1
|
Kaisanlahti A, Turunen J, Hekkala J, Mishra S, Karikka S, Amatya SB, Paalanne N, Kruger J, Portaankorva AM, Koivunen J, Jukkola A, Vihinen P, Auvinen P, Leppä S, Karihtala P, Koivukangas V, Hukkanen J, Vainio S, Samoylenko A, Bart G, Lahti L, Reunanen J, Tejesvi MV, Ruuska-Loewald T. Gut microbiota-derived extracellular vesicles form a distinct entity from gut microbiota. mSystems 2025:e0031125. [PMID: 40298395 DOI: 10.1128/msystems.00311-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/03/2025] [Indexed: 04/30/2025] Open
Abstract
Extracellular vesicles (EVs), nanoparticles secreted by both gram-negative and gram-positive bacteria, carry various biomolecules and cross biological barriers. Gut microbiota-derived EVs are currently being investigated as a communication mechanism between the microbiota and the host. Few clinical studies, however, have investigated gut microbiota-derived EVs. Here, we show that machine learning models were able to accurately distinguish gut microbiota and respective microbiota-derived EV samples according to their taxonomic composition both within each data set (area under the curve [AUC] 0.764-1.00) and in a cross-study setting (AUC 0.701-0.997). These results show that gut microbiota-derived EVs form a distinct taxonomic entity from gut microbiota. Thus, conventional gut microbiota composition may not correctly reflect communication between the gut microbiota and the host unless microbiota-derived EVs are reported separately.IMPORTANCEGut microbiota-derived extracellular vesicles (EVs) have been suggested to be a communication mechanism between the gut microbiota and the human body. However, the data on EV secretion from the gut microbiota remain limited. To investigate and compare the composition of gut microbiota-derived EVs to gut microbiota composition, we used a machine learning approach to classify 16S rRNA gene sequencing data in seven clinical data sets incorporating both gut microbiota and gut microbiota-derived EV samples. The results of the study show that microbiota-derived EVs form a separate taxonomic entity from the gut microbiota. Gut microbiota-derived EVs should be included in clinical studies that investigate gut microbiota to gain more comprehensive insight into gut microbiota-host communication.
Collapse
Affiliation(s)
- Anna Kaisanlahti
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, Oulu, Finland
| | - Jenni Turunen
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
| | - Jenni Hekkala
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, Oulu, Finland
| | - Surbhi Mishra
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, Oulu, Finland
| | - Sonja Karikka
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, Oulu, Finland
- Disease Networks Research Unit, University of Oulu, Oulu, Finland
| | - Sajeen Bahadur Amatya
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, Oulu, Finland
| | - Niko Paalanne
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| | - Johanna Kruger
- Research Unit of Clinical Medicine, Neurology, University of Oulu, Oulu, Finland
- Neurocenter, Neurology, Oulu University Hospital, Oulu, Finland
- Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Anne M Portaankorva
- Research Unit of Clinical Medicine, Neurology, University of Oulu, Oulu, Finland
- Clinical Neurosciences, University of Helsinki, Helsinki, Finland
| | - Jussi Koivunen
- Department of Medical Oncology and Radiotherapy and Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Arja Jukkola
- Tampere Cancer Center, Tampere University, Tampere, Finland
| | - Pia Vihinen
- FICAN West Cancer Centre, Turku University Hospital, University of Turku, Turku, Finland
| | - Päivi Auvinen
- Cancer Center, Kuopio University Hospital, The Wellbeing services county of North Savo, Kuopio, Finland
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Sirpa Leppä
- Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, University of Helsinki, Helsinki, Finland
- Research Programs Unit, Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, and iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Peeter Karihtala
- Department of Medical Oncology and Radiotherapy and Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
- Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, University of Helsinki, Helsinki, Finland
| | - Vesa Koivukangas
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
| | - Janne Hukkanen
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu, Oulu University Hospital, Oulu, Finland
| | - Seppo Vainio
- Disease Networks Research Unit, University of Oulu, Oulu, Finland
- Kvantum Institute, University of Oulu, Oulu, Finland
| | | | - Genevieve Bart
- Disease Networks Research Unit, University of Oulu, Oulu, Finland
| | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| | - Justus Reunanen
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, Oulu, Finland
| | | | - Terhi Ruuska-Loewald
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
2
|
Zhou Z, Ma Y, Zhang D, Ji R, Wang Y, Zhao J, Ma C, Zhu H, Shen H, Jiang X, Niu Y, Lu J, Zhang B, Tu L, Zhang H, Ma X, Chen P. Microbiome and fragmentation pattern of blood cell-free DNA and fecal metagenome enhance colorectal cancer micro-dysbiosis and diagnosis analysis: a proof-of-concept study. mSystems 2025:e0027625. [PMID: 40298367 DOI: 10.1128/msystems.00276-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/02/2025] [Indexed: 04/30/2025] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer, and it can be prevented by performing early screening. As a hallmark of cancer, the human microbiome plays important roles in the occurrence and development of CRC. Recently, the blood microbiome has been proposed as an effective diagnostic tool for various diseases, yet its performance on CRC deserves further exploration. In this study, 133 human feces and 120 blood samples are collected, including healthy individuals, adenoma patients, and CRC patients. The blood cfDNA and fecal genome are