni Prasad
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Kiruthigaa Krishnan
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | | |
Collapse
|
4
|
An Y, Qiao D, Jing T, Li S. Extensive ICP-MS and HPLC-QQQ detections reveal the content characteristics of main metallic elements and polyphenols in the representative commercial tea on the market. Front Nutr 2024; 11:1450348. [PMID: 39188975 PMCID: PMC11345263 DOI: 10.3389/fnut.2024.1450348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
The content of polyphenols and metal elements in tea has an important impact on the choice of consumers. In this study, we conducted a comparative analysis of ten elements including Fe, Mg, Al, Zn, Cu, Mn, Ni, Cr, Pb, and As in 122 representative tea samples from 20 provinces. The results showed that the difference of metal content among six tea categories was greater than that among provinces, and the overall metal content of black tea was relatively higher. The contents of all elements from high to low were: Mg > Mn > Al > Fe > Zn > Cu > Ni > Cr > Pb > As. The contents of Ni, Fe, Al, Zn and Mn showed significant differences among multiple types of tea categories. While the detection rates of Pb and As were 10.7 and 24.6%, respectively. The contents of all elements were in line with the national limit standards. Meanwhile, the relative contents of theanine, caffeine and a total of 53 polyphenolic compounds in 122 tea samples were detected. The analysis showed that the content of these compounds differed least between green and yellow tea, and the largest difference between black tea and oolong tea. This study provides important support for consumers to choose tea rationally.
Collapse
Affiliation(s)
- Yanlin An
- Department of Food Science and Engineering, Moutai Institute, Renhuai, China
| | - Dahe Qiao
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Tingting Jing
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Shize Li
- Department of Food Science and Engineering, Moutai Institute, Renhuai, China
- College of Life Sciences, Guizhou University, Guiyang, China
| |
Collapse
|
5
|
Deng X, He S, Han Y, Chen Y. Metabolites profiling reveals the dynamic changes of non-volatiles in Pu-erh during Ganpu tea processing. Food Chem X 2023; 19:100774. [PMID: 37780327 PMCID: PMC10534103 DOI: 10.1016/j.fochx.2023.100774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/08/2023] [Accepted: 06/24/2023] [Indexed: 10/03/2023] Open
Abstract
Ganpu is an unique tea product made by Pu-erh tea and citrus peel. In this study, the non-volatiles changes of Pu-erh during Ganpu tea processing were fully analyzed by UPLC-ESI-MS/MS. Total 276 significantly differential metabolites in Pu-erh during Ganpu processing were detected (P < 0.05, VIP > 1), and their change trend were clustered into 8 subclasses by K-means analysis. Metabolites of Pu-erh present at various processes were revealed. 72 differential metabolites (P < 0.05, VIP > 1 and fold change ≥2 or ≤0.5) between any two stages were identified and fixation was the key step with 61 differential metabolites. 39 flavonoids and 2 lignans and coumarins were significantly decreased after fixation, while 5 terpenoids, 3 amino acids, 1 organic acids, 2 nucleotides and derivatives and newly detected jasminoside A (Log2FC = 9.90), picrocrocin (Log2FC = 9.90) and nomilinic acid (Log2FC = 7.56) were significantly increased. The results provided valuable information about the effect of Ganpu processing on dynamic changes of non-volatiles in Pu-erh.
