1
|
Shepherd J. Biomimetic Approaches in the Development of Optimised 3D Culture Environments for Drug Discovery in Cardiac Disease. Biomimetics (Basel) 2025; 10:204. [PMID: 40277603 PMCID: PMC12024959 DOI: 10.3390/biomimetics10040204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/09/2025] [Accepted: 03/21/2025] [Indexed: 04/26/2025] Open
Abstract
Cardiovascular disease remains the leading cause of death worldwide, yet despite massive investment in drug discovery, the progress of cardiovascular drugs from lab to clinic remains slow. It is a complex, costly pathway from drug discovery to the clinic and failure becomes more expensive as a drug progresses along this pathway. The focus has begun to shift to optimisation of in vitro culture methodologies, not only because these must be undertaken are earlier on in the drug discovery pathway, but also because the principles of the 3Rs have become embedded in national and international legislation and regulation. Numerous studies have shown myocyte cell behaviour to be much more physiologically relevant in 3D culture compared to 2D culture, highlighting the advantages of using 3D-based models, whether microfluidic or otherwise, for preclinical drug screening. This review aims to provide an overview of the challenges in cardiovascular drug discovery, the limitations of traditional routes, and the successes in the field of preclinical models for cardiovascular drug discovery. It focuses on the particular role biomimicry can play, but also the challenges around implementation within commercial drug discovery.
Collapse
Affiliation(s)
- Jenny Shepherd
- School of Engineering, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
2
|
Farboud SP, Fathi E, Valipour B, Farahzadi R. Toward the latest advancements in cardiac regeneration using induced pluripotent stem cells (iPSCs) technology: approaches and challenges. J Transl Med 2024; 22:783. [PMID: 39175068 PMCID: PMC11342568 DOI: 10.1186/s12967-024-05499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/10/2024] [Indexed: 08/24/2024] Open
Abstract
A novel approach to treating heart failures was developed with the introduction of iPSC technology. Knowledge in regenerative medicine, developmental biology, and the identification of illnesses at the cellular level has exploded since the discovery of iPSCs. One of the most frequent causes of mortality associated with cardiovascular disease is the loss of cardiomyocytes (CMs), followed by heart failure. A possible treatment for heart failure involves restoring cardiac function and replacing damaged tissue with healthy, regenerated CMs. Significant strides in stem cell biology during the last ten years have transformed the in vitro study of human illness and enhanced our knowledge of the molecular pathways underlying human disease, regenerative medicine, and drug development. We seek to examine iPSC advancements in disease modeling, drug discovery, iPSC-Based cell treatments, and purification methods in this article.
Collapse
Affiliation(s)
- Seyedeh Parya Farboud
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Behnaz Valipour
- Department of Anatomical Sciences, Sarab Faculty of Medical Sciences, Sarab, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Jiang T, Ma C, Wang Z, Miao Y. A review of local anesthetic-induced heart toxicity using human induced pluripotent stem cell-derived cardiomyocytes. Mol Cell Probes 2024; 76:101965. [PMID: 38823509 DOI: 10.1016/j.mcp.2024.101965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/11/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Local anesthetic (LA) cardiotoxicity is one of the main health problems in anesthesiology and pain management. This study reviewed the reported LA-induced cardiac toxicity types, risk factors, management, and mechanisms, with attention to the use of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in heart toxicity research. Important scientific databases were searched to find relevant articles. We briefly assessed the reported cardiotoxic effects of different types of LA drugs, including ester- and amide-linked LA agents. Furthermore, cardiotoxic effects and clinical manifestations, strategies for preventing and managing LA-induced cardiotoxic effects, pharmacokinetics, pharmacodynamics, and sodium channel dynamics regarding individual variability and genetic influences were discussed in this review. The applications and importance of hiPSC-CMs cellular model for evaluating the cardiotoxic effects of LA drugs were discussed in detail. This review also explored hiPSC-CMs' potential in risk assessment, drug screening, and developing targeted therapies. The main mechanisms underlying LA-induced cardiotoxicity included perturbation in sodium channels, ROS production, and disorders in the immune system response due to the presence of LA drugs. Furthermore, drug-specific characteristics including pharmacokinetics and pharmacodynamics are important determinants after LA drug injection. In addition, individual patient factors such as age, comorbidities, and genetic variability emphasize the need for a personalized approach to mitigate risks and enhance patient safety. The strategies outlined for the prevention and management of LA cardiotoxicity underscore the importance of careful dosing, continuous monitoring, and the immediate availability of resuscitation equipment. This comprehensive review can be used to guide future investigations into better understanding LA cardiac toxicities and improving patient safety.
