1
|
Gheitasi I, Akbari G, Savari F. Physiological and cellular mechanisms of ischemic preconditioning microRNAs-mediated in underlying of ischemia/reperfusion injury in different organs. Mol Cell Biochem 2025; 480:855-868. [PMID: 39001984 DOI: 10.1007/s11010-024-05052-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/10/2024] [Indexed: 07/15/2024]
Abstract
Ischemia-reperfusion (I/R) injury, as a pathological phenomenon, takes place when blood supply to an organ is disrupted and then aggravated during restoration of blood flow. Ischemic preconditioning (IPC) is a potent method for attenuating subsequent events of IR damage in numerous organs. IPC protocol is determined by a brief and sequential time periods of I/R before the main ischemia. MicroRNAs are endogenous non-coding RNAs that regulate post-transcriptionally target mRNA translation via degrading it and/or suppressing protein synthesis. This review introduces the physiological and cellular mechanisms of ischemic preconditioning microRNAs-mediated after I/R insult in different organs such as the liver, kidney, heart, brain, and intestine. Data of this review have been collected from the scientific articles published in databases such as Science Direct, Scopus, PubMed, Web of Science, and Scientific Information Database from 2000 to 2023. Based on these literature studies, IPC/IR intervention can affect cellular mechanisms including oxidative stress, apoptosis, angiogenesis, and inflammation through up-regulation or down-regulation of multiple microRNAs and their target genes.
Collapse
Affiliation(s)
- Izadpanah Gheitasi
- Department of Physiology, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ghaidafeh Akbari
- Department of Physiology, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Feryal Savari
- Department of Medical Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran.
| |
Collapse
|
2
|
Braicu C, Mureșanu FD, Isachesku E, Bornstein N, Filipović SR, Strilciuc S, Pana A. Role of miR-181 Family Members in Stroke: Insights into Mechanisms and Therapeutic Potential. Int J Mol Sci 2025; 26:440. [PMID: 39859155 PMCID: PMC11765211 DOI: 10.3390/ijms26020440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/30/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
Stroke is a major cause of mortality and long-term disability worldwide, making early diagnosis and effective treatment crucial for reducing its impact. In response to the limited efficacy of current treatments, alternative therapeutic strategies, such as novel biomarkers and therapies, are emerging to address this critical unmet medical need. MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression at the post-transcriptional level. Due to their dysregulation, they have been implicated in the onset and progression of various diseases. Recent research highlighted the important role of miR-181 family members in the context of stroke. Polymorphisms such as rs322931 in miR-181b are associated with increased stroke risk. miR-181 family members are aberrantly expressed and related to various aspects of stroke pathology, affecting inflammatory responses or neuronal survival. We provide a comprehensive overview of how alterations in miR-181 expression influence stroke mechanisms and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Cornelia Braicu
- Department of Genomics, MEDFUTURE Institute for Biomedical Research, Iuliu Hațieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (C.B.); (E.I.)
| | - Fior Dafin Mureșanu
- RoNeuro Institute for Neurological Research and Diagnostics, 37 Mircea Eliade St., 400364 Cluj-Napoca, Romania;
- Department of Neuroscience, Iuliu Haţieganu University of Medicine and Pharmacy, 8 Victor Babes St., 400347 Cluj-Napoca, Romania
| | - Ekaterina Isachesku
- Department of Genomics, MEDFUTURE Institute for Biomedical Research, Iuliu Hațieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (C.B.); (E.I.)
| | - Natan Bornstein
- Department of Neurology, Shaare Zedek Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Shmuel Bait 12, Jerusalem 9103102, Israel;
| | - Saša R. Filipović
- Institute of Psychology, Department of Psychology, Faculty of Philosophy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Stefan Strilciuc
- Department of Genomics, MEDFUTURE Institute for Biomedical Research, Iuliu Hațieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (C.B.); (E.I.)
| | - Adrian Pana
- Center for Health Outcomes & Evaluation, Splaiul Unirii 45, 030126 Bucharest, Romania;
| |
Collapse
|
3
|
Peng Q, Deng Y, Xu Z, Duan R, Wang W, Wang S, Hong Y, Wang Q, Zhang Y. Fat mass and obesity-associated protein alleviates cerebral ischemia/reperfusion injury by inhibiting ferroptosis via miR-320-3p/SLC7A11 axis. Biochem Pharmacol 2024; 230:116603. [PMID: 39486461 DOI: 10.1016/j.bcp.2024.116603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/27/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Fat mass and obesity-associated protein (FTO) is a demethylase and has recently been found to have a protective effect in acute ischemic stroke (AIS), but the underlying mechanism is unclear to a large extent. New studies have found that the expression of certain miRNAs may be affected by N6-methyladenosine (m6A) levels. Here, using high-throughput sequencing and quantitative polymerase chain reaction, we found miR-320-3p was significantly up-regulated in AIS patients. miR-320-3p aggravated the neurobehavioral manifestation, infarct volume and histopathology of middle cerebral artery occlusion/reperfusion model mice. Mechanically, miR-320-3p binds to the 3' untranslated region of solute carrier family 7 member 11 (SLC7A11) mRNA, promoting oxidative stress and ferroptosis induced by oxygen-glucose deprivation/reoxygenation in neurons. FTO inhibited the m6A methylation of the primary transcript pri-miR-320 and the maturation of miR-320-3p, thus having a protective effect on cerebral ischemia/reperfusion injury after AIS. Clinically, we also confirmed the down-regulation of FTO and SLC7A11 mRNA in the peripheral blood of AIS patients and their correlation with the expression of miR-320-3p. Our study found that FTO inhibits ferroptosis through miR-320-3p/SLC7A11 axis in an m6A-dependent manner, and thus has a protective effect on cerebral ischemic reperfusion injury. Our results provided a promising therapeutic target of cerebral ischemia/reperfusion injury after AIS.
Collapse
Affiliation(s)
- Qiang Peng
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Yang Deng
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210006, Jiangsu, China
| | - Zhaohan Xu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Rui Duan
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Wei Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Shiyao Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Ye Hong
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China.
| | - Qingguang Wang
- Department of Neurology, Jiangyin Hospital Affiliated to Nantong University, Wuxi 214400, Jiangsu, China.
| | - Yingdong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China.
| |
Collapse
|
4
|
Vahidi S, Bigdeli MR, Shahsavarani H, Ahmadloo S, Roghani M. Neuroprotective Therapeutic Potential of microRNA-149-5p against Murine Ischemic Stroke. Mol Neurobiol 2024; 61:8886-8903. [PMID: 38573413 DOI: 10.1007/s12035-024-04159-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Ischemic stroke resulting from blockade of brain vessels lacks effective treatments, prompting exploration for potential therapies. Among promising candidates, microRNA-149 (miR-149) has been investigated for its role in alleviating oxidative stress, inflammation, and neurodegeneration associated with ischemic conditions. To evaluate its therapeutic effect, male Wistar rats were categorized into five groups, each consisting of 27 rats: sham, MCAO, lentiviral control, lentiviral miR-149, and miR149-5p mimic. Treatments were microinjected intracerebroventricularly (ICV) (right side), and ischemia was induced using middle cerebral artery occlusion (MCAO) procedure. Post-MCAO, neurological function, histopathological changes, blood-brain barrier (BBB) permeability, cerebral edema, and mRNA levels of Fas ligand (Faslg) and glutamate ionotropic NMDA receptor 1 (GRIN1) were assessed, alongside biochemical assays. MiR-149 administration improved neurological function, reduced brain damage, preserved BBB integrity, and attenuated cerebral edema. Upregulation of miR149-5p decreased Faslg and GRIN1 expression in ischemic brain regions. MiR-149 also reduced oxidative stress, enhanced antioxidant activity, decreased caspase-1 and - 3 activity, and modulated inflammatory factors in ischemic brain regions. Moreover, DNA fragmentation as an index of cell death decreased following miR-149 treatment. In conclusion, the study underscores miR-149 potential as a neuroprotective agent against ischemic stroke, showcasing its efficacy in modulating various mechanisms and supporting its candidacy as a promising therapeutic target for innovative strategies in stroke treatment.
Collapse
Affiliation(s)
- Samira Vahidi
- Department of Animal Science and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mohammad-Reza Bigdeli
- Department of Animal Science and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
- Institute for Cognitive and Brain Science, Shahid Beheshti University, Tehran, Iran.
| | - Hosein Shahsavarani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Salma Ahmadloo
- Department of Animal Science and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|
5
|
Ma H, Zhu L. Exploring the role of traditional Chinese medicine rehabilitation in stroke based on microRNA-mediated pyroptosis: A review. Medicine (Baltimore) 2024; 103:e39685. [PMID: 39312329 PMCID: PMC11419531 DOI: 10.1097/md.0000000000039685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
Stroke, also known as "cerebrovascular accident," is a disease caused by acute impairment of brain circulation, which has a high rate of disability and mortality. Ischemic stroke (IS) is the most common type of stroke and a major cause of death and disability worldwide. At present, there are still many limitations in the treatment of IS, so it may be urgent to explore more treatments for IS. In recent years, the clinical application of traditional Chinese medicine rehabilitation methods such as traditional Chinese medicine, acupuncture, massage, traditional exercises and modern rehabilitation technology has achieved good results in the treatment of IS. Concurrently, studies have identified microRNA (miRNA), which are intimately associated with traditional Chinese medicine rehabilitation, as regulators of pyroptosis through their influence on microglia activity, inflammatory response, oxidative stress, angiogenesis and other factors, but at present, the mechanism of this direction has not been systematically summarized. Consequently, this article delineates in detail the specific role of miRNA in IS and the related activation pathways of pyroptosis in IS. This article presents a detailed discussion of the role of microRNA-mediated pyroptosis in IS, with a particular focus on the signaling pathways involved. The aim is to provide new insights for the research of traditional Chinese medicine (TCM) rehabilitation in the prevention and treatment of IS. In addition, the article explores the potential of TCM rehabilitation in regulating miRNA-mediated pyroptosis to intervene in IS.
Collapse
Affiliation(s)
- Hanwen Ma
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Luwen Zhu
- Rehabilitation Center, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
6
|
Ciaccio AM, Tuttolomondo A. Epigenetics of cerebrovascular diseases: an update review of clinical studies. Epigenomics 2024; 16:1043-1055. [PMID: 39072474 PMCID: PMC11404611 DOI: 10.1080/17501911.2024.2377947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024] Open
Abstract
Cerebrovascular diseases, especially stroke, are critical and heterogenous clinical conditions associated with high mortality and chronic disability. Genome-wide association studies reveal substantial stroke heritability, though specific genetic variants account for a minor fraction of stroke risk, suggesting an essential role for the epigenome. Epigenome-wide association studies and candidate gene approaches show that DNA methylation patterns significantly influence stroke susceptibility. Additionally, chromatin remodelers and non-coding RNA regulate gene expression in response to ischemic conditions. In this updated review, we summarized the progress of knowledge on epigenetics in the field of ischemic stroke underlying opportunities and challenges.