Collapse
Affiliation(s)
- Xinyi Deng
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Shiqiang He
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuxin Han
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Yingjuan Chen
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Kim TM, Won HJ, Yang JH, Jo H, Kim AH, Nam D, Kim SG, Jin EJ, Bae HJ, Park SY. Multicolor Hair Dyeing with Biocompatible Dark Polyphenol Complex-Integrated Shampoo with Reactive Oxygen Species Scavenging Activity. Biomimetics (Basel) 2023; 8:469. [PMID: 37887600 PMCID: PMC10604431 DOI: 10.3390/biomimetics8060469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Hair dyeing has become a prevalent lifestyle trend, especially within the fashion industry. However, it possesses disadvantages, such as containing carcinogenic and toxic materials. In this study, we developed a biocompatible hair-dyeing technology using a shampoo with a dark polyphenol complex (DPC), referred to as S-DPC. The DPC was formed from a mixture of gallic acid and [1,1'-biphenyl]-2,2',4,4',5,5'-hexol and used to enhance both the stability of the hair coating and its ability to scavenge reactive oxygen species (ROS). Colloidal DPC particles play a pivotal role in the coating process of various hair dyes, ensuring the uniform coloring of human hair through intermolecular interactions such as hydrogen bonding. Owing to the effect of a polyphenol complex on hair coating, we observed improved antistatic performance and enhanced mechanical strength, resulting in a substantial increase in elongation at the breaking point from 33.74% to 48.85%. The multicolor S-DPC exhibited antioxidant properties, as indicated by its ROS-scavenging ability, including 2,2-diphenyl-1-picrylhydrazyl inhibition (87-89%), superoxide radical scavenging (84-87%), and hydroxyl radical scavenging (95-98%). Moreover, the in vitro analysis of the DPC revealed nearly 100% cell viability in live and dead assays, highlighting the remarkable biocompatibility of the DPC. Therefore, considering its effectiveness and safety, this biomaterial has considerable potential for applications in hair dyeing.
Collapse
Affiliation(s)
- Tae Min Kim
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea; (T.M.K.); (H.J.W.); (H.J.); (S.G.K.)
| | - Hyun Jeong Won
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea; (T.M.K.); (H.J.W.); (H.J.); (S.G.K.)
| | - Jun-Ho Yang
- Department of Biological Sciences, College of Health Sciences, Wonkwang University, Iksan 54538, Republic of Korea; (J.-H.Y.); (D.N.)
| | - Hayeon Jo
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea; (T.M.K.); (H.J.W.); (H.J.); (S.G.K.)
| | - A Hyeon Kim
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Republic of Korea;
| | - Dohyun Nam
- Department of Biological Sciences, College of Health Sciences, Wonkwang University, Iksan 54538, Republic of Korea; (J.-H.Y.); (D.N.)
| | - Seul Gi Kim
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea; (T.M.K.); (H.J.W.); (H.J.); (S.G.K.)
| | - Eun-Jung Jin
- Department of Biological Sciences, College of Health Sciences, Wonkwang University, Iksan 54538, Republic of Korea; (J.-H.Y.); (D.N.)
| | - Heung Jin Bae
- MODAMODA Corporation, Ltd., Songpa-gu, Seoul 05546, Republic of Korea
| | - Sung Young Park
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea; (T.M.K.); (H.J.W.); (H.J.); (S.G.K.)
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Republic of Korea;
| |
Collapse
|
7
|
Li X, Chen S, Zeng J, Cai R, Liang Y, Chen C, Chen B, Li C. Database-aided UHPLC-Q-orbitrap MS/MS strategy putatively identifies 52 compounds from Wushicha Granule to propose anti-counterfeiting quality-markers for pharmacopoeia. Chin Med 2023; 18:116. [PMID: 37689743 PMCID: PMC10492348 DOI: 10.1186/s13020-023-00829-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023] Open
Abstract
Wushicha Granule, an over-the-counter-drug (OTC) prescription, consists of 19 traditional Chinese herbals medicines (CHMs), such as Chaihu, Hongcha, Chuanxiong, Houpo, and Gancao. The five however have not been effectively characterized by the quality-markers (Q-markers) system in current Pharmacopoeia. The study therefore established a novel database-aided ultra-high performance liquid chromatography-quadrupole-orbitrap mass spectrometry (UHPLC-Q-orbitrap MS/MS) strategy. The strategy has putatively identified 52 compounds from Wushicha Granule, mainly including flavonoids, saponins, alkaloid, lignins, and lactones. Especially, saponin "glycyrrhetinic acid" in the Granule was specifically identified as 18β-configuration (rather than 18α-configuration). Meanwhile, two pairs of isomers were fully discriminated, including vitexin vs isovitexin and daidzein vs 7,4'-dihydroxyflavone. 8β-Glycyrrhetinic acid, together with saponin saikosaponin A, alkaloid caffeine, lactone S-senkyunolide A, and lignin magnolol, were further studied using quantum chemical calculation, UV-vis spectra, and anti-counterfeiting validation experiment. In the validation experiment, they have successfully recognized 6 counterfeit Wushicha Granules, by means of a LC-MS equipped extraction software. Based on these results, 8β-glycyrrhetinic acid is recommended to replace the old Q-marker "glycyrrhetinic acid"; while saikosaponin A, caffeine, S-senkyunolide A, and magnolol are recommended as new Q-markers. These recommendations can not only recognize the counterfeits regarding Chaihu, Hongcha, Chuanxiong, Houpo, and Gancao, but also prevent the possible safety-incident. All these will greatly improve the efficiency and specificity of current Pharmacopoeia.