Collapse
Affiliation(s)
- Ting Jiang
- Department of Anesthesiology, Xi'an Children's Hospital, Xi'an, 710002, China
| | - Chao Ma
- Department of Anesthesiology, Xi'an Children's Hospital, Xi'an, 710002, China
| | - Zitong Wang
- Health Science Center, Lanzhou University, Lanzhou, 730000, China
| | - Yi Miao
- Department of Anesthesiology, Xi'an Children's Hospital, Xi'an, 710002, China.
| |
Collapse
|
4
|
Sugiura T, Shahannaz DC, Ferrell BE. Current Status of Cardiac Regenerative Therapy Using Induced Pluripotent Stem Cells. Int J Mol Sci 2024; 25:5772. [PMID: 38891960 PMCID: PMC11171475 DOI: 10.3390/ijms25115772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Heart failure (HF) is a life-threatening disorder and is treated by drug therapies and surgical interventions such as heart transplantation and left ventricular assist device (LVAD). However, these treatments can lack effectiveness in the long term and are associated with issues such as donor shortage in heart transplantation, and infection, stroke, or gastrointestinal bleeding in LVADs. Therefore, alternative therapeutic strategies are still needed. In this respect, stem cell therapy has been introduced for the treatment of HF and numerous preclinical and clinical studies are employing a range of stem cell varieties. These stem cells, such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), have been shown to improve cardiac function and attenuate left ventricular remodeling. IPSCs, which have a capacity for unlimited proliferation and differentiation into cardiomyocytes, are a promising cell source for myocardial regeneration therapy. In this review, we discuss the following topics: (1) what are iPSCs; (2) the limitations and solutions for the translation of iPSC-CMs practically; and (3) the current therapeutic clinical trials.
Collapse
Affiliation(s)
- Tadahisa Sugiura
- Department of Cardiothoracic and Vascular Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, New York, NY 10467, USA; (D.C.S.); (B.E.F.)
| | | | | |
Collapse
|
5
|
Butler D, Reyes DR. Heart-on-a-chip systems: disease modeling and drug screening applications. LAB ON A CHIP 2024; 24:1494-1528. [PMID: 38318723 DOI: 10.1039/d3lc00829k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, casting a substantial economic footprint and burdening the global healthcare system. Historically, pre-clinical CVD modeling and therapeutic screening have been performed using animal models. Unfortunately, animal models oftentimes fail to adequately mimic human physiology, leading to a poor translation of therapeutics from pre-clinical trials to consumers. Even those that make it to market can be removed due to unforeseen side effects. As such, there exists a clinical, technological, and economical need for systems that faithfully capture human (patho)physiology for modeling CVD, assessing cardiotoxicity, and evaluating drug efficacy. Heart-on-a-chip (HoC) systems are a part of the broader organ-on-a-chip paradigm that leverages microfluidics, tissue engineering, microfabrication, electronics, and gene editing to create human-relevant models for studying disease, drug-induced side effects, and therapeutic efficacy. These compact systems can be capable of real-time measurements and on-demand characterization of tissue behavior and could revolutionize the drug development process. In this review, we highlight the key components that comprise a HoC system followed by a review of contemporary reports of their use in disease modeling, drug toxicity and efficacy assessment, and as part of multi-organ-on-a-chip platforms. We also discuss future perspectives and challenges facing the field, including a discussion on the role that standardization is expected to play in accelerating the widespread adoption of these platforms.
Collapse
Affiliation(s)
- Derrick Butler
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | - Darwin R Reyes
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| |
Collapse
|
6
|
Deir S, Mozhdehbakhsh Mofrad Y, Mashayekhan S, Shamloo A, Mansoori-Kermani A. Step-by-step fabrication of heart-on-chip systems as models for cardiac disease modeling and drug screening. Talanta 2024; 266:124901. [PMID: 37459786 DOI: 10.1016/j.talanta.2023.124901] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/23/2023] [Accepted: 07/01/2023] [Indexed: 09/20/2023]
Abstract
Cardiovascular diseases are caused by hereditary factors, environmental conditions, and medication-related issues. On the other hand, the cardiotoxicity of drugs should be thoroughly examined before entering the market. In this regard, heart-on-chip (HOC) systems have been developed as a more efficient and cost-effective solution than traditional methods, such as 2D cell culture and animal models. HOCs must replicate the biology, physiology, and pathology of human heart tissue to be considered a reliable platform for heart disease modeling and drug testing. Therefore, many efforts have been made to find the best methods to fabricate different parts of HOCs and to improve the bio-mimicry of the systems in the last decade. Beating HOCs with different platforms have been developed and techniques, such as fabricating pumpless HOCs, have been used to make HOCs more user-friendly systems. Recent HOC platforms have the ability to simultaneously induce and record electrophysiological stimuli. Additionally, systems including both heart and cancer tissue have been developed to investigate tissue-tissue interactions' effect on cardiac tissue response to cancer drugs. In this review, all steps needed to be considered to fabricate a HOC were introduced, including the choice of cellular resources, biomaterials, fabrication techniques, biomarkers, and corresponding biosensors. Moreover, the current HOCs used for modeling cardiac diseases and testing the drugs are discussed. We finally introduced some suggestions for fabricating relatively more user-friendly HOCs and facilitating the commercialization process.