Collapse
Affiliation(s)
- Anna Maria Ciaccio
- Internal Medicine & Stroke Care Ward, PROMISE Department, University of Palermo, Piazza delle Cliniche n.2, 90127, Palermo, Italy
| | - Antonino Tuttolomondo
- Internal Medicine & Stroke Care Ward, PROMISE Department, University of Palermo, Piazza delle Cliniche n.2, 90127, Palermo, Italy
| |
Collapse
|
7
|
Pinosanu LR, Boboc IKS, Balseanu TA, Gresita A, Hermann DM, Popa-Wagner A, Catalin B. Beam narrowing test: a motor index of post-stroke motor evaluation in an aged rat model of cerebral ischemia. J Neural Transm (Vienna) 2024; 131:763-771. [PMID: 38598100 PMCID: PMC11199207 DOI: 10.1007/s00702-024-02768-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Each year, 15 million people worldwide suffer from strokes. Consequently, researchers face increasing pressure to develop reliable behavioural tests for assessing functional recovery after a stroke. Our aim was to establish a new motor performance index that can be used to evaluate post-stroke recovery in both young and aged animals. Furthermore, we validate the proposed procedure and recommend the necessary number of animals for experimental stroke studies. Young (n = 20) and aged (n = 27) Sprague-Dawley rats were randomly assigned to receive either sham or stroke surgery. The newly proposed performance index was calculated for the post-stroke acute, subacute and chronic phases. The advantage of using our test over current tests lies in the fact that the newly proposed motor index test evaluates not only the performance of the unaffected side in comparison to the affected one but also assesses overall performance by taking into account speed and coordination. Moreover, it reduces the number of animals needed to achieve a statistical power of 80%. This aspect is particularly crucial when studying aged rodents. Our approach can be used to monitor and assess the effectiveness of stroke therapies in experimental models using aged animals.
Collapse
Affiliation(s)
- Leonard Radu Pinosanu
- Department of Pharmacology, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| | - Ianis Kevyn Stefan Boboc
- Chair of Vascular Neurology, Dementia and Ageing, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
- Department of Pharmacology, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| | - Tudor Adrian Balseanu
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| | - Andrei Gresita
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY, 115680-8000, USA
| | - Dirk M Hermann
- Chair of Vascular Neurology, Dementia and Ageing, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| | - Aurel Popa-Wagner
- Chair of Vascular Neurology, Dementia and Ageing, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany.
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Bogdan Catalin
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY, 115680-8000, USA
| |
Collapse
|
8
|
Cheng L, Zhao Y, Ke H. Comprehensive analysis of lncRNA-miRNA-mRNA ceRNA network in ischemic stroke. Heliyon 2024; 10:e29651. [PMID: 38698974 PMCID: PMC11064068 DOI: 10.1016/j.heliyon.2024.e29651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 05/05/2024] Open
Abstract
Objective Competitive endogenous RNA (ceRNA) networks have uncovered a novel mode of RNA interaction, and are implicated in various biological processes and the pathogenesis of IS. This study aimed to explore the potential mechanisms underlying the ceRNA network in IS. Methods Four public datasets containing lncRNA and mRNA (GSE22255 and GSE16561) and miRNA (GSE55937 and GSE43618) expression profiles from the GEO database were systematically analyzed to explore the role of RNAs in ischemic stroke (IS). Differentially expressed mRNAs (DEmRNAs), lncRNAs (DElncRNAs), and miRNAs (DEmiRNAs) between IS and normal control samples were identified. LncRNA-miRNA and miRNA-mRNA interactions were predicted, and the competing endogenous RNA (ceRNA) regulatory network was constructed using the Cytoscape software. The correlation between the RNAs in the ceRNA network and the clinical features of the samples was evaluated. Finally, principal component analysis was performed on the RNAs that constitute the ceRNA regulatory network, and their differential expression and principal component relationships among different types of samples were observed. Results A total of 224 DEmRNAs, 7 DEmiRNAs, and four DElncRNAs related to IS in four datasets were identified. Then, through target gene prediction, a lncRNA-miRNA-mRNA ceRNA network that contained 3 DElncRNAs, 2 DEmiRNAs, and 24 DEmRNAs was constructed. Correlations of the clinical characteristics showed that PART1 and SERPINH1 were related to clinical diseases, WNK1 was related to lifestyle, and seven RNAs were related to age. PCA results indicate that three principal components of PC1, PC2, and PC3 can clearly distinguish between control and IS samples. Conclusion Overall, we constructed a ceRNA network in IS, which could offer insights into the molecular mechanism and potential prognostic biomarkers for further research.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Emergency, Shandong Provincial Third Hospital, Jinan, Shandong, 250031, China
| | - Yun Zhao
- Department of Emergency, Shandong Provincial Third Hospital, Jinan, Shandong, 250031, China
| | - Hong Ke
- Department of Neurology, The Fourth People's Hospital of Jinan, Jinan, Shandong, 250031, China
| |
Collapse
|
9
|
Jin F, Jin L, Wei B, Li X, Li R, Liu W, Guo S, Fan H, Duan C. miR-96-5p alleviates cerebral ischemia-reperfusion injury in mice by inhibiting pyroptosis via downregulating caspase 1. Exp Neurol 2024; 374:114676. [PMID: 38190934 DOI: 10.1016/j.expneurol.2024.114676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/12/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
Ischemic stroke is one of the leading causes of global mortality and disability. Nevertheless, successful treatment remains limited. In this study, we investigated the efficacy and the mechanism of miR-96-5p in protecting acute ischemic brain injury in adult mice. Focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in adult male C57BL/6 mice. MiR-96-5p or the negative control was administered via intracerebroventricular injection. The expression of pyroptosis-related genes and activation of various resident cells in the brain was assessed by RT-qPCR, western blot, immunohistochemistry, and immunofluorescence. Modified neurological severity score, rotarod test, cylinder test, brain water content, and cerebral infarction volume were used to evaluate the behavioral deficits and the severity of brain injury after MCAO. Flow cytometry, TUNEL staining, and Nissl staining were employed to assess the neuron damage. MiR-96-5p decreased markedly in the ischemic stroke model in vivo and in vitro. MiR-96-5p mimics suppressed the expression of caspase 1 and alleviated the apoptosis rate in OGD/R treatment N2a cells, however, the miR-96-5p inhibitor caused the opposite results. Intracerebroventricular delivery of miR-96-5p agomir significantly mitigated behavioral deficits, brain water content, and cerebral infarction volume after MCAO. In addition, treatment with miR-96-5p agomir downregulated the expression of caspase 1/cleaved caspase 1 and Gsdmd/Gsdmd-N, while alleviating the neuron damage. In summary, overexpression of miR-96-5p suppresses pyroptosis and reduces brain damage in the acute phase of ischemic stroke, providing new insight into the treatment of acute ischemic stroke.
Collapse
Affiliation(s)
- Fa Jin
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Lei Jin
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Boyang Wei
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xifeng Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Ran Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Wenchao Liu
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Shenquan Guo
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Haiyan Fan
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Chuanzhi Duan
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
10
|
Farahmand Y, Nabiuni M, Vafaei Mastanabad M, Sheibani M, Mahmood BS, Obayes AM, Asadi F, Davallou R. The exo-microRNA (miRNA) signaling pathways in pathogenesis and treatment of stroke diseases: Emphasize on mesenchymal stem cells (MSCs). Cell Biochem Funct 2024; 42:e3917. [PMID: 38379232 DOI: 10.1002/cbf.3917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/07/2023] [Accepted: 12/17/2023] [Indexed: 02/22/2024]
Abstract
A major factor in long-term impairment is stroke. Patients with persistent stroke and severe functional disabilities have few therapy choices. Long noncoding RNAs (lncRNAs) may contribute to the regulation of the pathophysiologic processes of ischemic stroke as shown by altered expression of lncRNAs and microRNA (miRNAs) in blood samples of acute ischemic stroke patients. On the other hand, multipotent mesenchymal stem cells (MSCs) increase neurogenesis, and angiogenesis, dampen neuroinflammation, and boost brain plasticity to improve functional recovery in experimental stroke models. MSCs can be procured from various sources such as the bone marrow, adipose tissue, and peripheral blood. Under the proper circumstances, MSCs can differentiate into a variety of mature cells, including neurons, astrocytes, and oligodendrocytes. Accordingly, the capability of MSCs to exert neuroprotection and also neurogenesis has recently attracted more attention. Nowadays, lncRNAs and miRNAs derived from MSCs have opened new avenues to alleviate stroke symptoms. Accordingly, in this review article, we examined various studies concerning the lncRNAs and miRNAs' role in stroke pathogenesis and delivered an overview of the therapeutic role of MSC-derived miRNAs and lncRNAs in stroke conditions.
Collapse
Affiliation(s)
- Yalda Farahmand
- School of Medicine, Terhan University of Medical Sciences, Tehran, Iran
| | - Mohsen Nabiuni
- Neurosurgery Department, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Vafaei Mastanabad
- Neurosurgery Department, Faculty of Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Mehrnaz Sheibani
- Division of Pediatric Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Ali Mohammed Obayes
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Fatemeh Asadi
- Department of Genetics, Fars Science and Research Branch, Islamic Azad University, Marvdasht, Iran
- Department of Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Rosa Davallou
- Department of Neurology, Sayyad Shirazi Hospital, Golestan University of Medical Siences, Gorgan, Iran
| |
Collapse
|
11
|
Gareev I, Beylerli O, Zhao B. MiRNAs as potential therapeutic targets and biomarkers for non-traumatic intracerebral hemorrhage. Biomark Res 2024; 12:17. [PMID: 38308370 PMCID: PMC10835919 DOI: 10.1186/s40364-024-00568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/20/2024] [Indexed: 02/04/2024] Open
Abstract
Non-traumatic intracerebral hemorrhage (ICH) is the most common type of hemorrhagic stroke, most often occurring between the ages of 45 and 60. Hypertension is most often the cause of ICH. Less often, atherosclerosis, blood diseases, inflammatory changes in cerebral vessels, intoxication, vitamin deficiencies, and other reasons cause hemorrhages. Cerebral hemorrhage can occur by diapedesis or as a result of a ruptured vessel. This very dangerous disease is difficult to treat, requires surgery and can lead to disability or death. MicroRNAs (miRNAs) are a class of non-coding RNAs (about 18-22 nucleotides) that are involved in a variety of biological processes including cell differentiation, proliferation, apoptosis, etc., through gene repression. A growing number of studies have demonstrated miRNAs deregulation in various cardiovascular diseases, including ICH. In addition, given that computed tomography (CT) and/or magnetic resonance imaging (MRI) are either not available or do not show clear signs of possible vessel rupture, accurate and reliable analysis of circulating miRNAs in biological fluids can help in early diagnosis for prevention of ICH and prognosis patient outcome after hemorrhage. In this review, we highlight the up-to-date findings on the deregulated miRNAs in ICH, and the potential use of miRNAs in clinical settings, such as therapeutic targets and non-invasive diagnostic/prognostic biomarker tools.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Bashkir State Medical University, Ufa, 450008, Russia
| | - Ozal Beylerli
- Bashkir State Medical University, Ufa, 450008, Russia
| | - Boxian Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, China.