Collapse
Affiliation(s)
- Xican Li
- School of Chinese Herbal Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Shaoman Chen
- School of Chinese Herbal Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jingyuan Zeng
- School of Chinese Herbal Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Rongxin Cai
- School of Chinese Herbal Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yilan Liang
- School of Chinese Herbal Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chuanbin Chen
- School of Chinese Herbal Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ban Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei University of Technology, Wuhan, 430068, China
| | - Chunhou Li
- School of Chinese Herbal Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| |
Collapse
|
8
|
El-Beltagi HS, El-Sayed SM, Abdelhamid AN, Hassan KM, Elshalakany WA, Nossier MI, Alabdallah NM, Al-Harbi NA, Al-Qahtani SM, Darwish DBE, Abbas ZK, Ibrahim HA. Potentiating Biosynthesis of Alkaloids and Polyphenolic Substances in Catharanthus roseus Plant Using ĸ-Carrageenan. Molecules 2023; 28:molecules28083642. [PMID: 37110876 PMCID: PMC10143362 DOI: 10.3390/molecules28083642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Catharanthus roseus is a medicinal plant that produces indole alkaloids, which are utilized in anticancer therapy. Vinblastine and vincristine, two commercially important antineoplastic alkaloids, are mostly found in the leaves of Catharanthus roseus. ĸ-carrageenan has been proven as plant growth promoting substance for a number of medicinal and agricultural plants. Considering the importance of ĸ-carrageenan as a promoter of plant growth and phytochemical constituents, especially alkaloids production in Catharanthus roseus, an experiment was carried out to explore the effect of ĸ-carrageenan on the plant growth, phytochemicals content, pigments content, and production of antitumor alkaloids in Catharanthus roseus after planting. Foliar application of ĸ-carrageenan (at 0, 400, 600 and 800 ppm) significantly improved the performance of Catharanthus roseus. Phytochemical analysis involved determining the amount of total phenolics (TP), flavonoids (F), free amino acids (FAA), alkaloids (TAC) and pigments contents by spectrophotometer, minerals by ICP, amino acids, phenolic compounds and alkaloids (Vincamine, Catharanthine, Vincracine (Vincristine), and vinblastine) analysis uses HPLC. The results indicated that all examined ĸ-carrageenan treatments led to a significant (p ≤ 0.05) increase in growth parameters compared to the untreated plants. Phytochemical examination indicates that the spray of ĸ-carrageenan at 800 mg L-1 increased the yield of alkaloids (Vincamine, Catharanthine and Vincracine (Vincristine)) by 41.85 μg/g DW, total phenolic compounds by 3948.6 μg gallic/g FW, the content of flavonoids 951.3 μg quercetin /g FW and carotenoids content 32.97 mg/g FW as compared to the control. An amount of 400 ppm ĸ-carrageenan treatment gave the best contents of FAA, Chl a, Chl b and anthocyanin. The element content of K, Ca, Cu, Zn and Se increased by treatments. Amino acids constituents and phenolics compounds contents were altered by ĸ-carrageenan.