Collapse
Affiliation(s)
- Sara Deir
- School of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Yasaman Mozhdehbakhsh Mofrad
- Nano-Bioengineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Center, Sharif University of Technology, Tehran, Iran
| | - Shohreh Mashayekhan
- School of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Amir Shamloo
- Nano-Bioengineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Center, Sharif University of Technology, Tehran, Iran.
| | | |
Collapse
|
7
|
Fortin MC, LaCroix AS, Grammatopoulos TN, Tan L, Wang Q, Manca D. Lower cardiotoxicity of CPX-351 relative to daunorubicin plus cytarabine free-drug combination in hiPSC-derived cardiomyocytes in vitro. Sci Rep 2023; 13:21054. [PMID: 38030645 PMCID: PMC10686991 DOI: 10.1038/s41598-023-47293-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 11/11/2023] [Indexed: 12/01/2023] Open
Abstract
Liposomal formulations are hypothesized to alleviate anthracycline cardiotoxicity, although this has only been documented clinically for doxorubicin. We developed an in vitro multiparametric model using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) to assess the relative toxicity of anthracyclines across formulations. Proof of concept was established by treating hiPSC-CM with equivalent concentrations of free and liposomal doxorubicin. The study was then repeated with free daunorubicin plus cytarabine and CPX-351, a dual-drug liposomal encapsulation of daunorubicin/cytarabine. hiPSC-CM were treated with free-drug or liposomal formulations for 24 h on Days 1, 3, and 5 at equivalent concentrations ranging from 0 to 1000 ng/mL and assessed on subsequent days. Free-drug treatment resulted in concentration-dependent cumulative cytotoxicity (microscopy), more profound decrease in ATP levels, and significant time- and concentration-dependent decreases in oxygen consumption versus liposomal formulations (p < 0.01). Repeated free-drug exposure also resulted in greater release of biomarkers (cardiac troponin I, FABP3) and lactate dehydrogenase, as well as in a biphasic rhythmicity response (initial increase followed by slowing/quiescence of beating) indicating significant injury, which was not observed after repeated exposure to liposomal formulations. Overall, liposomal formulations were considerably less toxic to hiPSC-CM than their free-drug counterparts. Clinical data will be needed to confirm findings for CPX-351.
Collapse
Affiliation(s)
- Marie C Fortin
- Jazz Pharmaceuticals, 2005 Market Street, 21St Floor, Philadelphia, PA, 19103, USA.
| | | | | | - Lei Tan
- Jazz Pharmaceuticals, 2005 Market Street, 21St Floor, Philadelphia, PA, 19103, USA
| | - Qi Wang
- Jazz Pharmaceuticals, 2005 Market Street, 21St Floor, Philadelphia, PA, 19103, USA
| | - Dino Manca
- Jazz Pharmaceuticals, 2005 Market Street, 21St Floor, Philadelphia, PA, 19103, USA
| |
Collapse
|
8
|
Yang H, Yang Y, Kiskin FN, Shen M, Zhang JZ. Recent advances in regulating the proliferation or maturation of human-induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther 2023; 14:228. [PMID: 37649113 PMCID: PMC10469435 DOI: 10.1186/s13287-023-03470-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023] Open
Abstract
In the last decade, human-induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM)-based cell therapy has drawn broad attention as a potential therapy for treating injured hearts. However, mass production of hiPSC-CMs remains challenging, limiting their translational potential in regenerative medicine. Therefore, multiple strategies including cell cycle regulators, small molecules, co-culture systems, and epigenetic modifiers have been used to improve the proliferation of hiPSC-CMs. On the other hand, the immaturity of these proliferative hiPSC-CMs could lead to lethal arrhythmias due to their limited ability to functionally couple with resident cardiomyocytes. To achieve functional maturity, numerous methods such as prolonged culture, biochemical or biophysical stimulation, in vivo transplantation, and 3D culture approaches have been employed. In this review, we summarize recent approaches used to promote hiPSC-CM proliferation, and thoroughly review recent advances in promoting hiPSC-CM maturation, which will serve as the foundation for large-scale production of mature hiPSC-CMs for future clinical applications.
Collapse
Affiliation(s)
- Hao Yang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Yuan Yang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Fedir N Kiskin
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Mengcheng Shen
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Joe Z Zhang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
9
|
Kannan S, Miyamoto M, Zhu R, Lynott M, Guo J, Chen EZ, Colas AR, Lin BL, Kwon C. Trajectory reconstruction identifies dysregulation of perinatal maturation programs in pluripotent stem cell-derived cardiomyocytes. Cell Rep 2023; 42:112330. [PMID: 37014753 PMCID: PMC10545814 DOI: 10.1016/j.celrep.2023.112330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/12/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
A limitation in the application of pluripotent stem cell-derived cardiomyocytes (PSC-CMs) is the failure of these cells to achieve full functional maturity. The mechanisms by which directed differentiation differs from endogenous development, leading to consequent PSC-CM maturation arrest, remain unclear. Here, we generate a single-cell RNA sequencing (scRNA-seq) reference of mouse in vivo CM maturation with extensive sampling of previously difficult-to-isolate perinatal time periods. We subsequently generate isogenic embryonic stem cells to create an in vitro scRNA-seq reference of PSC-CM-directed differentiation. Through trajectory reconstruction, we identify an endogenous perinatal maturation program that is poorly recapitulated in vitro. By comparison with published human datasets, we identify a network of nine transcription factors (TFs) whose targets are consistently dysregulated in PSC-CMs across species. Notably, these TFs are only partially activated in common ex vivo approaches to engineer PSC-CM maturation. Our study can be leveraged toward improving the clinical viability of PSC-CMs.