- Harbin Medical University No, 157, Baojian Road, Nangang District, Harbin, 150001, China.
| |
Collapse
|
12
|
Pluta R. A Look at the Etiology of Alzheimer's Disease based on the Brain Ischemia Model. Curr Alzheimer Res 2024; 21:166-182. [PMID: 38963100 DOI: 10.2174/0115672050320921240627050736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/18/2024] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
Alzheimer's disease (AD) is the frequent form of dementia in the world. Despite over 100 years of research into the causes of AD, including amyloid and tau protein, the research has stalled and has not led to any conclusions. Moreover, numerous projects aimed at finding a cure for AD have also failed to achieve a breakthrough. Thus, the failure of anti-amyloid and anti-tau protein therapy to treat AD significantly influenced the way we began to think about the etiology of the disease. This situation prompted a group of researchers to focus on ischemic brain episodes, which, like AD, mostly present alterations in the hippocampus. In this context, it has been proposed that cerebral ischemic incidents may play a major role in promoting amyloid and tau protein in neurodegeneration in AD. In this review, we summarized the experimental and clinical research conducted over several years on the role of ischemic brain episodes in the development of AD. Studies have shown changes typical of AD in the course of brain neurodegeneration post-ischemia, i.e., progressive brain and hippocampal atrophy, increased amyloid production, and modification of tau protein. In the post-ischemic brain, the diffuse and senile amyloid plaques and the development of neurofibrillary tangles characteristic of AD were revealed. The above data evidently showed that after brain ischemia, there are modifications in protein folding, leading to massive neuronal death and damage to the neuronal network, which triggers dementia with the AD phenotype.
Collapse
Affiliation(s)
- Ryszard Pluta
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|
13
|
Jin H, Jiang W, Zheng X, Li L, Fang Y, Yang Y, Hu X, Chu L. MiR-199a-5p enhances neuronal differentiation of neural stem cells and promotes neurogenesis by targeting Cav-1 after cerebral ischemia. CNS Neurosci Ther 2023; 29:3967-3979. [PMID: 37349971 PMCID: PMC10651989 DOI: 10.1111/cns.14323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/19/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
AIMS MicroRNAs (miRs) are involved in endogenous neurogenesis, enhancing of which has been regarded as a potential therapeutic strategy for ischemic stroke treatment; however, whether miR-199a-5p mediates postischemic neurogenesis remains unclear. This study aims to investigate the proneurogenesis effects of miR-199a-5p and its possible mechanism after ischemic stroke. METHODS Neural stem cells (NSCs) were transfected using Lipofectamine 3000 reagent, and the differentiation of NSCs was evaluated by immunofluorescence and Western blotting. Dual-luciferase reporter assay was performed to verify the target gene of miR-199a-5p. MiR-199a-5p agomir/antagomir were injected intracerebroventricularly. The sensorimotor functions were evaluated by neurobehavioral tests, infarct volume was measured by toluidine blue staining, neurogenesis was detected by immunofluorescence assay, and the protein levels of neuronal nuclei (NeuN), glial fibrillary acidic protein (GFAP), caveolin-1 (Cav-1), vascular endothelial growth factor (VEGF), and brain-derived neurotrophic factor (BDNF) were measured by Western blotting. RESULTS MiR-199a-5p mimic enhanced neuronal differentiation and inhibited astrocyte differentiation of NSCs, while a miR-199a-5p inhibitor induced the opposite effects, which can be reversed by Cav-1 siRNA. Cav-1 was through the dual-luciferase reporter assay confirmed as a target gene of miR-199a-5p. miR-199a-5p agomir in rat stroke models manifested multiple benefits, such as improving neurological deficits, reducing infarct volume, promoting neurogenesis, inhibiting Cav-1, and increasing VEGF and BDNF, which was reversed by the miR-199a-5p antagomir. CONCLUSION MiR-199a-5p may target and inhibit Cav-1 to enhance neurogenesis and thus promote functional recovery after cerebral ischemia. These findings indicate that miR-199a-5p is a promising target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Hua‐Qian Jin
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| | - Wei‐Feng Jiang
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| | - Xin‐Tian Zheng
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| | - Lin Li
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| | - Yan Fang
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| | - Yan Yang
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| | - Xiao‐Wei Hu
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| | - Li‐Sheng Chu
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
14
|
Ramakrishnan K, Babu S, Shaji V, Soman S, Leelamma A, Rehman N, Raju R. Hepatitis B Virus Modulated Transcriptional Regulatory Map of Hepatic Cellular MicroRNAs. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:581-597. [PMID: 38064540 DOI: 10.1089/omi.2023.0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Hepatitis B virus (HBV) is an enveloped, hepatotropic, noncytopathic virus with a partially double-stranded DNA genome. It infects hepatocytes and is associated with progression to liver fibrosis and cirrhosis, culminating in hepatocellular carcinoma (HCC), accounting for 55% of total HCC cases. MicroRNAs (miRNAs) regulated by HBV play an important role in these pathologies. Mapping the miRNAs responsive to HBV and HBV-specific proteins, including HBV X protein (HBx) that harbor the majority of HBV-human protein interactions, could aid accelerate the diagnostics and therapeutics innovation against the infection and associated diseases. With this in mind, we used a unique annotation strategy whereby we first amassed 362 mature HBV responsive-human Differentially Expressed miRNAs (HBV-hDEmiRs). The core experimentally-validated messenger RNA targets of the HBV-hDEmiRs were mostly associated with viral infections and hepatic inflammation processes. Moreover, our annotation strategy enabled the characterization of HBx-dependent/independent HBV-hDEmiRs as a tool for evaluation of the impact of HBx as a therapeutic target. Bioinformatics analysis of the HBV-human protein-protein interactome revealed new insights into the transcriptional regulatory network of the HBV-hDEmiRs. We performed a comparative analysis of data on miRNAs gathered from HBV infected cell line studies and from tissue studies of fibrosis, cirrhosis, and HCC. Accordingly, we propose hsa-miR-15a-5p that is downregulated by multiple HBV proteins, including HBx, as a potential biomarker of HBV infection, and its progression to HCC. In all, this study underscores (1) the complexity of miRNA regulation in response to HBV infection and its progression into other liver pathologies and (2) provides a regulatory map of HBV-hDEmiRs and the underlying mechanisms modulating their expression through a cross talk between HBV viral proteins and human transcription factors.
Collapse
Affiliation(s)
| | - Sreeranjini Babu
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka, India
| | - Vineetha Shaji
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka, India
| | - Sowmya Soman
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
| | - Anila Leelamma
- Department of Biochemistry, NSS College, Nilamel, Kollam, Kerala, India
| | - Niyas Rehman
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka, India
| |
Collapse
|
15
|
Pluta R. The Dual Role of Autophagy in Postischemic Brain Neurodegeneration of Alzheimer's Disease Proteinopathy. Int J Mol Sci 2023; 24:13793. [PMID: 37762096 PMCID: PMC10530906 DOI: 10.3390/ijms241813793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Autophagy is a self-defense and self-degrading intracellular system involved in the recycling and elimination of the payload of cytoplasmic redundant components, aggregated or misfolded proteins and intracellular pathogens to maintain cell homeostasis and physiological function. Autophagy is activated in response to metabolic stress or starvation to maintain homeostasis in cells by updating organelles and dysfunctional proteins. In neurodegenerative diseases, such as cerebral ischemia, autophagy is disturbed, e.g., as a result of the pathological accumulation of proteins associated with Alzheimer's disease and their structural changes. Postischemic brain neurodegeneration, such as Alzheimer's disease, is characterized by the accumulation of amyloid and tau protein. After cerebral ischemia, autophagy was found to be activated in neuronal, glial and vascular cells. Some studies have shown the protective properties of autophagy in postischemic brain, while other studies have shown completely opposite properties. Thus, autophagy is now presented as a double-edged sword with possible therapeutic potential in brain ischemia. The exact role and regulatory pathways of autophagy that are involved in cerebral ischemia have not been conclusively elucidated. This review aims to provide a comprehensive look at the advances in the study of autophagy behavior in neuronal, glial and vascular cells for ischemic brain injury. In addition, the importance of autophagy in neurodegeneration after cerebral ischemia has been highlighted. The review also presents the possibility of modulating the autophagy machinery through various compounds on the development of neurodegeneration after cerebral ischemia.
Collapse
Affiliation(s)
- Ryszard Pluta
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|
16
|
Pluta R, Miziak B, Czuczwar SJ. Apitherapy in Post-Ischemic Brain Neurodegeneration of Alzheimer's Disease Proteinopathy: Focus on Honey and Its Flavonoids and Phenolic Acids. Molecules 2023; 28:5624. [PMID: 37570596 PMCID: PMC10420307 DOI: 10.3390/molecules28155624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Neurodegeneration of the brain after ischemia is a major cause of severe, long-term disability, dementia, and mortality, which is a global problem. These phenomena are attributed to excitotoxicity, changes in the blood-brain barrier, neuroinflammation, oxidative stress, vasoconstriction, cerebral amyloid angiopathy, amyloid plaques, neurofibrillary tangles, and ultimately neuronal death. In addition, genetic factors such as post-ischemic changes in genetic programming in the expression of amyloid protein precursor, β-secretase, presenilin-1 and -2, and tau protein play an important role in the irreversible progression of post-ischemic neurodegeneration. Since current treatment is aimed at preventing symptoms such as dementia and disability, the search for causative therapy that would be helpful in preventing and treating post-ischemic neurodegeneration of Alzheimer's disease proteinopathy is ongoing. Numerous studies have shown that the high contents of flavonoids and phenolic acids in honey have antioxidant, anti-inflammatory, anti-apoptotic, anti-amyloid, anti-tau protein, anticholinesterase, serotonergic, and AMPAK activities, influencing signal transmission and neuroprotective effects. Notably, in many preclinical studies, flavonoids and phenolic acids, the main components of honey, were also effective when administered after ischemia, suggesting their possible use in promoting recovery in stroke patients. This review provides new insight into honey's potential to prevent brain ischemia as well as to ameliorate damage in advanced post-ischemic brain neurodegeneration.
