1
|
Guo F, Tan MS, Hu H, Ou YN, Zhang MZ, Sheng ZH, Chi HC, Tan L. sTREM2 Mediates the Correlation Between BIN1 Gene Polymorphism and Tau Pathology in Alzheimer's Disease. J Alzheimers Dis 2024; 101:693-704. [PMID: 39240638 DOI: 10.3233/jad-240372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Background Bridging integrator 1 (BIN1) gene polymorphism has been reported to play a role in the pathological processes of Alzheimer's disease (AD). Objective To explore the association of BIN1 loci with neuroinflammation and AD pathology. Methods Alzheimer's Disease Neuroimaging Initiative (ADNI, N = 495) was the discovery cohort, and Chinese Alzheimer's Biomarker and LifestylE (CABLE, N = 619) study was used to replicate the results. Two BIN1 gene polymorphism (rs7561528 and rs744373) were included in the analysis. Multiple linear regression model and causal mediation analysis conducted through 10,000 bootstrapped iterations were used to examine the BIN1 loci relationship with cerebrospinal fluid (CSF) AD biomarkers and alternative biomarker of microglial activation microglia-soluble triggering receptor expressed on myeloid cells 2 (sTREM2). Results In ADNI database, we found a significant association between BIN1 loci (rs7561528 and rs744373) and levels of CSF phosphorylated-tau (P-tau) (pc = 0.017; 0.010, respectively) and total-tau (T-tau) (pc = 0.011; 0.013, respectively). The BIN1 loci were also correlated with CSF sTREM2 levels (pc = 0.010; 0.008, respectively). Mediation analysis demonstrated that CSF sTREM2 partially mediated the association of BIN1 loci with P-tau (Proportion of rs7561528 : 20.8%; Proportion of rs744373 : 24.8%) and T-tau (Proportion of rs7561528 : 36.5%; Proportion of rs744373 : 43.9%). The analysis in CABLE study replicated the mediation role of rs7561528. Conclusions This study demonstrated the correlation between BIN1 loci and CSF AD biomarkers as well as microglia biomarkers. Additionally, the link between BIN1 loci and tau pathology was partially mediated by CSF sTREM2.
Collapse
Affiliation(s)
- Fan Guo
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Meng-Shan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- Department of Neurology, Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
- Department of Neurology, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Hao Hu
- Department of Neurology, Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ming-Zhan Zhang
- Department of Neurology, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Ze-Hu Sheng
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Hao-Chen Chi
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- Department of Neurology, Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
- Department of Neurology, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| |
Collapse
|
2
|
Malvaso A, Gatti A, Negro G, Calatozzolo C, Medici V, Poloni TE. Microglial Senescence and Activation in Healthy Aging and Alzheimer's Disease: Systematic Review and Neuropathological Scoring. Cells 2023; 12:2824. [PMID: 38132144 PMCID: PMC10742050 DOI: 10.3390/cells12242824] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
The greatest risk factor for neurodegeneration is the aging of the multiple cell types of human CNS, among which microglia are important because they are the "sentinels" of internal and external perturbations and have long lifespans. We aim to emphasize microglial signatures in physiologic brain aging and Alzheimer's disease (AD). A systematic literature search of all published articles about microglial senescence in human healthy aging and AD was performed, searching for PubMed and Scopus online databases. Among 1947 articles screened, a total of 289 articles were assessed for full-text eligibility. Microglial transcriptomic, phenotypic, and neuropathological profiles were analyzed comprising healthy aging and AD. Our review highlights that studies on animal models only partially clarify what happens in humans. Human and mice microglia are hugely heterogeneous. Like a two-sided coin, microglia can be protective or harmful, depending on the context. Brain health depends upon a balance between the actions and reactions of microglia maintaining brain homeostasis in cooperation with other cell types (especially astrocytes and oligodendrocytes). During aging, accumulating oxidative stress and mitochondrial dysfunction weaken microglia leading to dystrophic/senescent, otherwise over-reactive, phenotype-enhancing neurodegenerative phenomena. Microglia are crucial for managing Aβ, pTAU, and damaged synapses, being pivotal in AD pathogenesis.