Collapse
Affiliation(s)
- Suraj Kannan
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Matthew Miyamoto
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Renjun Zhu
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Michaela Lynott
- Sanford Burham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Jason Guo
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Elaine Zhelan Chen
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Alexandre R Colas
- Sanford Burham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Brian Leei Lin
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Chulan Kwon
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Silva-Pedrosa R, Salgado AJ, Ferreira PE. Revolutionizing Disease Modeling: The Emergence of Organoids in Cellular Systems. Cells 2023; 12:930. [PMID: 36980271 PMCID: PMC10047824 DOI: 10.3390/cells12060930] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Cellular models have created opportunities to explore the characteristics of human diseases through well-established protocols, while avoiding the ethical restrictions associated with post-mortem studies and the costs associated with researching animal models. The capability of cell reprogramming, such as induced pluripotent stem cells (iPSCs) technology, solved the complications associated with human embryonic stem cells (hESC) usage. Moreover, iPSCs made significant contributions for human medicine, such as in diagnosis, therapeutic and regenerative medicine. The two-dimensional (2D) models allowed for monolayer cellular culture in vitro; however, they were surpassed by the three-dimensional (3D) cell culture system. The 3D cell culture provides higher cell-cell contact and a multi-layered cell culture, which more closely respects cellular morphology and polarity. It is more tightly able to resemble conditions in vivo and a closer approach to the architecture of human tissues, such as human organoids. Organoids are 3D cellular structures that mimic the architecture and function of native tissues. They are generated in vitro from stem cells or differentiated cells, such as epithelial or neural cells, and are used to study organ development, disease modeling, and drug discovery. Organoids have become a powerful tool for understanding the cellular and molecular mechanisms underlying human physiology, providing new insights into the pathogenesis of cancer, metabolic diseases, and brain disorders. Although organoid technology is up-and-coming, it also has some limitations that require improvements.
Collapse
Affiliation(s)
- Rita Silva-Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.J.S.); (P.E.F.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - António José Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.J.S.); (P.E.F.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Pedro Eduardo Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.J.S.); (P.E.F.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
11
|
An efficient human stem cells derived cardiotoxicity testing platform for testing oncotherapeutic analogues of quercetin and cinnamic acid. Sci Rep 2022; 12:21362. [PMID: 36494370 PMCID: PMC9734143 DOI: 10.1038/s41598-022-21721-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/30/2022] [Indexed: 12/13/2022] Open
Abstract
Oncotherapeutics research is progressing at a rapid pace, however, not many drugs complete the successful clinical trial because of severe off-target toxicity to cardiomyocytes which ultimately leads to cardiac dysfunction. It is thus important to emphasize the need for early testing for possible cardiotoxicity of emerging oncotherapeutics. In this study, we assessed a novel stem cell-derived cardiac model for testing for cardiotoxicity of novel oncotherapeutics. We evaluated the cardiotoxic effect of synthesized derivatives of oncotherapeutics, quercetin (QMJ-2, -5, and -6) and cinnamic acid (NMJ-1, -2, and -3) using human Wharton's jelly mesenchymal stem cells-derived cardiomyocytes (WJCM) against known cardiotoxic oncologic drugs, doxorubicin, 5-fluorouracil, cisplatin. QMJ-6, NMJ-2, and NMJ-3 were not cardiotoxic and had minimum cardiac side effects. They did not show any effect on cardiomyocyte viability, caused low LDH release, and intracellular ROS production kept the calcium flux minimal and protected the active mitochondrial status in cardiomyocytes. They persevered cardiac-specific gene expression as well. However, compounds QMJ-2, QMJ-5, and NMJ-1 were cardiotoxic and the concentration needs to be reduced to prevent toxic effects on cardiomyocytes. Significantly, we were able to demonstrate that WJCM is an efficient cardiac testing model to analyze the cardiotoxicity of drugs in a human context.