Collapse
Affiliation(s)
- Hossam S El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Salwa M El-Sayed
- Department of Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| | - Ahmed N Abdelhamid
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| | - Karim M Hassan
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| | - Walaa A Elshalakany
- Department of Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| | - Mona Ibrahim Nossier
- Soil and Water Department, Faculty of Agriculture 11241, Ain Shams University, Cairo 11566, Egypt
| | - Nadiyah M Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Basic & Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Nadi Awad Al-Harbi
- Biology Department, University College of Tayma, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Salem Mesfir Al-Qahtani
- Biology Department, University College of Tayma, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Doaa Bahaa Eldin Darwish
- Biology department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35511, Egypt
| | - Zahid Khorshid Abbas
- Biology department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Hemmat A Ibrahim
- Department of Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
9
|
Fang WW, Wang KF, Zhou F, Ou-Yang J, Zhang ZY, Liu CW, Zeng HZ, Huang JA, Liu ZH. Oolong tea of different years protects high-fat diet-fed mice against obesity by regulating lipid metabolism and modulating the gut microbiota. Food Funct 2023; 14:2668-2683. [PMID: 36883322 DOI: 10.1039/d2fo03577d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Long-term stored oolong tea has recently attracted considerable attention concerning its salutary effect. In this study, the anti-obesity effect of different years' oolong tea on high-fat diet-fed mice was compared. Wuyi rock tea of 2001, 2011, and 2020 were chosen to be the representative samples of oolong tea. The results showed that eight-week administration of 2001 Wuyi rock tea (WRT01), 2011 Wuyi rock tea (WRT11), and 2020 Wuyi rock tea (WRT20) extracts (400 mg per kg per d) significantly decreased the body weight and attenuated the obesity in high-fat diet-fed mice. 2001 and 2011 Wuyi rock teas reduced obesity mainly through regulating lipid metabolism and activating the AMPK/SREBP-1 pathway, downregulating the expression of SREBP-1, FAS, and ACC and upregulating CPT-1a expression; while the 2011 and 2020 Wuyi rock teas by moderating the gut microbiota dysbiosis, reshaping the gut microbiota, and promoting the growth of beneficial bacteria, especially Akkermansia. 2011 Wuyi rock tea was proven to be more effective in reducing body weight gain and liver oxidative stress than the others. Collectively, all three Wuyi rock teas of different years alleviated high-fat diet-induced obesity by regulating lipid metabolism and modulating gut microbiota, whereas the emphasis of their internal mechanism is different with different storage ages.
Collapse
Affiliation(s)
- Wen-Wen Fang
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| | - Kuo-Fei Wang
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| | - Fang Zhou
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| | - Jie Ou-Yang
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| | - Zi-Ying Zhang
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| | - Chang-Wei Liu
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| | - Hong-Zhe Zeng
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| | - Jian-An Huang
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| | - Zhong-Hua Liu
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
10
|
Chen Y, Jiang C, Yin S, Zhuang J, Zhao Y, Zhang L, Jiang X, Liu Y, Gao L, Xia T. New insights into the function of plant tannase with promiscuous acyltransferase activity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:576-594. [PMID: 36534122 DOI: 10.1111/tpj.16069] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 11/25/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Plant tannases (TAs) or tannin acyl hydrolases, a class of recently reported carboxylesterases in tannin-rich plants, are involved in the degalloylation of two important groups of secondary metabolites: flavan-3-ol gallates and hydrolyzable tannins. In this paper, we have made new progress in studying the function of tea (Camellia sinensis) (Cs) TA-it is a hydrolase with promiscuous acyltransferase activity in vitro and in vivo and promotes the synthesis of simple galloyl glucoses and flavan-3-ol gallates in plants. We studied the functions of CsTA through enzyme analysis, protein mass spectrometry, and metabolic analysis of genetically modified plants. Firstly, CsTA was found to be not only a hydrolase but also an acyltransferase. In the two-step catalytic reaction where CsTA hydrolyzes the galloylated compounds epigallocatechin-3-gallate or 1,2,3,4,6-penta-O-galloyl-β-d-glucose into their degalloylated forms, a long-lived covalently bound Ser159-linked galloyl-enzyme intermediate is also formed. Under nucleophilic attack, the galloyl group on the intermediate is transferred to the nucleophilic acyl acceptor (such as water, methanol, flavan-3-ols, and simple galloyl glucoses). Then, metabolic analysis suggested that transient overexpression of TAs in young strawberry (Fragaria × ananassa) fruits, young leaves of tea plants, and young leaves of Chinese bayberry (Myrica rubra) actually increased the total contents of simple galloyl glucoses and flavan-3-ol gallates. Overall, these findings provide new insights into the promiscuous acyltransferase activity of plant TA.