Collapse
Affiliation(s)
- Antonio Malvaso
- IRCCS “C. Mondino” Foundation, National Neurological Institute, Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (A.M.); (A.G.)
| | - Alberto Gatti
- IRCCS “C. Mondino” Foundation, National Neurological Institute, Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (A.M.); (A.G.)
| | - Giulia Negro
- Department of Neurology, University of Milano Bicocca, 20126 Milan, Italy;
| | - Chiara Calatozzolo
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Abbiategrasso, 20081 Milan, Italy;
| | - Valentina Medici
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Tino Emanuele Poloni
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Abbiategrasso, 20081 Milan, Italy;
| |
Collapse
|
3
|
Loveland PM, Yu JJ, Churilov L, Yassi N, Watson R. Investigation of Inflammation in Lewy Body Dementia: A Systematic Scoping Review. Int J Mol Sci 2023; 24:12116. [PMID: 37569491 PMCID: PMC10418754 DOI: 10.3390/ijms241512116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Inflammatory mechanisms are increasingly recognized as important contributors to the pathogenesis of neurodegenerative diseases, including Lewy body dementia (LBD). Our objectives were to, firstly, review inflammation investigation methods in LBD (dementia with Lewy bodies and Parkinson's disease dementia) and, secondly, identify alterations in inflammatory signals in LBD compared to people without neurodegenerative disease and other neurodegenerative diseases. A systematic scoping review was performed by searching major electronic databases (MEDLINE, Embase, Web of Science, and PSYCHInfo) to identify relevant human studies. Of the 2509 results screened, 80 studies were included. Thirty-six studies analyzed postmortem brain tissue, and 44 investigated living subjects with cerebrospinal fluid, blood, and/or brain imaging assessments. Largely cross-sectional data were available, although two longitudinal clinical studies investigated prodromal Lewy body disease. Investigations were focused on inflammatory immune cell activity (microglia, astrocytes, and lymphocytes) and inflammatory molecules (cytokines, etc.). Results of the included studies identified innate and adaptive immune system contributions to inflammation associated with Lewy body pathology and clinical disease features. Different signals in early and late-stage disease, with possible late immune senescence and dystrophic glial cell populations, were identified. The strength of these associations is limited by the varying methodologies, small study sizes, and cross-sectional nature of the data. Longitudinal studies investigating associations with clinical and other biomarker outcomes are needed to improve understanding of inflammatory activity over the course of LBD. This could identify markers of disease activity and support therapeutic development.
Collapse
Affiliation(s)
- Paula M. Loveland
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3000, Australia
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville 3000, Australia
| | - Jenny J. Yu
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3000, Australia
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville 3000, Australia
| | - Leonid Churilov
- Department of Neurology, Melbourne Brain Centre, The Royal Melbourne Hospital, University of Melbourne, Parkville 3000, Australia
- Melbourne Medical School, University of Melbourne, Parkville 3000, Australia
| | - Nawaf Yassi
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3000, Australia
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville 3000, Australia
- Department of Neurology, Melbourne Brain Centre, The Royal Melbourne Hospital, University of Melbourne, Parkville 3000, Australia
| | - Rosie Watson
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3000, Australia
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville 3000, Australia
| |
Collapse
|
4
|