Collapse
|
12
|
Pohjolainen L, Ruskoaho H, Talman V. Transcriptomics reveal stretched human pluripotent stem cell-derived cardiomyocytes as an advantageous hypertrophy model. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2022; 2:100020. [PMID: 39802492 PMCID: PMC11708431 DOI: 10.1016/j.jmccpl.2022.100020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 01/16/2025]
Abstract
Left ventricular hypertrophy, characterized by hypertrophy of individual cardiomyocytes, is an adaptive response to an increased cardiac workload that eventually leads to heart failure. Previous studies using neonatal rat ventricular myocytes (NRVMs) and animal models have revealed several genes and signaling pathways associated with hypertrophy and mechanical load. However, these models are not directly applicable to humans. Here, we studied the effect of cyclic mechanical stretch on gene expression of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) using RNA sequencing. hiPSC-CMs showed distinct hypertrophic changes in gene expression at the level of individual genes and in biological processes. We also identified several differentially expressed genes that have not been previously associated with cardiomyocyte hypertrophy and thus serve as attractive targets for future studies. When compared to previously published data attained from stretched NRVMs and human embryonic stem cell-derived cardiomyocytes, hiPSC-CMs displayed a smaller number of changes in gene expression, but the differentially expressed genes revealed more pronounced enrichment of hypertrophy-related biological processes and pathways. Overall, these results establish hiPSC-CMs as a valuable in vitro model for studying human cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Lotta Pohjolainen
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Heikki Ruskoaho
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Virpi Talman
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
13
|
Zhang F, Meier AB, Poch CM, Tian Q, Engelhardt S, Sinnecker D, Lipp P, Laugwitz KL, Moretti A, Dorn T. High-throughput optical action potential recordings in hiPSC-derived cardiomyocytes with a genetically encoded voltage indicator in the AAVS1 locus. Front Cell Dev Biol 2022; 10:1038867. [PMID: 36274846 PMCID: PMC9585323 DOI: 10.3389/fcell.2022.1038867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022] Open
Abstract
Cardiomyocytes (CMs) derived from human induced pluripotent stem cells (hiPSCs) represent an excellent in vitro model in cardiovascular research. Changes in their action potential (AP) dynamics convey information that is essential for disease modeling, drug screening and toxicity evaluation. High-throughput optical AP recordings utilizing intramolecular Förster resonance energy transfer (FRET) of the voltage-sensitive fluorescent protein (VSFP) have emerged as a substitute or complement to the resource-intensive patch clamp technique. Here, we functionally validated our recently generated voltage indicator hiPSC lines stably expressing CAG-promoter-driven VSFP in the AAVS1 safe harbor locus. By combining subtype-specific cardiomyocyte differentiation protocols, we established optical AP recordings in ventricular, atrial, and nodal CMs in 2D monolayers using fluorescence microscopy. Moreover, we achieved high-throughput optical AP measurements in single hiPSC-derived CMs in a 3D context. Overall, this system greatly expands the spectrum of possibilities for high-throughput, non-invasive and long-term AP analyses in cardiovascular research and drug discovery.
Collapse
Affiliation(s)
- Fangfang Zhang
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Anna B. Meier
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Christine M. Poch
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Qinghai Tian
- Molecular Cell Biology, Centre for Molecular Signaling (PZMS), Medical Faculty, Saarland University, Homburg, Germany
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Daniel Sinnecker
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Peter Lipp
- Molecular Cell Biology, Centre for Molecular Signaling (PZMS), Medical Faculty, Saarland University, Homburg, Germany
| | - Karl-Ludwig Laugwitz
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Alessandra Moretti
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- *Correspondence: Alessandra Moretti, ; Tatjana Dorn,
| | - Tatjana Dorn
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- *Correspondence: Alessandra Moretti, ; Tatjana Dorn,
| |
Collapse
|
14
|
Zhou B, Shi X, Tang X, Zhao Q, Wang L, Yao F, Hou Y, Wang X, Feng W, Wang L, Sun X, Wang L, Hu S. Functional isolation, culture and cryopreservation of adult human primary cardiomyocytes. Signal Transduct Target Ther 2022; 7:254. [PMID: 35882831 PMCID: PMC9325714 DOI: 10.1038/s41392-022-01044-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/11/2022] [Accepted: 05/26/2022] [Indexed: 12/27/2022] Open
Abstract
Cardiovascular diseases are the most common cause of death globally. Accurately modeling cardiac homeostasis, dysfunction, and drug response lies at the heart of cardiac research. Adult human primary cardiomyocytes (hPCMs) are a promising cellular model, but unstable isolation efficiency and quality, rapid cell death in culture, and unknown response to cryopreservation prevent them from becoming a reliable and flexible in vitro cardiac model. Combing the use of a reversible inhibitor of myosin II ATPase, (-)-blebbistatin (Bleb), and multiple optimization steps of the isolation procedure, we achieved a 2.74-fold increase in cell viability over traditional methods, accompanied by better cellular morphology, minimally perturbed gene expression, intact electrophysiology, and normal neurohormonal signaling. Further optimization of culture conditions established a method that was capable of maintaining optimal cell viability, morphology, and mitochondrial respiration for at least 7 days. Most importantly, we successfully cryopreserved hPCMs, which were structurally, molecularly, and functionally intact after undergoing the freeze-thaw cycle. hPCMs demonstrated greater sensitivity towards a set of cardiotoxic drugs, compared to human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Further dissection of cardiomyocyte drug response at both the population and single-cell transcriptomic level revealed that hPCM responses were more pronouncedly enriched in cardiac function, whereas hiPSC-CMs responses reflected cardiac development. Together, we established a full set of methodologies for the efficient isolation and prolonged maintenance of functional primary adult human cardiomyocytes in vitro, unlocking their potential as a cellular model for cardiovascular research, drug discovery, and safety pharmacology.