Collapse
Affiliation(s)
- Ryszard Pluta
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland; (B.M.); (S.J.C.)
| | | | | |
Collapse
|
17
|
Kui L, Li Z, Wang G, Li X, Zhao F, Jiao Y. CircPDS5B Reduction Improves Angiogenesis Following Ischemic Stroke by Regulating MicroRNA-223-3p/NOTCH2 Axis. Neurol Genet 2023; 9:e200074. [PMID: 37152444 PMCID: PMC10162703 DOI: 10.1212/nxg.0000000000200074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/06/2023] [Indexed: 05/09/2023]
Abstract
Background and Objectives Ischemic stroke (IS) is responsible for major causes of global death and disability, for which promoting angiogenesis is a promising therapeutic strategy. This study analyzed circular RNA PDS5B (circPDS5B) and its related mechanisms in angiogenesis in IS. Methods In the permanent middle cerebral artery occlusion (pMCAO) mouse model, circPDS5B, microRNA (miR)-223-3p, and NOTCH2 levels were checked. By testing neurologic function, neuronal apoptosis, and expression of angiogenesis-related proteins in pMCAO mice, the protective effects of circPDS5B knockdown were probed. In human brain microvascular endothelial cells (HBMECs) under oxygen-glucose deprivation (OGD) conditions, the effects of circPDS5B, miR-223-3p, and NOTCH2 on angiogenesis were studied by measuring cellular activities. Results The increase of circPDS5B and NOTCH2 expression and the decrease of miR-223-3p expression were examined in pMCAO mice. Reducing circPDS5B expression indicated protection against neurologic dysfunction, apoptosis, and angiogenesis impairment. For circPDS5B-depleted or miR-223-3p-restored HBMECs under OGD treatment, angiogenesis was promoted. MiR-223-3p inhibition-associated reduction of angiogenesis could be counteracted by knocking down NOTCH2. CircPDS5B depletion-induced angiogenesis in OGD-conditioned HBMECs was repressed after overexpressing NOTCH2. Discussion In IS, the expression of circPDS5B was upregulated, and miR-223-3p inhibited HBMECs activity and promoted NOTCH2 expression, thus promoting IS. CircPDS5B reduction improves angiogenesis following ischemic stroke by regulating microRNA-223-3p/NOTCH2 axis.
Collapse
Affiliation(s)
- Ling Kui
- Dehong People's Hospital (Z.L., F.Z.), Mangshi; Shenzhen Qianhai Shekou Free Trade Zone Hospital (L.K., G.W., Y.J.), Shenzhen; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and State Key Laboratory of Biological Big Data in Yunnan Province (X.L.), Yunnan Agricultural University, Kunming, China
| | - Zongyu Li
- Dehong People's Hospital (Z.L., F.Z.), Mangshi; Shenzhen Qianhai Shekou Free Trade Zone Hospital (L.K., G.W., Y.J.), Shenzhen; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and State Key Laboratory of Biological Big Data in Yunnan Province (X.L.), Yunnan Agricultural University, Kunming, China
| | - Guoyun Wang
- Dehong People's Hospital (Z.L., F.Z.), Mangshi; Shenzhen Qianhai Shekou Free Trade Zone Hospital (L.K., G.W., Y.J.), Shenzhen; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and State Key Laboratory of Biological Big Data in Yunnan Province (X.L.), Yunnan Agricultural University, Kunming, China
| | - Xuzhen Li
- Dehong People's Hospital (Z.L., F.Z.), Mangshi; Shenzhen Qianhai Shekou Free Trade Zone Hospital (L.K., G.W., Y.J.), Shenzhen; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and State Key Laboratory of Biological Big Data in Yunnan Province (X.L.), Yunnan Agricultural University, Kunming, China
| | - Feng Zhao
- Dehong People's Hospital (Z.L., F.Z.), Mangshi; Shenzhen Qianhai Shekou Free Trade Zone Hospital (L.K., G.W., Y.J.), Shenzhen; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and State Key Laboratory of Biological Big Data in Yunnan Province (X.L.), Yunnan Agricultural University, Kunming, China
| | - Yinming Jiao
- Dehong People's Hospital (Z.L., F.Z.), Mangshi; Shenzhen Qianhai Shekou Free Trade Zone Hospital (L.K., G.W., Y.J.), Shenzhen; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and State Key Laboratory of Biological Big Data in Yunnan Province (X.L.), Yunnan Agricultural University, Kunming, China
| |
Collapse
|
18
|
Exosomal miRNA-155 and miRNA-146a are promising prognostic biomarkers of the severity of hemorrhagic fever with renal syndrome. Noncoding RNA Res 2023; 8:75-82. [DOI: 10.1016/j.ncrna.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/14/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
|
19
|
Lu W, Wen J. H 2S-mediated inhibition of RhoA/ROCK pathway and noncoding RNAs in ischemic stroke. Metab Brain Dis 2023; 38:163-176. [PMID: 36469178 DOI: 10.1007/s11011-022-01130-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/22/2022] [Indexed: 12/11/2022]
Abstract
Ischemic stroke is one of major causes of disability. In the pathological process of ischemic stroke, the up-regulation of Ras homolog gene family, member A (RhoA) and its downstream effector, Ras homolog gene family (Rho)-associated coiled coil-containing kinase (ROCK), contribute to the neuroinflammation, blood-brain barrier (BBB) dysfunction, neuronal apoptosis, axon growth inhibition and astrogliosis. Accumulating evidences have revealed that hydrogen sulphide (H2S) could reduce brain injury in animal model of ischemic stroke via inhibiting the RhoA/ROCK pathway. Recently, noncoding RNAs (ncRNAs) such as circular RNAs (circRNAs), long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) have attracted much attention because of their essential role in adjusting gene expression both in physiological and pathological conditions. Numerous studies have uncovered the role of RhoA/ROCK pathway and ncRNAs in ischemic stroke. In this review, we focused on the role of H2S, RhoA/ROCK pathway and ncRNAs in ischemic stroke and aimed to reveal new strategies for preventing and treating this devastating disease.
Collapse
Affiliation(s)
- Weizhuo Lu
- Medical Branch, Hefei Technology College, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
20
|
Liu N, Fan Y, Li Y, Zhang Y, Li J, Wang Y, Wang Z, Liu Y, Li Y, Kang Z, Peng Y, Ru Z, Yang M, Feng C, Wang Y, Yang X. OL-FS13 Alleviates Cerebral Ischemia-reperfusion Injury by Inhibiting miR-21-3p Expression. Curr Neuropharmacol 2023; 21:2550-2562. [PMID: 37132110 PMCID: PMC10616927 DOI: 10.2174/1570159x21666230502111013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/14/2022] [Accepted: 12/12/2022] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND OL-FS13, a neuroprotective peptide derived from Odorrana livida, can alleviate cerebral ischemia-reperfusion (CI/R) injury, although the specific underlying mechanism remains to be further explored. OBJECTIVE The effect of miR-21-3p on the neural-protective effects of OL-FS13 was examined. METHODS In this study, the multiple genome sequencing analysis, double luciferase experiment, RT-qPCR, and Western blotting were used to explore the mechanism of OL-FS13. RESULTS Showed that over-expression of miR-21-3p against the protective effects of OL-FS13 on oxygen- glucose deprivation/re-oxygenation (OGD/R)-damaged pheochromocytoma (PC12) cells and in CI/R-injured rats. miR-21-3p was then found to target calcium/calmodulin-dependent protein kinase 2 (CAMKK2), and its overexpression inhibited the expression of CAMKK2 and phosphorylation of its downstream adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), thereby inhibiting the therapeutic effects of OL-FS13 on OGD/R and CI/R. Inhibition of CAMKK2 also antagonized up-regulated of nuclear factor erythroid 2-related factor 2 (Nrf-2) by OL-FS13, thereby abolishing the antioxidant activity of the peptide. CONCLUSION Our results showed that OL-FS13 alleviated OGD/R and CI/R by inhibiting miR-21-3p to activate the CAMKK2/AMPK/Nrf-2 axis.
Collapse
Affiliation(s)
- Naixin Liu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yan Fan
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yilin Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yingxuan Zhang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Jiayi Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yinglei Wang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Zhuo Wang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yixiang Liu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, School of Ethnic Medicine, Yunnan Minzu University, State Ethnic Affairs Commission & Ministry of Education, Kunming, Yunnan, 650504, China
| | - Yuansheng Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Zijian Kang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Ying Peng
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Zeqiong Ru
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Meifeng Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Chengan Feng
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, School of Ethnic Medicine, Yunnan Minzu University, State Ethnic Affairs Commission & Ministry of Education, Kunming, Yunnan, 650504, China
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| |
Collapse
|
21
|
Li X, Wang Y, Zhou X, Wang H, Xu J. Electroacupuncture Pretreatment Alleviates Cerebral Ischemia-reperfusion Injury by Down-regulating Mir-155-5p. Curr Neurovasc Res 2023; 20:480-492. [PMID: 37642006 DOI: 10.2174/1567202620666230828092916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Increasing evidence shows that electroacupuncture pretreatment (EP) plays a crucial role in cerebral ischemia-reperfusion (I/R) injury, and cerebral I/R injury is the most serious complication of ischemic stroke treatment. The role of miR-155-5p in cerebral I/R injury has been studied, but the regulation of EP on miR-155-5p has not been reported. METHODS The middle cerebral artery occlusion (MCAO) mice were used to investigate the role of EP in cerebral I/R injury. Longa and modified neurological severity scores (mNSS) were used to evaluate neurological impairment. HE staining and TUNEL staining were used to evaluate brain injury. The expressions of miR-155-5p, Yin Yang 1 (YY1) and p53 were detected by qRT-PCR. The expressions of related proteins were detected by western blot. The binding of YY1 to miR- 155-5p was verified by dual-luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay. Mice brain microvascular endothelial cells (BMECs) were isolated and cultured for in vitro experiments. Oxygen-glucose deprivation/reoxygenation (OGD/R) was used to verify the role of YY1, p53 and miR-155-5p in cerebral I/R injury in vitro. RESULTS MCAO modeling induced brain injury, apoptosis, and increased levels of miR-155-5p, YY1, and p53. EP markedly alleviated brain injury and reduced levels of miR-155-5p, p53, and YY1. miR-155 agomir markedly increased the expression of miR-155-5p and p53. miR-155 antagomir decreased the levels of miR-155-5p and p53. Dual-luciferase reporter and ChIP assay verified that YY1 regulated miR-155-5p expression. YY1 shNRA greatly decreased miR-155-5p and p53. Inhibition of p53 decreased miR-155-5p expression. Both miR-155-5p inhibitor and YY1 shRNA promoted proliferation, inhibited apoptosis, and decreased levels of ICAM-1 and Eselectin of OGD/R-treated BMECs. Inhibition of p53 strengthened the effect of miR-155-5p inhibitor and YY1 shNRA on BMECs. CONCLUSION Electroacupuncture pretreatment alleviates cerebral ischemia-reperfusion injury by regulating the YY1/p53/miR-155-5p axis.