Yang J, Ou W, Jagadeesan N, Simanauskaite J, Sun J, Castellanos D, Cribbs DH, Sumbria RK. The Effects of a Blood-Brain Barrier Penetrating Erythropoietin in a Mouse Model of Tauopathy. Pharmaceuticals (Basel) 2023; 16:ph16040558. [PMID: 37111315 PMCID: PMC10141171 DOI: 10.3390/ph16040558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Erythropoietin (EPO), a hematopoietic neurotrophin, is a potential therapeutic for Alzheimer's disease (AD) but has limited blood-brain barrier (BBB) permeability. EPO fused to a chimeric transferrin receptor monoclonal antibody (cTfRMAb) enters the brain via TfR-mediated transcytosis across the BBB. We previously showed that cTfRMAb-EPO is protective in a mouse model of amyloidosis, but its effects on tauopathy are not known. Given that amyloid and tau pathology are characteristics of AD, the effects of cTfRMAb-EPO were studied in a tauopathy mouse model (PS19). Six-month-old PS19 mice were injected intraperitoneally with either saline (PS19-Saline; n = 9) or cTfRMAb-EPO (PS19-cTfRMAb-EPO, 10 mg/kg; n = 10); every two or three days on alternate weeks for 8 weeks. Age-matched, saline-treated, wildtype littermates (WT-Saline; n = 12) were injected using the same protocol. After 8 weeks, locomotion, hyperactivity, and anxiety were assessed via the open-field test, and brains were harvested and sectioned. Cerebral cortex, hippocampus, amygdala, and entorhinal cortex sections were analyzed for phospho-tau (AT8) and microgliosis (Iba1). Hippocampal cellular density (H&E) was also assessed. PS19-Saline mice were hyperactive and less anxious compared to WT-Saline mice, and these behavioral phenotypes were significantly reduced in the PS19-cTfRMAb-EPO mice compared to the PS19-Saline mice. cTfRMAb-EPO significantly reduced AT8 load by ≥50% in all of the brain regions analyzed and microgliosis in the entorhinal cortex and amygdala compared to the PS19-Saline mice. Hippocampal pyramidal and granule cell layer density did not differ significantly between the PS19-cTfRMAb-EPO and PS19-Saline mice. This proof-of-concept study demonstrates the therapeutic effects of the BBB-penetrating cTfRMAb-EPO in PS19 mice.
Collapse
Affiliation(s)
- Joshua Yang
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, 535 Watson Dr, Claremont, CA 91711, USA
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA 92618, USA
| | - Weijun Ou
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA 92618, USA
| | - Nataraj Jagadeesan
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA 92618, USA
| | | | - Jiahong Sun
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA 92618, USA
| | - Demi Castellanos
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, 535 Watson Dr, Claremont, CA 91711, USA
| | - David H Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Rachita K Sumbria
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA 92618, USA
- Department of Neurology, University of California, Irvine, CA 92868, USA
| |
Collapse
|
5
|
Xu J, Farsad HL, Hou Y, Barclay K, Lopez BA, Yamada S, Saliu IO, Shi Y, Knight WC, Bateman RJ, Benzinger TLS, Yi JJ, Li Q, Wang T, Perlmutter JS, Morris JC, Zhao G. Human striatal glia differentially contribute to AD- and PD-specific neurodegeneration. NATURE AGING 2023; 3:346-365. [PMID: 36993867 PMCID: PMC10046522 DOI: 10.1038/s43587-023-00363-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/09/2023] [Indexed: 02/11/2023]
Abstract
The commonalities and differences in cell-type-specific pathways that lead to Alzheimer disease (AD) and Parkinson disease (PD) remain unknown. Here, we performed a single-nucleus transcriptome comparison of control, AD and PD striata. We describe three astrocyte subpopulations shared across different brain regions and evolutionarily conserved between humans and mice. We reveal common features between AD and PD astrocytes and regional differences that contribute toward amyloid pathology and neurodegeneration. In contrast, we found that transcriptomic changes in microglia are largely unique to each disorder. Our analysis identified a population of activated microglia that shared molecular signatures with murine disease-associated microglia (DAM) as well as disease-associated and regional differences in microglia transcriptomic changes linking microglia to disease-specific amyloid pathology, tauopathy and neuronal death. Finally, we delineate undescribed subpopulations of medium spiny neurons (MSNs) in the striatum and provide neuronal transcriptomic profiles suggesting disease-specific changes and selective neuronal vulnerability.