Collapse
Affiliation(s)
- Bingying Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, China
| | - Xun Shi
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoli Tang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Quanyi Zhao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, China
| | - Le Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Yao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongfeng Hou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,18 Jinma Industrial Park, Fangshan District, Beijing, China
| | - Xianqiang Wang
- Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Feng
- Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liqing Wang
- Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaogang Sun
- Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, China
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. .,Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, China. .,Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
15
|
Fermini B, Bell DC. On the perspective of an aging population and its potential impact on drug attrition and pre-clinical cardiovascular safety assessment. J Pharmacol Toxicol Methods 2022; 117:107184. [PMID: 35618160 DOI: 10.1016/j.vascn.2022.107184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 12/17/2022]
Abstract
There is no refuting that America's population is growing older: for the first time in US history, by 2034 older adults (defined as >65 years of age) are projected to outnumber children under the age of 18, representing approximately 70 million people or almost 25% of the population (Lloyd-Jones et al., 2010). Described as the "silver tsunami", this flood of older adults is driven by the baby boomers (people born after World War II, from 1946 to 1964): they are now reaching old age, living longer due to significant advances in healthcare coupled with a record low birth rate, resulting in a skewed elderly population demographic. Unfortunately, older adults are also becoming increasingly unhealthy. Many often suffer from several chronic disorders requiring the use of multiple medications at a level higher than any other age group, resulting in an increased risk of drug-drug interactions (DDIs) and adverse drug reactions (ADRs). Indeed, because of age-related changes in pharmacokinetics (PK) and pharmacodynamics (PD), older adults are also more vulnerable to drug toxicity. Prescribed drugs certainly improve a range of health outcomes, but also often cause considerable ADRs, leading to devastating consequences for patients, clinicians, and manufacturers. Therefore, safe and effective pharmacotherapy remains one of the greatest growing challenges in geriatric medicine. In this review we examine the effects of aging and its impact on the increased risk of experiencing ADRs, resulting in devastating consequences for patients and manufacturers. We assess the current regulatory considerations related to the development of drugs for this population and highlight issues, concerns, and propose alternatives to the standard battery of tests focused on assessing cardiovascular (CV) safety in an attempt to develop safer and efficient new drugs for the growing elderly demographic.
Collapse
Affiliation(s)
| | - Damian C Bell
- Sophion Bioscience A/S, Ballerup, Copenhagen, Denmark.
| |
Collapse
|
16
|
Lu HR, Kreir M, Karel VA, Tekle F, Geyskens D, Teisman A, Gallacher DJ. Identifying Acute Cardiac Hazard in Early Drug Discovery Using a Calcium Transient High-Throughput Assay in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Front Physiol 2022; 13:838435. [PMID: 35547580 PMCID: PMC9083324 DOI: 10.3389/fphys.2022.838435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Early identification of cardiac risk is essential for reducing late-stage attrition in drug development. We adapted the previously published cardiac hazard risk-scoring system using a calcium transient assay in human stem cell-derived CMs for the identification of cardiac risks recorded from the new hiPSC-CM line and investigated its predictivity and translational value based on the screening of a large number of reference and proprietary compounds. Methods: Evaluation of 55 reference drugs provided the translation of various pharmacological effects into a single hazard label (no, low, high, or very high hazard) using a Ca2+-sensitive fluorescent dye assay recorded by -by FDSS/µCell Functional Drug Screening System (Hamamatsu on hiPSC-CM line (FCDI iCell Cardiomyocytes2). Results: Application of the adapted hazard scoring system in the Ca2+ transient assay, using a second hiPS-CM line, provided comparable scoring results and predictivity of hazard, to the previously published scoring approach, with different pharmacological drug classes, as well as screening new chemical entities (NCE's) using a single hazard label from four different scoring levels (no, low, high, or very high hazard). The scoring system results also showed minimal variability across three different lots of hiPSC-CMs, indicating good reproducibility of the cell line. The predictivity values (sensitivity and specificity) for drug-induced acute cardiac risk for QT-interval prolongation and Torsade de pointes (TdPs) were >95% and statistical modeling confirmed the prediction of proarrhythmic risk. The outcomes of the NCEs also showed consistency with findings in other well-established in vitro and in vivo cardiac risk assays. Conclusion: Evaluation of a large list of reference compounds and internal NCEs has confirmed the applicability of the adaptations made to the previously published novel scoring system for the hiPSC-CMs. The validation also established the predictivity for drug-induced cardiac risks with good translation to other established preclinical in vitro and in vivo assays, confirming the application of this novel scoring system in different stem cell-CM lines for early cardiac hazard identification.