subjected to shotgun metagenome sequencing. After removing human sequences, the microbial sequences in blood are analyzed. Based on the differential microbes and functions, random forest (RF) models are constructed for adenoma and CRC diagnosis. The results show that alterations of blood microbial signatures can be captured under low coverage (even at 3×). RF diagnostic models based on blood microbial markers achieve high area under the curve (AUC) values for adenoma patients (0.8849) and CRC patients (0.9824). When the fragmentation pattern is combined with microbial and KEGG markers, higher AUC values are obtained. Furthermore, compared to the blood microbiome, the fecal microbiome shows a different community composition, whereas their changes in KEGG pathways are similar. Pathogenic bacteria Fusobacterium nucleatum (F. nucleatum) in feces increased gradually from the healthy group to the adenoma and CRC groups. Additionally, F. nucleatum in feces and blood shows a positive correlation in CRC patients. Cumulatively, the integration of blood microbiome and fragmentation pattern is promising for CRC diagnosis.IMPORTANCEThe cell-free DNA of the human microbiome can enter the blood and can be used for cancer diagnosis, whereas its diagnostic potential in colorectal cancer and association with gut microbiome has not been explored. The microbial sequences in blood account for less than 1% of the total sequences. The blood microbial composition, KEGG functions, and fragmentation pattern are different among healthy individuals, adenoma patients, and CRC patients. Machine learning models based on these differential characteristics achieve high diagnostic accuracy, especially when they are integrated with fragmentation patterns. The great difference between fecal and blood microbiomes indicates that microbial sequences in blood may originate from various organs. Therefore, this study provides new insights into the community composition and functions of the blood microbiome of CRC and proposes an effective non-invasive diagnostic tool.
Collapse
Affiliation(s)
- Zhongkun Zhou
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Yunhao Ma
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Dekui Zhang
- The Second Hospital of Lanzhou University, Lanzhou, China
| | - Rui Ji
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Yiqing Wang
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Jianfang Zhao
- The Third People's Hospital of Gansu Province, Lanzhou, China
| | - Chi Ma
- The Second Hospital of Lanzhou University, Lanzhou, China
| | - Hongmei Zhu
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Haofei Shen
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Xinrong Jiang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Yuqing Niu
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Juan Lu
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Baizhuo Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Lixue Tu
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Hua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Xin Ma
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Peng Chen
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Miceli RT, Chen T, Nose Y, Tichkule S, Brown B, Fullard JF, Saulsbury MD, Heyliger SO, Gnjatic S, Kyprianou N, Cordon‐Cardo C, Sahoo S, Taioli E, Roussos P, Stolovitzky G, Gonzalez‐Kozlova E, Dogra N. Extracellular vesicles, RNA sequencing, and bioinformatic analyses: Challenges, solutions, and recommendations. J Extracell Vesicles 2024; 13:e70005. [PMID: 39625409 PMCID: PMC11613500 DOI: 10.1002/jev2.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 12/06/2024] Open
Abstract
Extracellular vesicles (EVs) are heterogeneous entities secreted by cells into their microenvironment and systemic circulation. Circulating EVs carry functional small RNAs and other molecular footprints from their cell of origin, and thus have evident applications in liquid biopsy, therapeutics, and intercellular communication. Yet, the complete transcriptomic landscape of EVs is poorly characterized due to critical limitations including variable protocols used for EV-RNA extraction, quality control, cDNA library preparation, sequencing technologies, and bioinformatic analyses. Consequently, there is a gap in knowledge and the need for a standardized approach in delineating EV-RNAs. Here, we address these gaps by describing the following points by (1) focusing on the large canopy of the EVs and particles (EVPs), which includes, but not limited to - exosomes and other large and small EVs, lipoproteins, exomeres/supermeres, mitochondrial-derived vesicles, RNA binding proteins, and cell-free DNA/RNA/proteins; (2) examining the potential functional roles and biogenesis of EVPs; (3) discussing various transcriptomic methods and technologies used in uncovering the cargoes of EVPs; (4) presenting a comprehensive list of RNA subtypes reported in EVPs; (5) describing different EV-RNA databases and resources specific to EV-RNA species; (6) reviewing established bioinformatics pipelines and novel strategies for reproducible EV transcriptomics analyses; (7) emphasizing the significant need for a gold standard approach in identifying EV-RNAs across studies; (8) and finally, we highlight current challenges, discuss possible solutions, and present recommendations for robust and reproducible analyses of EVP-associated small RNAs. Overall, we seek to provide clarity on the transcriptomics landscape, sequencing technologies, and bioinformatic analyses of EVP-RNAs. Detailed portrayal of the current state of EVP transcriptomics will lead to a better understanding of how the RNA cargo of EVPs can be used in modern and targeted diagnostics and therapeutics. For the inclusion of different particles discussed in this article, we use the terms large/small EVs, non-vesicular extracellular particles (NVEPs), EPs and EVPs as defined in MISEV guidelines by the International Society of Extracellular Vesicles (ISEV).