Collapse
Affiliation(s)
- Yifan Chen
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, China
| | - Changjuan Jiang
- School of Life Science, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Shixin Yin
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, China
| | - Juhua Zhuang
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, China
| | - Yue Zhao
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, China
| | - Lingjie Zhang
- School of Life Science, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Xiaolan Jiang
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, China
| | - Yajun Liu
- School of Life Science, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, China
| |
Collapse
|
11
|
Relationship between the Grade and the Characteristic Flavor of PCT (Panyong Congou Black Tea). Foods 2022; 11:foods11182815. [PMID: 36140943 PMCID: PMC9497606 DOI: 10.3390/foods11182815] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Panyong Congou black tea (PCT) is one of the most representative and historically famous Congou black teas in China and has been gaining more and more attention for its beneficial health properties. Currently, four grades of PCT are available, based on the raw leaf materials and consumer palatability. The chemical profiles distinguishing different grades of PCT are yet to be defined, nor has the relationship with grade been evaluated. In the present study, chemometric analysis showed that epigallocatechin (EGC), catechin (C), polyphenols, gallic acid (GA), and free amino acids are grade related bio-markers of PCT. These compounds are associated with the sweet and mellow aftertaste of PCT. A total of 34 volatile components were identified, of which the three component types with the highest relative percentages were alcohols (51.34–52.51%), ketones (27.31–30.28%), and aldehydes (12.70–13.18%). Additionally, our results revealed that sweet floral and fruity aromas were positively correlated with six volatile organic compounds (VOCs), 1-pentanol, propyl hexanoate, linalool, cyclohexanone, hexanal, and 2,5-dimethylpyrazine. Clear discrimination was achieved using orthogonal projections to latent structures discriminant analysis (OPLS-DA). The findings provide vital information on the characteristic flavor of each grade of PCT.
Collapse
|
12
|
Li M, Luo X, Ho CT, Li D, Guo H, Xie Z. A new strategy for grading of Lu’an guapian green tea by combination of differentiated metabolites and hypoglycaemia effect. Food Res Int 2022; 159:111639. [DOI: 10.1016/j.foodres.2022.111639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 12/08/2022]
|
13
|
Dhiman M, Sharma L, Dadhich A, Dhawan P, Sharma MM. Traditional Knowledge to Contemporary Medication in the Treatment of Infectious Disease Dengue: A Review. Front Pharmacol 2022; 13:750494. [PMID: 35359838 PMCID: PMC8963989 DOI: 10.3389/fphar.2022.750494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022] Open
Abstract
Dengue has become a worldwide affliction despite incessant efforts to search for a cure for this long-lived disease. Optimistic consequences for dengue vaccine are implausible as the efficiency is tied to previous dengue virus (DENV) exposure and a very high cost is required for large-scale production of vaccine. Medicinal plants are idyllic substitutes to fight DENV infection since they constitute important components of traditional medicine and show antiviral properties, although the mechanism behind the action of bioactive compounds to obstruct viral replication is less explored and yet to be discovered. This review includes the existing traditional knowledge on how DENV infects and multiplies in the host cells, conscripting different medicinal plants that obtained bioactive compounds with anti-dengue properties, and the probable mechanism on how bioactive compounds modulate the host immune system during DENV infection. Moreover, different plant species having such bioactive compounds reported for anti-DENV efficiency should be validated scientifically via different in vitro and in vivo studies.
Collapse
Affiliation(s)
- Mamta Dhiman
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | - Lakshika Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | - Abhishek Dadhich
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | | | - M. M. Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| |
Collapse
|
14
|
Wang P, Gu M, Shao S, Chen X, Hou B, Ye N, Zhang X. Changes in Non-Volatile and Volatile Metabolites Associated with Heterosis in Tea Plants ( Camellia sinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3067-3078. [PMID: 35199525 DOI: 10.1021/acs.jafc.1c08248] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Heterosis or hybrid vigor is extensively used in plant breeding. However, the contribution of metabolites to heterosis is still elusive. Here, we systematically identified the non-volatile and volatile metabolites of two hybrids and their parents in Camellia sinensis. The metabolomics analysis showed prevalent non-additive accumulation in hybrids, among which the non-additive nucleotides, alkaloids, organic acids, and tannins contribute to the positive heterosis of hybrids, including typical inosine, guanosine, adenosine, caffeine, succinic acid, adipic acid, xylonic acid, and gallic acid. The catechins and free amino acids in hybrids showed negative heterosis compared to its maternal cultivar TGY. Furthermore, the significant accumulation of non-additive terpenes combined with the mild heterosis of other types of volatiles contributes to the aroma of tea plant hybrids. The genetics of volatiles from different parents affect the aroma of hybrids processed into oolong tea. The comprehensive heterosis of these non-additive metabolites may play an important role in the formation of desirable breeding traits for hybrids. Our results provide insights into the utilization of heterosis breeding and the regulation of heterosis metabolites in tea plants.