Collapse
Affiliation(s)
- Hua Rong Lu
- Global Safety Pharmacology, Predictive, Investigative and Translational Toxicology, Nonclinical Safety, Beerse, Belgium
| | - Mohamed Kreir
- Global Safety Pharmacology, Predictive, Investigative and Translational Toxicology, Nonclinical Safety, Beerse, Belgium
| | - Van Ammel Karel
- Global Safety Pharmacology, Predictive, Investigative and Translational Toxicology, Nonclinical Safety, Beerse, Belgium
| | - Fetene Tekle
- Discovery and Nonclinical Safety Statistics, Statistics and Decision Sciences, Quantitative Sciences, Janssen R&D, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Danny Geyskens
- Global Safety Pharmacology, Predictive, Investigative and Translational Toxicology, Nonclinical Safety, Beerse, Belgium
| | - Ard Teisman
- Global Safety Pharmacology, Predictive, Investigative and Translational Toxicology, Nonclinical Safety, Beerse, Belgium
| | - David J Gallacher
- Global Safety Pharmacology, Predictive, Investigative and Translational Toxicology, Nonclinical Safety, Beerse, Belgium
| |
Collapse
|
17
|
Fan X, Yang G, Kowitz J, Duru F, Saguner AM, Akin I, Zhou X, El-Battrawy I. Preclinical short QT syndrome models: studying the phenotype and drug-screening. Europace 2021; 24:481-493. [PMID: 34516623 DOI: 10.1093/europace/euab214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/05/2021] [Indexed: 11/14/2022] Open
Abstract
Cardiovascular diseases are the main cause of sudden cardiac death (SCD) in developed and developing countries. Inherited cardiac channelopathies are linked to 5-10% of SCDs, mainly in the young. Short QT syndrome (SQTS) is a rare inherited channelopathy, which leads to both atrial and ventricular tachyarrhythmias, syncope, and even SCD. International European Society of Cardiology guidelines include as diagnostic criteria: (i) QTc ≤ 340 ms on electrocardiogram, (ii) QTc ≤ 360 ms plus one of the follwing, an affected short QT syndrome pathogenic gene mutation, or family history of SQTS, or aborted cardiac arrest, or family history of cardiac arrest in the young. However, further evaluation of the QTc ranges seems to be required, which might be possible by assembling large short QT cohorts and considering genetic screening of the newly described pathogenic mutations. Since the mechanisms underlying the arrhythmogenesis of SQTS is unclear, optimal therapy for SQTS is still lacking. The disease is rare, unclear genotype-phenotype correlations exist in a bevy of cases and the absence of an international short QT registry limit studies on the pathophysiological mechanisms of arrhythmogenesis and therapy of SQTS. This leads to the necessity of experimental models or platforms for studying SQTS. Here, we focus on reviewing preclinical SQTS models and platforms such as animal models, heterologous expression systems, human-induced pluripotent stem cell-derived cardiomyocyte models and computer models as well as three-dimensional engineered heart tissues. We discuss their usefulness for SQTS studies to examine genotype-phenotype associations, uncover disease mechanisms and test drugs. These models might be helpful for providing novel insights into the exact pathophysiological mechanisms of this channelopathy and may offer opportunities to improve the diagnosis and treatment of patients with SQT syndrome.
Collapse
Affiliation(s)
- Xuehui Fan
- University of Mannheim, University of Heidelberg, Germany.,Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Guoqiang Yang
- Department of Acupuncture and Rehabilitation, Hospital (T.CM.) Affiliated to Southwest Medical University, Luzhou, Sichuan, China.,Research Unit of Molecular Imaging Probes, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | | | - Firat Duru
- Department of Cardiology, University Heart Centre, University Hospital Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Ardan M Saguner
- Department of Cardiology, University Heart Centre, University Hospital Zurich, Zurich, Switzerland
| | - Ibrahim Akin
- University of Mannheim, University of Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research) Partner Site, Heidelberg-Mannheim, Germany
| | - Xiaobo Zhou
- University of Mannheim, University of Heidelberg, Germany.,Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.,DZHK (German Center for Cardiovascular Research) Partner Site, Heidelberg-Mannheim, Germany
| | - Ibrahim El-Battrawy
- University of Mannheim, University of Heidelberg, Germany.,Department of Cardiology, University Heart Centre, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Ofir R. hiPSC-Derived Cells as Models for Drug Discovery. Int J Mol Sci 2021; 22:ijms22168626. [PMID: 34445332 PMCID: PMC8395303 DOI: 10.3390/ijms22168626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/02/2022] Open
Affiliation(s)
- Rivka Ofir
- BGU-iPSC Core Facility, The Regenerative Medicine & Stem Cell (RMSC) Research Center, Ben Gurion University of the Negev, Be'er Sheva 84105, Israel
| |
Collapse
|
19
|
Gähwiler EKN, Motta SE, Martin M, Nugraha B, Hoerstrup SP, Emmert MY. Human iPSCs and Genome Editing Technologies for Precision Cardiovascular Tissue Engineering. Front Cell Dev Biol 2021; 9:639699. [PMID: 34262897 PMCID: PMC8273765 DOI: 10.3389/fcell.2021.639699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) originate from the reprogramming of adult somatic cells using four Yamanaka transcription factors. Since their discovery, the stem cell (SC) field achieved significant milestones and opened several gateways in the area of disease modeling, drug discovery, and regenerative medicine. In parallel, the emergence of clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR-Cas9) revolutionized the field of genome engineering, allowing the generation of genetically modified cell lines and achieving a precise genome recombination or random insertions/deletions, usefully translated for wider applications. Cardiovascular diseases represent a constantly increasing societal concern, with limited understanding of the underlying cellular and molecular mechanisms. The ability of iPSCs to differentiate into multiple cell types combined with CRISPR-Cas9 technology could enable the systematic investigation of pathophysiological mechanisms or drug screening for potential therapeutics. Furthermore, these technologies can provide a cellular platform for cardiovascular tissue engineering (TE) approaches by modulating the expression or inhibition of targeted proteins, thereby creating the possibility to engineer new cell lines and/or fine-tune biomimetic scaffolds. This review will focus on the application of iPSCs, CRISPR-Cas9, and a combination thereof to the field of cardiovascular TE. In particular, the clinical translatability of such technologies will be discussed ranging from disease modeling to drug screening and TE applications.