Collapse
Affiliation(s)
- Rebecca T. Miceli
- Department of Pathology, Molecular and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Tzu‐Yi Chen
- Department of Pathology, Molecular and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Yohei Nose
- Department of ImmunologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Swapnil Tichkule
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Briana Brown
- Department of Pathology, Molecular and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - John F. Fullard
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Genetics and Genomics SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Center for Disease Neurogenetics, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Marilyn D. Saulsbury
- Department of Pharmaceutical Sciences, School of PharmacyHampton UniversityHamptonVirginiaUSA
| | - Simon O. Heyliger
- Department of Pharmaceutical Sciences, School of PharmacyHampton UniversityHamptonVirginiaUSA
| | - Sacha Gnjatic
- Department of ImmunologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Natasha Kyprianou
- Department of Pathology, Molecular and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Carlos Cordon‐Cardo
- Department of Pathology, Molecular and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Susmita Sahoo
- Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Emanuela Taioli
- Department of Population Health and ScienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Thoracic SurgeryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Panos Roussos
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Genetics and Genomics SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Center for Disease Neurogenetics, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Center for Precision Medicine and Translational TherapeuticsJames J. Peters VA Medicinal CenterBronxNew YorkUSA
- Mental Illness Research Education and Clinical Center (MIRECC)James J. Peters VA Medicinal CenterBronxNew YorkUSA
| | - Gustavo Stolovitzky
- Department of Genetics and Genomics SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Biomedical Data Sciences Hub (Bio‐DaSH), Department of Pathology, NYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Edgar Gonzalez‐Kozlova
- Department of ImmunologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Navneet Dogra
- Department of Pathology, Molecular and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Genetics and Genomics SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Icahn Genomics Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- AI and Human HealthIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
4
|
Sharma S, Artner T, Preissner KT, Lang IM. Nucleic acid liquid biopsies in cardiovascular disease: Cell-free RNA liquid biopsies in cardiovascular disease. Atherosclerosis 2024; 398:118584. [PMID: 39306538 DOI: 10.1016/j.atherosclerosis.2024.118584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/15/2024] [Accepted: 08/29/2024] [Indexed: 11/17/2024]
Abstract
Cardiovascular diseases (CVD) and their complications continue to be the leading cause of mortality globally. With recent advancements in molecular analytics, individualized treatments are gradually applied to the diagnosis and treatment of CVD. In the field of diagnostics, liquid biopsy combined with modern analytical technologies is the most popular natural source to identify disease biomarkers, as has been successfully demonstrated in the cancer field. While it is not easy to obtain any diseased tissue for different types of CVD such as atherosclerosis, deep vein thrombosis or stroke, liquid biopsies provide a simple and non-invasive alternative to surgical tissue specimens to obtain dynamic molecular information reflecting disease states. The release of cell-free ribonucleic acids (cfRNA) from stressed/damaged/dying and/or necrotic cells is a common physiological phenomenon. CfRNAs are a heterogeneous population of various types of extracellular RNA found in body fluids (blood, urine, saliva, cerebrospinal fluid) or in association with vascular/atherosclerotic tissue, offering insights into disease pathology on a diagnostic front. In particular, cf-ribosomal RNA has been shown to act as a damaging molecule in several cardio-vascular disease conditions. Moreover, such pathophysiological functions of cfRNA in CVD have been successfully antagonized by the administration of RNases. In this review, we discuss the origin, structure, types, and potential utilization of cfRNA in the diagnosis of CVD. Together with the analysis of established CVD biomarkers, the profiling of cfRNA in body fluids may thereby provide a promising approach for early disease detection and monitoring.