Collapse
Affiliation(s)
- Jinbin Xu
- The Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Huifangjie L Farsad
- The Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yiran Hou
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Kia Barclay
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Ben Anthony Lopez
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- MD-PhD in Molecular Medicine Program, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Shinnosuke Yamada
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Yiming Shi
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - William C Knight
- The Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tammie L S Benzinger
- The Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jason J Yi
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Qingyun Li
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joel S Perlmutter
- The Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Guoyan Zhao
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
6
|
Wang X, Liu X, Chen L, Zhang X. The inflammatory injury in the striatal microglia-dopaminergic-neuron crosstalk involved in Tourette syndrome development. Front Immunol 2023; 14:1178113. [PMID: 37187752 PMCID: PMC10175669 DOI: 10.3389/fimmu.2023.1178113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Background Tourette syndrome (TS) is associated with immunological dysfunction. The DA system is closely related to TS development, or behavioral stereotypes. Previous evidence suggested that hyper-M1-polarized microglia may exist in the brains of TS individuals. However, the role of microglia in TS and their interaction with dopaminergic neurons is unclear. In this study, we applied iminodipropionitrile (IDPN) to establish a TS model and focused on the inflammatory injury in the striatal microglia-dopaminergic-neuron crosstalk. Methods Male Sprague-Dawley rats were intraperitoneally injected with IDPN for seven consecutive days. Stereotypic behavior was observed to verify the TS model. Striatal microglia activation was evaluated based on different markers and expressions of inflammatory factors. The striatal dopaminergic neurons were purified and co-cultured with different microglia groups, and dopamine-associated markers were assessed. Results First, there was pathological damage to striatal dopaminergic neurons in TS rats, as indicated by decreased expression of TH, DAT, and PITX3. Next, the TS group showed a trend of increased Iba-1 positive cells and elevated levels of inflammatory factors TNF-α and IL-6, as well as an enhanced M1-polarization marker (iNOS) and an attenuated M2-polarization marker (Arg-1). Finally, in the co-culture experiment, IL-4-treated microglia could upregulate the expression of TH, DAT, and PITX3 in striatal dopaminergic neurons vs LPS-treated microglia. Similarly, the TS group (microglia from TS rats) caused a decreased expression of TH, DAT, and PITX3 compared with the Sham group (microglia from control rats) in the dopaminergic neurons. Conclusion In the striatum of TS rats, microglia activation is M1 hyperpolarized, which transmits inflammatory injury to striatal dopaminergic neurons and disrupts normal dopamine signaling.
Collapse
Affiliation(s)
- Xueming Wang
- Plastic Surgery Department, Fujian Children’s Hospital, Fuzhou, China
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiumei Liu
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Developmental and Behavior Pediatrics Department, Fujian Children’s Hospital, Fuzhou, China
- *Correspondence: Xiumei Liu,
| | - Liangliang Chen
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Developmental and Behavior Pediatrics Department, Fujian Children’s Hospital, Fuzhou, China
| | - Xiaoling Zhang
- Child Healthcare Department, Fuzhou Maternal and Child Health Hospital, Fuzhou, China
| |
Collapse
|
7
|
Gouilly D, Saint-Aubert L, Ribeiro MJ, Salabert AS, Tauber C, Péran P, Arlicot N, Pariente J, Payoux P. Neuroinflammation PET imaging of the translocator protein (TSPO) in Alzheimer's disease: an update. Eur J Neurosci 2022; 55:1322-1343. [PMID: 35083791 DOI: 10.1111/ejn.15613] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/28/2022]
Abstract
Neuroinflammation is a significant contributor to Alzheimer's disease (AD). Until now, PET imaging of the translocator protein (TSPO) has been widely used to depict the neuroimmune endophenotype of AD. The aim of this review was to provide an update to the results from 2018 and to advance the characterization of the biological basis of TSPO imaging in AD by re-examining TSPO function and expression and the methodological aspects of interest. Although the biological basis of the TSPO PET signal is obviously related to microglia and astrocytes in AD, the observed process remains uncertain and might not be directly related to neuroinflammation. Further studies are required to re-examine the cellular significance underlying a variation in the PET signal in AD and how it can be impacted by a disease-modifying treatment.