Collapse
Affiliation(s)
- Eric K. N. Gähwiler
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Sarah E. Motta
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Marcy Martin
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA, United States
| | - Bramasta Nugraha
- Molecular Parasitology Lab, Institute of Parasitology, University of Zurich, Zurich, Switzerland
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Simon P. Hoerstrup
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Maximilian Y. Emmert
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Zurich, University and ETH Zurich, Zurich, Switzerland
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
| |
Collapse
|
20
|
Jozefczuk E, Szczepaniak P, Guzik TJ, Siedlinski M. Silencing of Sphingosine kinase 1 Affects Maturation Pathways in Mouse Neonatal Cardiomyocytes. Int J Mol Sci 2021; 22:ijms22073616. [PMID: 33807180 PMCID: PMC8037404 DOI: 10.3390/ijms22073616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022] Open
Abstract
Sphingosine kinase-1 (Sphk1) and its product, sphingosine-1-phosphate (S1P) are important regulators of cardiac growth and function. Numerous studies have reported that Sphk1/S1P signaling is essential for embryonic cardiac development and promotes pathological cardiac hypertrophy in adulthood. However, no studies have addressed the role of Sphk1 in postnatal cardiomyocyte (CM) development so far. The present study aimed to assess the molecular mechanism(s) by which Sphk1 silencing might influence CMs development and hypertrophy in vitro. Neonatal mouse CMs were transfected with siRNA against Sphk1 or negative control, and subsequently treated with 1 µM angiotensin II (AngII) or a control buffer for 24 h. The results of RNASeq analysis revealed that diminished expression of Sphk1 significantly accelerated neonatal CM maturation by inhibiting cell proliferation and inducing developmental pathways in the stress (AngII-induced) conditions. Importantly, similar effects were observed in the control conditions. Enhanced maturation of Sphk1-lacking CMs was further confirmed by the upregulation of the physiological hypertrophy-related signaling pathway involving Akt and downstream glycogen synthase kinase 3 beta (Gsk3β) downregulation. In summary, we demonstrated that the Sphk1 silencing in neonatal mouse CMs facilitated their postnatal maturation in both physiological and stress conditions.
Collapse
Affiliation(s)
- Ewelina Jozefczuk
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Cracow, Poland; (E.J.); (P.S.); (T.J.G.)
| | - Piotr Szczepaniak
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Cracow, Poland; (E.J.); (P.S.); (T.J.G.)
| | - Tomasz Jan Guzik
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Cracow, Poland; (E.J.); (P.S.); (T.J.G.)
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, UK
| | - Mateusz Siedlinski
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Cracow, Poland; (E.J.); (P.S.); (T.J.G.)
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, UK
- Correspondence:
| |
Collapse
|
21
|
Liu G, Liu Z, Cao N. Human pluripotent stem cell–based cardiovascular disease modeling and drug discovery. Pflugers Arch 2021; 473:1087-1097. [DOI: 10.1007/s00424-021-02542-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/04/2021] [Accepted: 02/15/2021] [Indexed: 12/16/2022]
|
22
|
Wang AYL. Human Induced Pluripotent Stem Cell-Derived Exosomes as a New Therapeutic Strategy for Various Diseases. Int J Mol Sci 2021; 22:1769. [PMID: 33578948 PMCID: PMC7916646 DOI: 10.3390/ijms22041769] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/07/2021] [Indexed: 02/07/2023] Open
Abstract
Recently, an increasing number of studies have demonstrated that induced pluripotent stem cells (iPSCs) and iPSC-derived cells display therapeutic effects, mainly via the paracrine mechanism in addition to their transdifferentiation ability. Exosomes have emerged as an important paracrine factor for iPSCs to repair injured cells through the delivery of bioactive components. Animal reports of iPSC-derived exosomes on various disease models are increasing, such as in heart, limb, liver, skin, bone, eye and neurological disease and so forth. This review aims to summarize the therapeutic effects of iPSC-derived exosomes on various disease models and their properties, such as angiogenesis, cell proliferation and anti-apoptosis, with the hopes of improving their potential role in clinical applications and functional restoration.
Collapse
Affiliation(s)
- Aline Yen Ling Wang
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, 5 Fu-hsing Street, Gueishan, Taoyuan 333, Taiwan
| |
Collapse
|