Collapse
Affiliation(s)
- Smriti Sharma
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Vienna, Austria
| | - Tyler Artner
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Vienna, Austria
| | - Klaus T Preissner
- Kerckhoff-Heart Research Institute, Department Cardiology, Justus-Liebig-University, Giessen, Germany
| | - Irene M Lang
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Deng J, Huang Y, Yu K, Luo H, Zhou D, Li D. Changes in the gut microbiome of patients with esophageal cancer: A systematic review and meta-analysis based on 16S gene sequencing technology. Microb Pathog 2024; 193:106784. [PMID: 38971508 DOI: 10.1016/j.micpath.2024.106784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Esophageal cancer (EC) possesses a high degree of malignancy and exhibits poor therapeutic outcomes and prognosis. However, its pathogenesis remains unclear. With the development of macrogene sequencing technology, changes in the intestinal flora have been found to be highly related to the development of EC, although discrepancies and controversies remain in this research area. MATERIALS AND METHODS We comprehensively searched the PubMed, EMBASE, and Cochrane's Central Controlled Trials Register and the Scientific Network's database search projects based on systematically reviewed preferred reporting projects and meta-analyses. We used Engauge Digitizer for data extraction and Stata 15.1 for data analysis. In addition, we used the Newcastle-Ottawa Scale for grade grading and forest and funnel plots, sensitivity, and Egger and Beggar tests to evaluate the risk of bias. RESULTS This study included 10 studies that assessed stool, tumor, and nontumor esophageal mucosa (gastroscopy and surgical resection) samples from 527 individuals, including 273 patients with EC and 254 healthy control group. We observed remarkable differences in microbial diversity in EC patients compared to healthy controls. The Chao1 index (46.01 vs. 42.67) was significantly increased in EC patients, whereas the Shannon index (14.90 vs. 19.05), ACE (39.24 vs. 58.47), and OTUs(28.93 vs. 70.10) were significantly lower. At the phylum level, the abundance of Bacteroidetes (37.89 vs. 32.77) increased significantly, whereas that of Firmicutes (37.63 vs. 38.72) decreased significantly; the abundance of Clostridium and Verruciformis increased, while that of Actinobacteria and Proteobacteria decreased to varying degrees. The abundance of Bacteroides (8.60 vs. 15.10) and Streptococcaceae (15.08 vs. 27.05) significantly reduced in EC. CONCLUSIONS According to our meta-analysis, in patients with EC, the Chao1 index increased, whereas the Shannon and the OTUs decreased. At the phylum level, the abundance of Firmicutes decreased significantly, whereas that of Bacteroidetes and Proteobacteria increased significantly. At the genus/family level, the abundance of Bacteroidaceae, Prevotellaceae and Streptococcaceae decreased significantly, whereas that of Veillonellaceae increased. This meta-analysis identified changes in gut microbiota in patients with EC; however, its conclusions were inconsistent.
Collapse
Affiliation(s)
- Jieyin Deng
- The Affiliated Hospital, Southwest Medical University, Luzhou 611630, China; Department of General Medicine, General Hospital of PLA Western Theater Command, Chengdu 610083, China
| | - Ye Huang
- Department of Nursing, Nursing School, Chengdu Medical College, Chengdu 610083, China
| | - Ke Yu
- Department of General Medicine, General Hospital of PLA Western Theater Command, Chengdu 610083, China
| | - Hong Luo
- Department of Oncology, General Hospital of PLA Western Theater Command, Chengdu 610083, China
| | - Daijun Zhou
- Department of Oncology, General Hospital of PLA Western Theater Command, Chengdu 610083, China.
| | - Dong Li
- The Affiliated Hospital, Southwest Medical University, Luzhou 611630, China; Department of Oncology, General Hospital of PLA Western Theater Command, Chengdu 610083, China.