Collapse
Affiliation(s)
- Xuejing Li
- Department of Rehabilitation Medicine, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, China
| | - Ying Wang
- Department of Rehabilitation Medicine, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, China
| | - Xiang Zhou
- Department of Rehabilitation Medicine, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, China
| | - Hui Wang
- Department of Rehabilitation Medicine, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, China
| | - Jiang Xu
- Department of Rehabilitation Medicine, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, China
| |
Collapse
|
22
|
Toor SM, Aldous EK, Parray A, Akhtar N, Al-Sarraj Y, Abdelalim EM, Arredouani A, El-Agnaf O, Thornalley PJ, Pananchikkal SV, Pir GJ, Kuni RAT, Shuaib A, Alajez NM, Albagha OME. Identification of distinct circulating microRNAs in acute ischemic stroke patients with type 2 diabetes mellitus. Front Cardiovasc Med 2022; 9:1024790. [PMID: 36277770 PMCID: PMC9582656 DOI: 10.3389/fcvm.2022.1024790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022] Open
Abstract
Stroke is the second leading cause of global mortality and continued efforts aim to identify predictive, diagnostic, or prognostic biomarkers to reduce the disease burden. Circulating microRNAs (miRNAs) have emerged as potential biomarkers in stroke. We performed comprehensive circulating miRNA profiling of ischemic stroke patients with or without type 2 diabetes mellitus (T2DM), an important risk factor associated with worse clinical outcomes in stroke. Serum samples were collected within 24 h of acute stroke diagnosis and circulating miRNAs profiled using RNA-Seq were compared between stroke patients with T2DM (SWDM; n = 92) and those without T2DM (SWoDM; n = 98). Our analysis workflow involved random allocation of study cohorts into discovery (n = 96) and validation (n = 94) datasets. Five miRNAs were found to be differentially regulated in SWDM compared to SWoDM patients. Hsa-miR-361-3p and -664a-5p were downregulated, whereas miR-423-3p, -140-5p, and -17-3p were upregulated. We also explored the gene targets of these miRNAs and investigated the downstream pathways associated with them to decipher the potential pathways impacted in stroke with diabetes as comorbidity. Overall, our novel findings provide important insights into the differentially regulated miRNAs, their associated pathways and potential utilization for clinical benefits in ischemic stroke patients with diabetes.
Collapse
Affiliation(s)
- Salman M. Toor
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Eman K. Aldous
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Aijaz Parray
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Naveed Akhtar
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Yasser Al-Sarraj
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation (QF), Doha, Qatar
| | - Essam M. Abdelalim
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Abdelilah Arredouani
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Omar El-Agnaf
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Paul J. Thornalley
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Sajitha V. Pananchikkal
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Ghulam Jeelani Pir
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation (HMC), Doha, Qatar
| | | | - Ashfaq Shuaib
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Department of Neurology, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Nehad M. Alajez
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Omar M. E. Albagha
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Rheumatology and Bone Disease Unit, Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
23
|
Fioravanti A, Giordano A, Dotta F, Pirtoli L. Crosstalk between MicroRNA and Oxidative Stress in Physiology and Pathology 2.0. Int J Mol Sci 2022; 23:ijms23126831. [PMID: 35743274 PMCID: PMC9223739 DOI: 10.3390/ijms23126831] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023] Open
Affiliation(s)
- Antonella Fioravanti
- Rheumatology Unit, Department of Medicine, Surgery and Neuroscience, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, 53100 Siena, Italy
- Correspondence: ; Tel.: +39-0577233345
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (A.G.); (L.P.)
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, 53100 Siena, Italy;
| | - Luigi Pirtoli
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (A.G.); (L.P.)
| |
Collapse
|
24
|
Deng Y, Huang P, Zhang F, Chen T. Association of MicroRNAs With Risk of Stroke: A Meta-Analysis. Front Neurol 2022; 13:865265. [PMID: 35665049 PMCID: PMC9160310 DOI: 10.3389/fneur.2022.865265] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives Altered expression of microRNAs (miRNAs) may contribute to disease vulnerability. Studies have reported the involvement of miRNA in the pathophysiology of ischemic stroke. Methods We performed a meta-analysis of data from 6 studies that used a panel of miRNAs with altered expressions to diagnose ischemic stroke with the Bayesian framework. The I2 test and Cochran's Q-statistic were used to assess heterogeneity. Funnel plots were generated and publication bias was assessed using Begg and Egger tests. Results On summary receiver operating characteristics (SROC) curve analysis, the pooled sensitivity and specificity of altered miRNA expressions for diagnosis of ischemic stroke was 0.92 (95% confidence interval [CI] 0.80–0.97) and 0.83 (95% CI 0.71–0.90), respectively; the diagnostic odds ratio was 54.35 (95% CI 20.39–144.92), and the area under the SROC curve was 0.93 (95% CI 0.90–0.95). Conclusions Our results showed a link between dysregulation of miRNAs and the occurrence of ischemic stroke. Abnormal miRNA expression may be a potential biomarker for ischemic stroke.
Collapse
|
25
|
Barrera-Vázquez OS, Gomez-Verjan JC, Ramírez-Aldana R, Torre PGD, Rivero-Segura NA. Structural and Pharmacological Network Analysis of miRNAs Involved in Acute Ischemic Stroke: A Systematic Review. Int J Mol Sci 2022; 23:ijms23094663. [PMID: 35563054 PMCID: PMC9105699 DOI: 10.3390/ijms23094663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/09/2022] [Accepted: 04/10/2022] [Indexed: 02/05/2023] Open
Abstract
Acute ischemic stroke (AIS) is among the main causes of mortality worldwide. A rapid and opportune diagnosis is crucial to improve a patient’s outcomes; despite the current advanced image technologies for diagnosis, their implementation is challenging. MicroRNAs have been recognized as useful as biomarkers since they are specific and stable for characterization of AIS. However, there is still a lack of consensus over the primary miRNAs implicated in AIS. Here, we performed a systematic review of the literature covering from 2015–2021 regarding miRNAs expression during AIS and built structural networks to analyze and identify the most common miRNAs expressed during AIS and shared pathways, genes, and compounds that seem to influence their expression. We identified two sets of miRNAs: on one side, a set that was independent of geographical location and tissue (miR-124, miR-107, miR-221, miR-223, miR-140, miR-151a, miR-181a, miR-320b, and miR-484); and on the other side, a set that was connected (hubs) in biological networks (miR-27b-3p, miR-26b-5p, miR-124-3p, miR-570-3p, miR-19a-3p, miR-101-3p and miR-25-3p), which altered FOXO3, FOXO4, and EP300 genes. Interestingly, such genes are involved in cell death, FOXO-mediated transcription, and brain-derived neurotrophic factor signaling pathways. Finally, our pharmacological network analysis depicted a set of toxicants and drugs related to AIS for the first time.
Collapse
Affiliation(s)
| | - Juan Carlos Gomez-Verjan
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City 10200, Mexico; (J.C.G.-V.); (R.R.-A.)
| | - Ricardo Ramírez-Aldana
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City 10200, Mexico; (J.C.G.-V.); (R.R.-A.)
| | - Paola García-dela Torre
- Unidad de Investigación Médica en Enfermedades Neurológicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - Nadia Alejandra Rivero-Segura
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City 10200, Mexico; (J.C.G.-V.); (R.R.-A.)
- Correspondence: ; Tel.: +52-55-5573-9087
| |
Collapse
|
26
|
Yao Y, Hu S, Zhang C, Zhou Q, Wang H, Yang Y, Liu C, Ding H. Ginsenoside Rd attenuates cerebral ischemia/reperfusion injury by exerting an anti-pyroptotic effect via the miR-139-5p/FoxO1/Keap1/Nrf2 axis. Int Immunopharmacol 2022; 105:108582. [DOI: 10.1016/j.intimp.2022.108582] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 12/22/2022]
|
27
|
Xu SY, Zeng CL, Ni SM, Peng YJ. The Angiogenesis Effects Of Electro-acupuncture Treatment Via Exosomal miR-210 In Cerebral Ischemia-Reperfusion Rats. Curr Neurovasc Res 2022; 19:61-72. [PMID: 35319370 DOI: 10.2174/1567202619666220321115412] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Acupuncture has been recommended as an alternative and complementary therapy for preventing and treating cerebral ischemia by the World Health Organization (WHO) for years. However, the mechanisms remain unclear. Accumulating evidence has shown that acupuncture can promote angiogenesis to attenuate brain damage after ischemic stroke. In recent years, exosome-carried microRNAs(miRNAs) activated by acupuncture has proven effective in regulating pathological changes. We, therefore, investigated whether electro-acupuncture(EA) enhanced angiogenesis in cerebral stroke via exosome-carried miR-210. METHODS We extracted and identified the exosomes from the serum of MCAO with EA treatment and injected them in MCAO rats for further observation. Simultaneously, miR-120 siRNA and HIF-1α inhibitor were transfected. Then, we evaluated the volume of infarction, pathological changes, and expression levels of angiogenic related factors of each group of rats by TTC and HE staining, transmission electron microscope(TEM), western blot, and quantitative PCR(qPCR). RESULTS Compared with the MCAO group, EA-Exosome(EA-EXO) treatment significantly decreased the infarct volume and the pathological damage, but miR-210 siRNA or HIF-1α inhibitor reversed the protective outcomes induced by EA-EXO. Moreover, EA-EXO treatment upregulated miR-210, and increases CD34、HIF-1α、VEGF、Notch1 protein and mRNA expressions compared with the MCAO group. MiR-210 siRNA or HIF-1α inhibitor treatments both down-regulated those angiogenic related proteins and mRNAs. CONCLUSION EA treatment could active the HIF-1α/VEGF/Notch 1 signal pathway to facilitate angiogenesis after ischemic stroke via exosomal miR-210.
Collapse
Affiliation(s)
- Shu-Ying Xu
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Chun-Li Zeng
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Si-Ming Ni
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Yong-Jun Peng
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
28
|
Beeraka NM, Avila-Rodriguez MF, Aliev G. Recent Reports on Redox Stress-Induced Mitochondrial DNA Variations, Neuroglial Interactions, and NMDA Receptor System in Pathophysiology of Schizophrenia. Mol Neurobiol 2022; 59:2472-2496. [PMID: 35083660 DOI: 10.1007/s12035-021-02703-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/14/2021] [Indexed: 10/19/2022]
Abstract
Schizophrenia (SZ) is a chronic psychiatric disorder affecting several people worldwide. Mitochondrial DNA (mtDNA) variations could invoke changes in the OXPHOS system, calcium buffering, and ROS production, which have significant implications for glial cell survival during SZ. Oxidative stress has been implicated in glial cells-mediated pathogenesis of SZ; the brain comparatively more prone to oxidative damage through NMDAR. A confluence of scientific evidence points to mtDNA alterations, Nrf2 signaling, dynamic alterations in dorsolateral prefrontal cortex (DLPFC), and provocation of oxidative stress that enhance pathophysiology of SZ. Furthermore, the alterations in excitatory signaling related to NMDAR signaling were particularly reported for SZ pathophysiology. Current review reported the recent evidence for the role of mtDNA variations and oxidative stress in relation to pathophysiology of SZ, NMDAR hypofunction, and glutathione deficiency. NMDAR system is influenced by redox dysregulation in oxidative stress, inflammation, and antioxidant mediators. Several studies have demonstrated the relationship of these variables on severity of pathophysiology in SZ. An extensive literature search was conducted using Medline, PubMed, PsycINFO, CINAHL PLUS, BIOSIS Preview, Google scholar, and Cochrane databases. We summarize consistent evidence pointing out a plausible model that may elucidate the crosstalk between mtDNA alterations in glial cells and redox dysregulation during oxidative stress and the perturbation of NMDA neurotransmitter system during current therapeutic modalities for the SZ treatment. This review can be beneficial for the development of promising novel diagnostics, and therapeutic modalities by ascertaining the mtDNA variations, redox state, and efficacy of pharmacological agents to mitigate redox dysregulation and augment NMDAR function to treat cognitive and behavioral symptoms in SZ.