Collapse
Affiliation(s)
- Pengjie Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, China
| | - Mengya Gu
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, China
| | - Shuxian Shao
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, China
| | - Xiaomin Chen
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, China
| | - Binghao Hou
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, China
| | - Naixing Ye
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, China
| |
Collapse
|
15
|
Zhang X, Ran W, Li X, Zhang J, Ye M, Lin S, Liu M, Sun X. Exogenous Application of Gallic Acid Induces the Direct Defense of Tea Plant Against Ectropis obliqua Caterpillars. FRONTIERS IN PLANT SCIENCE 2022; 13:833489. [PMID: 35211143 PMCID: PMC8861190 DOI: 10.3389/fpls.2022.833489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/05/2022] [Indexed: 06/02/2023]
Abstract
Gallic acid (GA), an important polyphenolic compound in the plant, is a well-known antioxidant, antihyperglycemic, and anti-lipid peroxidative agent. Recently, GA treatment exhibited ameliorative effects on plants in response to some abiotic stresses. However, the elicitation effect of GA on plant defense against herbivorous insects has not yet been reported. In this study, we found that the exogenous application of GA induced the direct defense of tea plant (Camellia sinensis) against tea geometrid (Ectropis obliqua) larvae, through activating jasmonic acid (JA) signaling and phenylpropanoid pathways. These signaling cascades resulted in the efficient induction of several defensive compounds. Among them, astragalin, naringenin, and epigallocatechin-3-gallate were the three of the most active anti-feeding compounds. However, the exogenous GA treatment did not affect the preference of E. obliqua female moths and larval parasitoid Apanteles sp. Our study suggests that GA may serve as an elicitor that triggers a direct defense response against tea geometrid larvae in tea plants. This study will help to deepen the understanding of the interaction between plants and phytophagous insects and also provide theoretical and technical guidance for the development of plant defense elicitors.
Collapse
Affiliation(s)
- Xin Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Wei Ran
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Xiwang Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Jin Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Meng Ye
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Songbo Lin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Miaomiao Liu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Xiaoling Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| |
Collapse
|
16
|
Duan Y, Shang X, Liu G, Zou Z, Zhu X, Ma Y, Li F, Fang W. The effects of tea plants-soybean intercropping on the secondary metabolites of tea plants by metabolomics analysis. BMC PLANT BIOLOGY 2021; 21:482. [PMID: 34686144 PMCID: PMC8532361 DOI: 10.1186/s12870-021-03258-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Intercropping, especially with legumes, as a productive and sustainable system, can promote plants growth and improves the soil quality than the sole crop, is an essential cultivation pattern in modern agricultural systems. However, the metabolic changes of secondary metabolites and the growth in tea plants during the processing of intercropping with soybean have not been fully analyzed. RESULTS The secondary metabolomic of the tea plants were significant influence with intercropping soybean during the different growth stages. Especially in the profuse flowering stage of intercropping soybean, the biosynthesis of amino acids was significantly impacted, and the flavonoid biosynthesis, the flavone and flavonol biosynthesis also were changed. And the expression of metabolites associated with amino acids metabolism, particularly glutamate, glutamine, lysine and arginine were up-regulated, while the expression of the sucrose and D-Glucose-6P were down-regulated. Furthermore, the chlorophyll photosynthetic parameters and the photosynthetic activity of tea plants were higher in the tea plants-soybean intercropping system. CONCLUSIONS These results strengthen our understanding of the metabolic mechanisms in tea plant's secondary metabolites under the tea plants-soybean intercropping system and demonstrate that the intercropping system of leguminous crops is greatly potential to improve tea quality. These may provide the basis for reducing the application of nitrogen fertilizer and improve the ecosystem in tea plantations.