| |
Collapse
|
6
|
Santacroce L, Charitos IA, Colella M, Palmirotta R, Jirillo E. Blood Microbiota and Its Products: Mechanisms of Interference with Host Cells and Clinical Outcomes. Hematol Rep 2024; 16:440-453. [PMID: 39051416 PMCID: PMC11270377 DOI: 10.3390/hematolrep16030043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/01/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
In healthy conditions, blood was considered a sterile environment until the development of new analytical approaches that allowed for the detection of circulating bacterial ribosomal DNA. Currently, debate exists on the origin of the blood microbiota. According to advanced research using dark field microscopy, fluorescent in situ hybridization, flow cytometry, and electron microscopy, so-called microbiota have been detected in the blood. Conversely, others have reported no evidence of a common blood microbiota. Then, it was hypothesized that blood microbiota may derive from distant sites, e.g., the gut or external contamination of blood samples. Alteration of the blood microbiota's equilibrium may lead to dysbiosis and, in certain cases, disease. Cardiovascular, respiratory, hepatic, kidney, neoplastic, and immune diseases have been associated with the presence of Gram-positive and Gram-negative bacteria and/or their products in the blood. For instance, lipopolysaccharides (LPSs) and endotoxins may contribute to tissue damage, fueling chronic inflammation. Blood bacteria can interact with immune cells, especially with monocytes that engulf microorganisms and T lymphocytes via spontaneous binding to their membranes. Moreover, LPSs, extracellular vesicles, and outer membrane vesicles interact with red blood cells and immune cells, reaching distant organs. This review aims to describe the composition of blood microbiota in healthy individuals and those with disease conditions. Furthermore, special emphasis is placed on the interaction of blood microbiota with host cells to better understand disease mechanisms.
Collapse
Affiliation(s)
- Luigi Santacroce
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy (R.P.); (E.J.)
| | - Ioannis Alexandros Charitos
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, Institute of Bari, 70124 Bari, Italy;
| | - Marica Colella
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy (R.P.); (E.J.)
- Doctoral School, eCampus University, 22060 Novedrate, Italy
| | - Raffaele Palmirotta
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy (R.P.); (E.J.)
| | - Emilio Jirillo
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy (R.P.); (E.J.)
| |
Collapse
|
7
|
Hu L, Hong G, Li J, Chen M, Chang CJ, Cheng PJ, Zhang Z, Zhang X, Chen H, Zhuang Y, Li Y. Metformin modifies plasma microbial-derived extracellular vesicles in polycystic ovary syndrome with insulin resistance. J Ovarian Res 2024; 17:136. [PMID: 38956672 PMCID: PMC11218234 DOI: 10.1186/s13048-024-01444-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024] Open
Abstract
INTRODUCTION This study investigated changes in plasma microbial-derived extracellular vesicles (EVs) in patients with polycystic ovary syndrome and insulin resistance (PCOS-IR) before and after metformin treatment, and aimed to identify bacterial taxa within EVs that were biologically and statistically significant for diagnosis and treatment. METHODS The case-control study was conducted at Xiamen Chang Gung Hospital, Hua Qiao University. Plasma samples were collected from five PCOS-IR patients of childbearing age before and after 3 months of metformin treatment, and the samples were sequenced. The diversity and taxonomic composition of different microbial communities were analyzed through full-length 16 S glycosomal RNA gene sequencing. RESULTS After metformin treatment, fasting plasma glucose levels and IR degree of PCOS-IR patients were significantly improved. The 16 S analysis of plasma EVs from metformin-treated patients showed higher microbial diversity. There were significant differences in EVs derived from some environmental bacteria before and after metformin treatment. Notably, Streptococcus salivarius was more abundant in the metformin-treated group, suggesting it may be a potential probiotic. DISCUSSION The study demonstrated changes in the microbial composition of plasma EVs before and after metformin treatment. The findings may offer new insights into the pathogenesis of PCOS-IR and provide new avenues for research.
Collapse
Affiliation(s)
- Liping Hu
- Department of Laboratory Medicine, Xiamen Chang Gung Hospital Hua Qiao University, Xiamen, 361028, P. R. China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, P. R. China
| | - Guolin Hong
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University,School of Medicine, Xiamen University, Xiamen, 361005, P. R. China.