Collapse
Affiliation(s)
- Narasimha M Beeraka
- Department of Human Anatomy, I M Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia.
| | - Marco F Avila-Rodriguez
- Faculty of Health Sciences, Department of Clinical Sciences, Barrio Santa Helena, University of Tolima, 730006, Ibagué, Colombia
| | - Gjumrakch Aliev
- Department of Human Anatomy, I M Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia.,Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow Region, 142432, Russia.,Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418, Russia.,GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX, 78229, USA
| |
Collapse
|
29
|
MiR-10b-3p alleviates cerebral ischemia/reperfusion injury by targeting Krüppel-like factor 5 (KLF5). Pflugers Arch 2022; 474:343-353. [PMID: 34989875 DOI: 10.1007/s00424-021-02645-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 10/19/2022]
Abstract
Although miR-10b-3p has been identified to be involved in cerebral ischemia injury, its impact and specific mechanism in cerebral ischemia injury remain unclear. The effects of Mir-10b-3p were investigated by establishing rat and cell models of ischemia/reperfusion (I/R) injury. Oxygen-glucose deprivation/reperfusion (OGD/R) was performed on pheochromocytoma-12 (PC12) cells. MiR-10b-3p expression levels in brain tissues and PC12 cells were detected by qRT-PCR. The impacts of miR-10b-3p on neurological deficits, infarct volume, inflammatory factor expression, in vivo brain water content, cell viability, and cell apoptosis were assessed. The relationship between miR-10b-3p and KLF5 was determined by TargetScan and luciferase reporter assay. The rescue experiments were performed to confirm the role of this axis in cerebral ischemia injury. Mir-10b-3p levels in rat brain tissue and PC12 cells were significantly decreased after I/R injury. MiR-10b-3p overexpression obviously reduced neurological deficits, infarct volume, brain water content, inflammatory factors expression, and neuronal apoptosis in the brain of ischemia-stroked rats. Meanwhile, miR-10b-3p upregulation also inhibited cell viability and apoptosis of OGD/R-induced PC12 cells. Besides, KLF5 was identified as a target of miR-10b-3p, and rescue experiments revealed that KLF5 was involved in the regulation of miR-10b-3p in ischemic injury. Our results demonstrated that miR-10b-3p had the neuroprotective effects against ischemia injury by targeting KLF5 and provided a potential underlying target for ischemic stroke treatment.
Collapse
|
30
|
Tuttolomondo A, Pinto A. Key lncRNAs involved in ischemic strokes. Epigenomics 2021; 14:61-64. [PMID: 34775807 DOI: 10.2217/epi-2021-0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Antonino Tuttolomondo
- Internal Medicine and Stroke Care Ward, University Hospital Policlinico P. Giaccone, Palermo, Italy.,Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Antonio Pinto
- Internal Medicine and Stroke Care Ward, University Hospital Policlinico P. Giaccone, Palermo, Italy.,Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| |
Collapse
|
31
|
Kimura T, Horikoshi Y, Kuriyagawa C, Niiyama Y. Rho/ROCK Pathway and Noncoding RNAs: Implications in Ischemic Stroke and Spinal Cord Injury. Int J Mol Sci 2021; 22:ijms222111573. [PMID: 34769004 PMCID: PMC8584200 DOI: 10.3390/ijms222111573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 01/18/2023] Open
Abstract
Ischemic strokes (IS) and spinal cord injuries (SCI) are major causes of disability. RhoA is a small GTPase protein that activates a downstream effector, ROCK. The up-regulation of the RhoA/ROCK pathway contributes to neuronal apoptosis, neuroinflammation, blood-brain barrier dysfunction, astrogliosis, and axon growth inhibition in IS and SCI. Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), were previously considered to be non-functional. However, they have attracted much attention because they play an essential role in regulating gene expression in physiological and pathological conditions. There is growing evidence that ROCK inhibitors, such as fasudil and VX-210, can reduce injury in IS and SCI in animal models and clinical trials. Recently, it has been reported that miRNAs are decreased in IS and SCI, while lncRNAs are increased. Inhibiting the Rho/ROCK pathway with miRNAs alleviates apoptosis, neuroinflammation, oxidative stress, and axon growth inhibition in IS and SCI. Further studies are required to explore the significance of ncRNAs in IS and SCI and to establish new strategies for preventing and treating these devastating diseases.
Collapse
Affiliation(s)
- Tetsu Kimura
- Correspondence: ; Tel.: +81-18-884-6175; Fax: +81-18-884-6448
| | | | | | | |
Collapse
|
32
|
Wu C, Zhao L, Li X, Xu Y, Guo H, Huang Z, Wang Q, Liu H, Chen D, Zhu M. Integrated Bioinformatics Analysis of Potential mRNA and miRNA Regulatory Networks in Mice With Ischemic Stroke Treated by Electroacupuncture. Front Neurol 2021; 12:719354. [PMID: 34566862 PMCID: PMC8461332 DOI: 10.3389/fneur.2021.719354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/22/2021] [Indexed: 12/02/2022] Open
Abstract
Background: The complicated molecular mechanisms underlying the therapeutic effect of electroacupuncture (EA) on ischemic stroke are still unclear. Recently, more evidence has revealed the essential role of the microRNA (miRNA)–mRNA networks in ischemic stroke. However, a systematic analysis of novel key genes, miRNAs, and miRNA–mRNA networks regulated by EA in ischemic stroke is still absent. Methods: We established a middle cerebral artery occlusion (MCAO) mouse model and performed EA therapy on ischemic stroke mice. Behavior tests and measurement of infarction area were applied to measure the effect of EA treatment. Then, we performed RNA sequencing to analyze differentially expressed genes (DEGs) and functional enrichment between the EA and control groups. In addition, a protein–protein interaction (PPI) network was built, and hub genes were screened by Cytoscape. Upstream miRNAs were predicted by miRTarBase. Then hub genes and predicted miRNAs were verified as key biomarkers by RT-qPCR. Finally, miRNA–mRNA networks were constructed to explore the potential mechanisms of EA in ischemic stroke. Results: Our analysis revealed that EA treatment could significantly alleviate neurological deficits in the affected limbs and reduce infarct area of the MCAO model mice. A total of 174 significant DEGs, including 53 upregulated genes and 121 downregulated genes, were identified between the EA and control groups. Functional enrichment analysis showed that these DEGs were associated with the FOXO signaling pathway, NF-kappa B signaling pathway, T-cell receptor signaling pathway, and other vital pathways. The top 10 genes with the highest degree scores were identified as hub genes based on the degree method, but only seven genes were verified as key genes according to RT-qPCR. Twelve upstream miRNAs were predicted to target the seven key genes. However, only four miRNAs were significantly upregulated and indicated favorable effects of EA treatment. Finally, comprehensive analysis of the results identified the miR-425-5p-Cdk1, mmu-miR-1186b-Prc1, mmu-miR-434-3p-Prc1, and mmu-miR-453-Prc1 miRNA–mRNA networks as key networks that are regulated by EA and linked to ischemic stroke. These networks might mainly take place in neuronal cells regulated by EA in ischemic stroke. Conclusion: In summary, our study identified key DEGs, miRNAs, and miRNA–mRNA regulatory networks that may help to facilitate the understanding of the molecular mechanism underlying the effect of EA treatment on ischemic stroke.
Collapse
Affiliation(s)
- Chunxiao Wu
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangdong, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lijun Zhao
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Xinrong Li
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Yingshan Xu
- Clinical Medical of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongji Guo
- Clinical Medical of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zifeng Huang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Qizhang Wang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Helu Liu
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Dongfeng Chen
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meiling Zhu
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangdong, China
| |
Collapse
|
33
|
Chen J, Zhao H, Huang Y, Li Y, Fan J, Wang R, Han Z, Yang Z, Wu L, Wu D, Luo Y, Ji X. Dysregulation of Principal Circulating miRNAs in Non-human Primates Following Ischemic Stroke. Front Neurosci 2021; 15:738576. [PMID: 34539341 PMCID: PMC8441133 DOI: 10.3389/fnins.2021.738576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Despite the recent interest in plasma microRNA (miRNA) biomarkers in acute ischemic stroke patients, there is limited knowledge about the miRNAs directly related to stroke itself due to the multiple complications in patients, which has hindered the research progress of biomarkers and therapeutic targets of ischemic stroke. Therefore, in this study, we compared the differentially expressed miRNA profiles in the plasma of three rhesus monkeys pre- and post-cerebral ischemia. After cerebral ischemia, Rfam sequence category revealed increased ribosomic RNA (rRNA) and decreased transfer RNAs (tRNAs) in plasma. Of the 2049 miRNAs detected after cerebral ischemia, 36 were upregulated, and 76 were downregulated (fold change ≥2.0, P < 0.05). For example, mml-miR-191-5p, miR-421, miR-409-5p, and let-7g-5p were found to be significantly overexpressed, whereas mml-miR-128a-5p_R − 2, miR-431_R − 1, and let-7g-3p_1ss22CT were significantly downregulated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that these differentially expressed miRNAs were implicated in the regulation of ubiquitin-mediated proteolysis and signaling pathways in cancer, glioma, chronic myeloid leukemia, and chemokine signaling. miRNA clustering analysis showed that mml-let-7g-5p and let-7g-3p_1ss22CT, which share three target genes [RB1-inducible coiled-coil 1 (RB1CC1), G-protein subunit γ 5 (GNG5), and chemokine (C-X-C motif) receptor 4 (CXCR4)], belong to one cluster, were altered in opposite directions following ischemia. These data suggest that circulating mml-let-7g may serve as a therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Jian Chen
- Department of Neurosurgery, Institute of Cerebrovascular Diseases Research, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Haiping Zhao
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Yuyou Huang
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Yuqian Li
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Junfen Fan
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Rongliang Wang
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Ziping Han
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Zhenhong Yang
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Longfei Wu
- Department of Neurosurgery, Institute of Cerebrovascular Diseases Research, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Di Wu
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Yumin Luo
- Beijing Institute for Brain Disorders, Beijing, China
| | - Xunming Ji
- Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
34
|
Sun Y, Wang J, Han B, Meng K, Han Y, Ding Y. Elucidating the Molecular Mechanism of Ischemic Stroke Using Integrated Analysis of miRNA, mRNA, and lncRNA Expression Profiles. Front Integr Neurosci 2021; 15:638114. [PMID: 34483854 PMCID: PMC8415716 DOI: 10.3389/fnint.2021.638114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
Objective: This study aimed to investigate the possible molecular mechanisms associated with ischemic stroke through the construction of a lncRNA-miRNA-mRNA network. miRNA expression profile in GSE55937, mRNA and lncRNA expression profiles in GSE122709, and mRNA expression profile in GSE146882 were downloaded from the NCBI GEO database. After the identification of the differentially expressed miRNA, lncRNA, and mRNA using GSE55937 and GSE122709 in ischemic stroke vs. control groups, a protein-protein interaction (PPI) network was constructed. The lncRNA-miRNA, lncRNA-mRNA, and miRNA-mRNA pairs were predicted, and a lncRNA-miRNA-mRNA network was constructed. Additionally, the gene-drug interactions were predicted. Characteristic genes were used to construct a support vector machine (SVM) model and verified using quantitative reverse transcription polymerase chain reaction. In total 38 miRNAs, 115 lncRNAs, and 990 mRNAs were identified between ischemic stroke and control groups. A PPI network with 371 nodes and 2306 interaction relationships was constructed. The constructed lncRNA-miRNA-mRNA network contained 7 mRNAs, 14 lncRNAs, such as SND1-IT1, NAPA-AS1, LINC01001, LUCAT1, and ASAP1-IT2, and 8 miRNAs, such as miR-93-3p and miR-24-3p. The drug action analysis of the seven differential mRNAs included in the lncRNA-miRNA-mRNA network showed that four genes (GPR17, ADORA1, OPRM1 and LPAR3) were predicted as molecular targets of drugs. The area under the curve of the constructed SVM model was 0.886. The verification results of the relative expression of RNA by qRT-PCR were consistent with the results of bioinformatics analysis. LPAR3, ADORA1, GPR17, and OPRM1 may serve as therapeutic targets of ischemic stroke. lncRNA-miRNA-mRNA regulatory axis such as SND1-IT1/NAPA-AS1/LINC01001-miR-24-3p-LPAR3/ADORA1 and LUCAT1/ASAP1-IT2-miR-93-3p-GPR17 may play important roles in the progression of ischemic stroke.