Collapse
Affiliation(s)
- Dominique Gouilly
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Laure Saint-Aubert
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Maria-Joao Ribeiro
- Department of Nuclear Medicine, CHU, Tours, France.,UMR 1253, iBrain, Université de Tours, France.,Inserm CIC 1415, CHRU, Tours, France
| | - Anne-Sophie Salabert
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.,Department of Nuclear Medicine, CHU, Toulouse, France
| | | | - Patrice Péran
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Nicolas Arlicot
- UMR 1253, iBrain, Université de Tours, France.,Inserm CIC 1415, CHRU, Tours, France
| | - Jérémie Pariente
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.,Department of Cognitive Neurology, Epilepsy and Movement Disorders, CHU, Toulouse, France.,Center of Clinical Investigations (CIC1436), CHU, Toulouse, France
| | - Pierre Payoux
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.,Department of Nuclear Medicine, CHU, Toulouse, France
| |
Collapse
|
8
|
Ji A, Xu J. Neuropathic Pain: Biomolecular Intervention and Imaging via Targeting Microglia Activation. Biomolecules 2021; 11:1343. [PMID: 34572554 PMCID: PMC8466763 DOI: 10.3390/biom11091343] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/20/2021] [Accepted: 09/07/2021] [Indexed: 12/22/2022] Open
Abstract
Many diseases, including cancer, can lead to neuropathic pain (NP). NP is one of the accompanying symptoms of suffering in many conditions and the life quality of NP patient is seriously affected. Due to complex causes, the effects of clinical treatments have been very unsatisfactory. Many experts have found that neuron-microglia interaction plays an essential role in NP occurrence and development. Therefore, the activation of microglia, related inflammatory mediators and molecular and cellular signaling pathways have become the focus of NP research. With the help of modern functional imaging technology, advanced pre-and clinical studies have been carried out and NP interventions have been attempted by using the different pharmaceuticals and the extracted active components of various traditional herbal medicines. In this communication, we review the mechanism of microglia on NP formation and treatment and molecular imaging technology's role in the clinical diagnosis and evaluation of NP therapies.
Collapse
Affiliation(s)
| | - Jinbin Xu
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd., St. Louis, MO 63110, USA;
| |
Collapse
|
9
|
Li H, Knight WC, Xu J. Striatal oxidative damages and neuroinflammation correlate with progression and survival of Lewy body and Alzheimer diseases. Neural Regen Res 2021; 17:867-874. [PMID: 34472487 PMCID: PMC8530139 DOI: 10.4103/1673-5374.322463] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Neurodegenerative diseases are a class of chronic and complex disorders featuring progressive loss of neurons in distinct brain areas. The mechanisms responsible for the disease progression in neurodegeneration are not fully illustrated. In this observational study, we have examined diverse biochemical parameters in the caudate and putamen of patients with Lewy body diseases (LBDs) and Alzheimer disease (AD), shedding some light on the involvement of oxidative damage and neuroinflammation in advanced neurodegeneration. We performed Spearman and Mantel-Cox analyses to investigate how oxidative stress and neuroinflammation exert comprehensive effects on disease progression and survival. Disease progression in LBDs correlated positively with poly (ADP-Ribose) and triggering receptors expressed on myeloid cell 2 levels in the striatum of LBD cohorts, indicating that potential parthanatos was a dominant feature of worsening disease progression and might contribute to switching microglial inflammatory phenotypes. Disease progression in AD corresponds negatively with 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dG) and myeloperoxidase concentrations in the striatum, suggesting that possible mitochondria dysfunction may be involved in the progression of AD via a mechanism of β-amyloid entering the mitochondria and subsequent free radicals generation. Patients with lower striatal 8-oxo-dG and myeloperoxidase levels had a survival advantage in AD. The age of onset also affected disease progression. Tissue requests for the postmortem biochemistry, genetics, and autoradiography studies were approved by the Washington University Alzheimer’s Disease Research Center (ADRC) Biospecimens Committee (ethics approval reference number: T1705, approval date: August 6, 2019). Recombinant DNA and Hazardous Research Materials were approved by the Washington University Environmental Health & Safety Biological Safety Committee (approval code: 3739, approval date: February 25, 2020). Radioactive Material Authorization was approved by the Washington University Environmental Health & Safety Radiation Safety Committee (approval code: 1056, approval date: September 18, 2019).
Collapse
Affiliation(s)
- Huifangjie Li
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - William C Knight
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jinbin Xu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|