Collapse
Affiliation(s)
- Yu Duan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaowen Shang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guodong Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhongwei Zou
- Department of Plants Science, University of Manitoba, 66 Dafoe Road, Winnipeg, MB, R3T 2N2, Canada
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanchun Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fang Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
17
|
Li J, Xiao Y, Fan Q, Liao Y, Wang X, Fu X, Gu D, Chen Y, Zhou B, Tang J, Zeng L. Transformation of Salicylic Acid and Its Distribution in Tea Plants ( Camellia sinensis) at the Tissue and Subcellular Levels. PLANTS (BASEL, SWITZERLAND) 2021; 10:282. [PMID: 33540509 PMCID: PMC7912924 DOI: 10.3390/plants10020282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/07/2021] [Accepted: 01/14/2021] [Indexed: 12/03/2022]
Abstract
Salicylic acid (SA) is a well-known immune-related hormone that has been well studied in model plants. However, less attention has been paid to the presence of SA and its derivatives in economic plants, such as tea plants (Camellia sinensis). This study showed that tea plants were rich in SA and responded differently to different pathogens. Feeding experiments in tea tissues further confirmed the transformation of SA into salicylic acid 2-O-β-glucoside (SAG) and methyl salicylate. Nonaqueous fractionation techniques confirmed that SA and SAG were mostly distributed in the cytosol of tea leaves, consistent with distributions in other plant species. Furthermore, the stem epidermis contained more SA than the stem core both in C. sinensis cv. "Jinxuan" (small-leaf species) and "Yinghong No. 9" (large-leaf species). Compared with cv. "Yinghong No. 9", cv. "Jinxuan" contained more SAG in the stem epidermis, which might explain its lower incidence rate of wilt disease. This information will improve understanding of SA occurrence in tea plants and provide a basis for investigating the relationship between SA and disease resistance in tea plants.
Collapse
Affiliation(s)
- Jianlong Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, No. 6 Dafeng Road, Tianhe District, Guangzhou 510640, China; (J.L.); (Y.C.); (B.Z.)
| | - Yangyang Xiao
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; (Y.X.); (Q.F.); (Y.L.); (X.W.); (X.F.); (D.G.)
- College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Qian Fan
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; (Y.X.); (Q.F.); (Y.L.); (X.W.); (X.F.); (D.G.)
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Rongjiang New District, Ganzhou 341000, China
| | - Yinyin Liao
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; (Y.X.); (Q.F.); (Y.L.); (X.W.); (X.F.); (D.G.)
- College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xuewen Wang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; (Y.X.); (Q.F.); (Y.L.); (X.W.); (X.F.); (D.G.)
- College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xiumin Fu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; (Y.X.); (Q.F.); (Y.L.); (X.W.); (X.F.); (D.G.)
| | - Dachuan Gu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; (Y.X.); (Q.F.); (Y.L.); (X.W.); (X.F.); (D.G.)
| | - Yiyong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, No. 6 Dafeng Road, Tianhe District, Guangzhou 510640, China; (J.L.); (Y.C.); (B.Z.)
| | - Bo Zhou
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, No. 6 Dafeng Road, Tianhe District, Guangzhou 510640, China; (J.L.); (Y.C.); (B.Z.)
| | - Jinchi Tang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, No. 6 Dafeng Road, Tianhe District, Guangzhou 510640, China; (J.L.); (Y.C.); (B.Z.)
| | - Lanting Zeng
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; (Y.X.); (Q.F.); (Y.L.); (X.W.); (X.F.); (D.G.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| |
Collapse
|
18
|
Liao Y, Fu X, Zeng L, Yang Z. Strategies for studying in vivo biochemical formation pathways and multilevel distributions of quality or function-related specialized metabolites in tea (Camellia sinensis). Crit Rev Food Sci Nutr 2020; 62:429-442. [DOI: 10.1080/10408398.2020.1819195] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yinyin Liao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiumin Fu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Lanting Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Ziyin Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|