Collapse
Affiliation(s)
- Yaxuan Sun
- Department of Neurology, Shanxi People's Hospital, Taiyuan, China
| | - Jing Wang
- Department of Neurology, Shanxi People's Hospital, Taiyuan, China
| | - Bin Han
- Department of Neurology, Shanxi People's Hospital, Taiyuan, China
| | - Kun Meng
- Department of Neurology, Shanxi People's Hospital, Taiyuan, China
| | - Yan Han
- Department of Neurology, Shanxi People's Hospital, Taiyuan, China
| | - Yongxia Ding
- College of Nursing, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
35
|
Feng B, Meng X, Zhou H, Chen L, Zou C, Liang L, Meng Y, Xu N, Wang H, Zou D. Identification of Dysregulated Mechanisms and Potential Biomarkers in Ischemic Stroke Onset. Int J Gen Med 2021; 14:4731-4744. [PMID: 34456585 PMCID: PMC8390889 DOI: 10.2147/ijgm.s327594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
Objective Ischemic stroke (IS) is a major cause of severe disability. This study aimed to identify potential biomarkers closely related to IS diagnosis and treatment. Methods Profiles of gene expression were obtained from datasets GSE16561, GSE22255, GSE112801 and GSE110993. Differentially expressed mRNAs between IS and controls were then subjected to weighted gene co-expression network analysis as well as multiscale embedded gene co-expression network analysis. The intersection of the two sets of module genes was subjected to analyses of functional enrichment and of microRNAs (miRNAs) regulation. Then, the area under receiver operating characteristic curves (AUC) was calculated to assess the ability of genes to discriminate IS patients from controls. IS diagnostic signatures were constructed using least absolute shrinkage and selection operator regression. Results A total of 234 common co-expression network genes were found to be potentially associated with IS. Enrichment analysis found that these genes were mainly associated with inflammation and immune response. The aberrantly expressed miRNAs (hsa-miR-651-5p, hsa-miR-138-5p, hsa-miR-9-3p and hsa-miR-374a-3p) in IS had regulatory effects on IS-related genes and were involved in brain-related diseases. We used the criterion AUC > 0.7 to screen out 23 hub genes from IS-related genes in the GSE16561 and GSE22255 datasets. We obtained an 8-gene signature (ADCY4, DUSP1, ATP5F1, DCTN5, EIF3G, ELAVL1, EXOSC7 and PPIE) from the training set of GSE16561 dataset, which we confirmed in the validation set of GSE16561 dataset and in the GSE22255 dataset. The genes in this signature were highly accurate for diagnosing IS. In addition, the 8-gene signature significantly correlated with infiltration by immune cells. Conclusion These findings provide new clues to molecular mechanisms and treatment targets in IS. The genes in the signature may be candidate markers and potential gene targets for treatments.
Collapse
Affiliation(s)
- Bing Feng
- Department of Neurology, The People's Hospital of Guiping, Guigang, Guangxi, 537200, People's Republic of China
| | - Xinling Meng
- Department of Endocrinology, The People's Hospital of Guiping, Guigang, Guangxi, 537200, People's Republic of China
| | - Hui Zhou
- Department of Neurology, The People's Hospital of Guiping, Guigang, Guangxi, 537200, People's Republic of China
| | - Liechun Chen
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China
| | - Chun Zou
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China
| | - Lucong Liang
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China
| | - Youshi Meng
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China.,Department of Neurology, The First People's Hospital of Nanning, Nanning, Guangxi, 530022, People's Republic of China
| | - Ning Xu
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China.,Department of Neurology, The First People's Hospital of Nanning, Nanning, Guangxi, 530022, People's Republic of China
| | - Hao Wang
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China.,Department of Neurology, The First People's Hospital of Nanning, Nanning, Guangxi, 530022, People's Republic of China
| | - Donghua Zou
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China.,Department of Neurology, The First People's Hospital of Nanning, Nanning, Guangxi, 530022, People's Republic of China
| |
Collapse
|
36
|
Behl T, Sehgal A, Grover M, Singh S, Sharma N, Bhatia S, Al-Harrasi A, Aleya L, Bungau S. Uncurtaining the pivotal role of ABC transporters in diabetes mellitus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41533-41551. [PMID: 34085197 DOI: 10.1007/s11356-021-14675-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
The metabolic disorders are the edge points for the initiation of various diseases. These disorders comprised of several diseases including diabetes, obesity, and cardiovascular complications. Worldwide, the prevalence of these disorders is increasing day by day. The world's population is at higher threat of developing metabolic disease, especially diabetes. Therefore, there is an impregnable necessity of searching for a newer therapeutic target to reduce the burden of these disorders. Diabetes mellitus (DM) is marked with the dysregulated insulin secretion and resistance. The lipid and glucose transporters portray a pivotal role in the metabolism and transport of both of these. The excess production of lipid and glucose and decreased clearance of these leads to the emergence of DM. The ATP-binding cassette transporters (ABCT) are important for the metabolism of glucose and lipid. Various studies suggest the key involvement of ABCT in the pathologic process of different diseases. In addition, the involvement of other pathways, including IGF signaling, P13-Akt/PKC/MAPK signaling, and GLP-1 via regulation of ABCT, may help develop new treatment strategies to cope with insulin resistance dysregulated glucose metabolism, key features in DM.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Madhuri Grover
- BS Anangpuria Institute of Pharmacy, Faridabad, Haryana, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, India
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Simona Bungau
- Department of Pharmacy, Faculty of Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
37
|
Zhou H, Huang L, Liang L, Chen L, Zou C, Li Z, Li R, Jian C, Zou D. Identification of an miRNA Regulatory Network and Candidate Markers for Ischemic Stroke Related to Diabetes. Int J Gen Med 2021; 14:3213-3223. [PMID: 34262334 PMCID: PMC8274709 DOI: 10.2147/ijgm.s319503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose Type 2 diabetes mellitus (T2DM) increases the risk of ischemic stroke and poor prognosis. This study aimed to identify molecular mechanisms that are dysregulated in T2DM-associated ischemic stroke and candidate genes that might serve as biomarkers. Methods The top 25% variance genes in the GSE21321 and GSE22255 datasets were analyzed for coexpression. The differentially expressed mRNAs (DEmRs) between patients with T2DM or ischemic stroke and controls were analyzed. Then, the union of overlapping coexpressed genes and overlapping DEmRs was analyzed. The miRNAs differentially expressed in T2DM-associated ischemic stroke were also analyzed. CIBERSORT was used to evaluate the levels of infiltration by immune cells in T2DM-associated stroke. Results Thirteen coexpression modules were identified in T2DM and 10 in ischemic stroke, and 594 module genes were shared between the two conditions. A total of 4452 mRNAs differentially expressed between T2DM patients and controls were identified, as were 2390 mRNAs differentially expressed between ischemic stroke and controls. The 771 union genes were enriched mainly in immune-related biological functions and signaling pathways. UBE2N, TGFB3, EXOSC1, and VIM were identified as candidate markers. In addition, we identified miR-576-3p as having the most regulatory roles in both T2DM and ischemic stroke. Mast cell activation was significantly down-regulated in T2DM but up-regulated in ischemic stroke. Conclusion These findings provide numerous testable hypotheses about the pathways underlying T2DM-associated ischemic stroke, which may help identify therapeutic targets.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Neurology, The People's Hospital of Guiping, Guiping, Guangxi, 537200, People's Republic of China
| | - Liujia Huang
- Department of Rehabilitation Medicine, The People's Hospital of Guiping, Guiping, Guangxi, 537200, People's Republic of China
| | - Lucong Liang
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China
| | - Liechun Chen
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China
| | - Chun Zou
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China
| | - Zhenhua Li
- Department of Emergency Medicine, The First People's Hospital of Nanning, Nanning, 530022, People's Republic of China
| | - Rongjie Li
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China
| | - Chongdong Jian
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, People's Republic of China
| | - Donghua Zou
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China
| |
Collapse
|
38
|
Adly Sadik N, Ahmed Rashed L, Ahmed Abd-El Mawla M. Circulating miR-155 and JAK2/STAT3 Axis in Acute Ischemic Stroke Patients and Its Relation to Post-Ischemic Inflammation and Associated Ischemic Stroke Risk Factors. Int J Gen Med 2021; 14:1469-1484. [PMID: 33911894 PMCID: PMC8071708 DOI: 10.2147/ijgm.s295939] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Background “Micro RNAs and their target genes recently have been identified to play a crucial role in the molecular pathogenesis of post-stroke ischemic cellular injury, which elucidates their new role in ischemic stroke diagnosis and therapy”. Thus, we evaluated the relative serum expression of miR-155, an inflammatory micro RNA, and the mRNAs (JAK2/STAT3) in acute ischemic stroke patients and its associations with the inflammatory cytokine TNF-α and different stroke risk factors. Subjects and Methods The relative expression of serum miR-155 and mRNAs (JAK2/STAT3) was assessed using RT-PCR, serum TNF-α was measured using ELIZA in 46 acute ischemic stroke patients and 50 control subjects. Receiver operating characteristic (ROC) curve was constructed to assess the specificity and sensitivity of circulating miR-155, JAK2/STAT3 as biomarkers for acute ischemic stroke. Results Circulating miR-155, JAK2/STAT3 were significantly up-regulated among stroke patients (8.5, 2.9, 4.2 fold respectively, P<0.001) with significant increase in TNF-α (263.8 ± 10.7 pg/mL, P <0.001). MiR-155, JAK2/STAT3 were positively correlated with TNF-α. MiR-155, JAK2/STAT3 were significantly increased in stroke patients and associated with risk factors such as hypertension, carotid atherosclerosis, and atrial fibrillation. Our study revealed that miR-155 has diagnostic accuracy for acute ischemic stroke where AUC=0.9, (P<0.001). Conclusion The elevated expressions of circulating miR-155, JAK2/STAT3, and TNF-α in acute ischemic stroke patients could trigger post-stroke cellular inflammation. MiR-155 could be used as potential inflammatory biomarker for acute ischemic stroke. However, further clinical studies are still needed to determine the exact role of miRNAs and different signal transduction expressions in the stage of acute ischemic stroke.
Collapse
Affiliation(s)
- Noha Adly Sadik
- Department of Internal Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Laila Ahmed Rashed
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | |
Collapse
|
39
|
Chubarev VN, Beeraka NM, Sinelnikov MY, Bulygin KV, Nikolenko VN, Mihaylenko E, Tarasov VV, Mikhaleva LM, Poltronieri P, Viswanadha VP, Somasundaram SG, Kirkland CE, Chen K, Liu J, Fan R, Kamal MA, Mironov AA, Madhunapantula SV, Pretorius E, Dindyaev SV, Muresanu C, Sukocheva OA. Health Science Community Will Miss This Bright and Uniting Star: In Memory of Professor Gjumrakch Aliev, M.D, Ph.D. Cancers (Basel) 2021; 13:1965. [PMID: 33921833 PMCID: PMC8072812 DOI: 10.3390/cancers13081965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/15/2021] [Indexed: 02/05/2023] Open
Abstract
It is with deep sadness that we offer our memorial on the unexpected demise of our dear colleague, Professor Gjumrakch Aliev [...].
Collapse
Affiliation(s)
- Vladimir N. Chubarev
- Faculty of Pharmacology, Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, 119991 Moscow, Russia; (V.N.C.); (N.M.B.); (M.Y.S.); (K.V.B.); (V.N.N.); (E.M.); (V.V.T.)
| | - Narasimha M. Beeraka
- Faculty of Pharmacology, Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, 119991 Moscow, Russia; (V.N.C.); (N.M.B.); (M.Y.S.); (K.V.B.); (V.N.N.); (E.M.); (V.V.T.)
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Bannimantapa, Sri Shivarathreeshwara Nagar, Mysuru, Karnataka 570 015, India;
| | - Mikhail Y. Sinelnikov
- Faculty of Pharmacology, Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, 119991 Moscow, Russia; (V.N.C.); (N.M.B.); (M.Y.S.); (K.V.B.); (V.N.N.); (E.M.); (V.V.T.)
| | - Kirill V. Bulygin
- Faculty of Pharmacology, Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, 119991 Moscow, Russia; (V.N.C.); (N.M.B.); (M.Y.S.); (K.V.B.); (V.N.N.); (E.M.); (V.V.T.)
- Faculty of Medicine, M.V. Lomonosov Moscow State University, 117192 Moscow, Russia
| | - Vladimir N. Nikolenko
- Faculty of Pharmacology, Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, 119991 Moscow, Russia; (V.N.C.); (N.M.B.); (M.Y.S.); (K.V.B.); (V.N.N.); (E.M.); (V.V.T.)
- Faculty of Medicine, M.V. Lomonosov Moscow State University, 117192 Moscow, Russia
| | - Elizaveta Mihaylenko
- Faculty of Pharmacology, Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, 119991 Moscow, Russia; (V.N.C.); (N.M.B.); (M.Y.S.); (K.V.B.); (V.N.N.); (E.M.); (V.V.T.)
| | - Vadim V. Tarasov
- Faculty of Pharmacology, Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, 119991 Moscow, Russia; (V.N.C.); (N.M.B.); (M.Y.S.); (K.V.B.); (V.N.N.); (E.M.); (V.V.T.)
| | | | - Palmiro Poltronieri
- Institute of Sciences of Food Productions, National Research Council of Italy, via Monteroni km 7, 73100 Lecce, Italy;
| | | | - Siva G. Somasundaram
- Department of Biological Sciences, Salem University, Salem, WV 26426, USA; (S.G.S.); (C.E.K.)
| | - Cecil E. Kirkland
- Department of Biological Sciences, Salem University, Salem, WV 26426, USA; (S.G.S.); (C.E.K.)
| | - Kuo Chen
- Cancer Center, Department of Radiation Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China; (K.C.); (J.L.); (R.F.)
| | - Junqi Liu
- Cancer Center, Department of Radiation Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China; (K.C.); (J.L.); (R.F.)
| | - Ruitai Fan
- Cancer Center, Department of Radiation Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China; (K.C.); (J.L.); (R.F.)
| | - Mohammad Amjad Kamal
- West China School of Nursing/Institutes for Systems Genetics, The Frontier Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China;
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
- Enzymoics, 7 Peterlee Place, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Alexander A. Mironov
- Laboratory of Electron Microscopy, The FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy;
| | - SubbaRao V. Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Bannimantapa, Sri Shivarathreeshwara Nagar, Mysuru, Karnataka 570 015, India;
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa;
| | - Sergey V. Dindyaev
- Department of Histology, Embryology & Cytology, Pediatric Faculty, Federal State Budgetary Educational Institution of Higher Education “Ivanovo State Medical Academy” of the Ministry of Healthcare of the Russian Federation (FSBEI HE IvSMA MOH Russia), 8 Sheremetyevsky Ave., 153012 Ivanovo, Russia;
| | - Cristian Muresanu
- Research Center for Applied Biotechnology in Diagnosis and Molecular Therapies, Str. Trifoiului nr. 12 G, 400478 Cluj-Napoca, Romania;
| | - Olga A. Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University of South Australia, Adelaide 5001, Australia
| |
Collapse
|
40
|
Ding K, Lai Z, Yang G, Zeng L. MiR-140-5p targets Prox1 to regulate the proliferation and differentiation of neural stem cells through the ERK/MAPK signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:671. [PMID: 33987369 PMCID: PMC8106095 DOI: 10.21037/atm-21-597] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/04/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND The expression of miR-140-5p increased in the brain tissue of a bilateral common carotid artery ligation model, while the overexpression of miR-140-5p significantly decreased the number of neurons. The luciferase report experiment in the previous study proved that miR-140-5p negatively regulated one of the potential targets of Prospero-related homeobox 1 (Prox1). Therefore, we want to investigate the effect of miR-140-5p on the proliferation and differentiation of neural stem cells (NSCs) and the underlying mechanism. METHODS Primary NSCs were extracted from pregnant ICR mice aged 16-18 days and induced to differentiate. After transient transfection with miR-140-5p mimic and inhibitor into NSCs, the cells were divided into five groups: blank, mimic normal control, mimic, inhibitor normal control, and inhibitor. Cell Counting Kit-8 (CCK-8) and 5-Bromo-2-deoxyUridine (BrDU), Ki-67 were used, and the diameter of neural spheres was measured to observe proliferation ability 48 h later. Doublecortin (DCX), glial fibrillary acidic protein (GFAP), microtubule-associated proteins 2 (MAP-2), synapsin I (SYN1), and postsynaptic density protein-95 (PSD-95) were stained to identify the effect of miR-140-5p on the differentiation ability of NSCs into neural precursor cells, astrocytes, and neurons and the expression of synapse-associated proteins. The expression of miR-140-5p, Prox1, p-ERK1/2, and ERK1/2 was analyzed by real time quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis. RESULTS While the expression of miR-140-5p decreased after NSC differentiation (P<0.05), the results of CCK-8, BrDU, and Ki-67 staining showed no significant difference in cell viability and the percentage of NSCs with proliferation ability (P>0.05). However, the neural spheres were shorter in the miR-140-5p overexpression group (P<0.05) and the expression of DCX, MAP2, synapsin I, and PSD-95 decreased, while the expression of GFAP increased after differentiation in the mimic group (P<0.05). In addition, the expression of Prox1 decreased and the expression of p-ERK1/2 protein increased (P<0.05), but the expression of ERK1/2 showed no significant difference (P>0.05) in the miR-140-5p overexpression group. CONCLUSIONS MiR-140-5p reduced the proliferation rate of NSCs, inhibited their differentiation into neurons, produced synapse-associated proteins, and promoted their differentiation into astrocytes. MiR-140-5p negatively regulated downstream target Prox1 and activated the ERK/MAPK signaling pathway.
Collapse
Affiliation(s)
- Kaiqi Ding
- Department of Neurology and Institute of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zehua Lai
- Department of Neurology and Institute of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guoyuan Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lili Zeng
- Department of Neurology and Institute of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
41
|
Tan Y, Zhou F, Yang D, Zhang X, Zeng M, Wan L. MicroRNA-126a-5p Exerts Neuroprotective Effects on Ischemic Stroke via Targeting NADPH Oxidase 2. Neuropsychiatr Dis Treat 2021; 17:2089-2103. [PMID: 34234438 PMCID: PMC8242150 DOI: 10.2147/ndt.s293611] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/14/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Ischemic stroke is a destructive cerebrovascular disorder related to oxidative stress; NOX2 is a major source for ROS production; and miR-126a-5p is involved in several diseases, such as abdominal aortic aneurysm. We investigated the role of miR-126a-5p in regulating NOX2 in ischemic stroke. METHODS MiR-126a-5p and NOX2 were examined in the brains of rats subjected to cerebral ischemia/reperfusion (I/R) by RT-PCR and Western blot. MiR-126a-5p agomir was delivered to examine the effects of miR-126a-5p on I/R injury. The neurological deficit, infarct volume, and brain water content were evaluated. NOX activity, ROS production, and MDA and SOD levels were detected to assess oxidative stress. H&E staining was used to examine cell state. Apoptosis was evaluated by TUNEL, caspase-3 activity, and cleaved-caspase-3 protein level. The relationship between miR-126a-5p and NOX2 was analyzed by bioinformatics and luciferase reporter assay. MiR-126a-5p mimic, miR-126a-5p inhibitor, or pcDNA-NOX2 were transfected in SH-SY5Y cells to further assess the effects of miR-126a-5p on OGD/R-induced cells injury. RESULTS NOX2 was upregulated and miR-126a-5p was down-regulated in the brains of I/R rats. MiR-126a-5p agomir obviously reduced the neurological deficit, infarct volume, brain water content, oxidative stress, and apoptosis in I/R rats. MiR-126a-5p targeted NOX2 directly and regulated NOX2 negatively. Moreover, miR-126a-5p mimic elevated cell viability and inhibited oxidative stress and apoptosis in OGD/R-treated SH-SY5Y cells, while miR-126a-5p inhibitor had the opposite effects. NOX2 overexpression antagonized the protective effects of miR-126a-5p mimic on OGD/R-induced cell injury. CONCLUSION MiR-126a-5p is a novel potential target for ischemic stroke therapy due to its protection against cerebral I/R injury via directly targeting NOX2.
Collapse
Affiliation(s)
- Yu Tan
- Department of Neurology, The Third Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, 330008, People's Republic of China
| | - Feng Zhou
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai City, Guangdong Province, 519000, People's Republic of China
| | - Dejiang Yang
- Department of Neurology, The Third Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, 330008, People's Republic of China
| | - Xiaowei Zhang
- Department of Neurology, The Third Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, 330008, People's Republic of China
| | - Meihong Zeng
- Department of Neurology, The Third Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, 330008, People's Republic of China
| | - Lei Wan
- Department of Neurology, The Third Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, 330008, People's Republic of China
| |
Collapse
|