| | - Jingzhi Li
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, P. R. China
| | - Mengkun Chen
- Department of Gynecology and Obstetrics, Xiamen Chang Gung Hospital Hua Qiao University, Xiamen, P. R. China
| | - Chih-Jung Chang
- School of Medicine, Hua Qiao University, Quanzhou, P. R. China
- Medical Research Center , Xiamen Chang Gung Hospital Hua Qiao University, Xiamen, P. R. China
- Drug Hypersensitivity Clinical and Research Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, Linkou, Taiwan
| | - Po-Jen Cheng
- Department of Gynecology and Obstetrics, Xiamen Chang Gung Hospital Hua Qiao University, Xiamen, P. R. China
| | - Zhimei Zhang
- Department of Laboratory Medicine, Xiamen Chang Gung Hospital Hua Qiao University, Xiamen, 361028, P. R. China
| | - Xinli Zhang
- Department of Gynecology and Obstetrics, Xiamen Chang Gung Hospital Hua Qiao University, Xiamen, P. R. China
| | - Huiping Chen
- Department of Gynecology and Obstetrics, Xiamen Chang Gung Hospital Hua Qiao University, Xiamen, P. R. China
| | - Yingting Zhuang
- School of Pharmacy, Fujian Medical University, Fuzhou, P. R. China.
| | - Yuqin Li
- Department of Gynecology and Obstetrics, Xiamen Chang Gung Hospital Hua Qiao University, Xiamen, P. R. China.
| |
Collapse
|
8
|
Nazeer N, Gurjar V, Ratre P, Dewangan R, Zaidi K, Tiwari R, Soni N, Bhargava A, Mishra PK. Cardiovascular disease risk assessment through sensing the circulating microbiome with perovskite quantum dots leveraging deep learning models for bacterial species selection. Mikrochim Acta 2024; 191:255. [PMID: 38594377 DOI: 10.1007/s00604-024-06343-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
Perovskite quantum dots (PQDs) are novel nanomaterials wherein perovskites are used to formulate quantum dots (QDs). The present study utilizes the excellent fluorescence quantum yields of these nanomaterials to detect 16S rRNA of circulating microbiome for risk assessment of cardiovascular diseases (CVDs). A long short-term memory (LSTM) deep learning model was used to find the association of the circulating bacterial species with CVD risk, which showed the abundance of three different bacterial species (Bauldia litoralis (BL), Hymenobacter properus (HYM), and Virgisporangium myanmarense (VIG)). The observations suggested that the developed nano-sensor provides high sensitivity, selectivity, and applicability. The observed sensitivities for Bauldia litoralis, Hymenobacter properus, and Virgisporangium myanmarense were 0.606, 0.300, and 0.281 fg, respectively. The developed sensor eliminates the need for labelling, amplification, quantification, and biochemical assessments, which are more labour-intensive, time-consuming, and less reliable. Due to the rapid detection time, user-friendly nature, and stability, the proposed method has a significant advantage in facilitating point-of-care testing of CVDs in the future. This may also facilitate easy integration of the approach into various healthcare settings, making it accessible and valuable for resource-constrained environments.
Collapse
Affiliation(s)
- Nazim Nazeer
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bypass Road, Bhauri, Bhopal, 462 030, MP, India
| | - Vikas Gurjar
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bypass Road, Bhauri, Bhopal, 462 030, MP, India
| | - Pooja Ratre
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bypass Road, Bhauri, Bhopal, 462 030, MP, India
| | - Rakhi Dewangan
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bypass Road, Bhauri, Bhopal, 462 030, MP, India
| | - Kaniz Zaidi
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bypass Road, Bhauri, Bhopal, 462 030, MP, India
| | - Rajnarayan Tiwari
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bypass Road, Bhauri, Bhopal, 462 030, MP, India
| | - Nikita Soni
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bypass Road, Bhauri, Bhopal, 462 030, MP, India
| | - Arpit Bhargava
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bypass Road, Bhauri, Bhopal, 462 030, MP, India
- Faculty of Science, Ram Krishna Dharmarth Foundation (RKDF) University, Bhopal, India
| | - Pradyumna Kumar Mishra
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bypass Road, Bhauri, Bhopal, 462 030, MP, India.
| |
Collapse
|
9
|
Liu W, Pi Z, Wang X, Shang C, Song C, Wang R, He Z, Zhang X, Wan Y, Mao W. Microbiome and lung cancer: carcinogenic mechanisms, early cancer diagnosis, and promising microbial therapies. Crit Rev Oncol Hematol 2024; 196:104322. [PMID: 38460928 DOI: 10.1016/j.critrevonc.2024.104322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/13/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
Microbiomes in the lung, gut, and oral cavity are correlated with lung cancer initiation and progression. While correlations have been preliminarily established in earlier studies, delving into microbe-mediated carcinogenic mechanisms will extend our understanding from correlation to causation. Building upon the causative relationships between microbiome and lung cancer, a novel concept of microbial biomarkers has emerged, mainly encompassing cancer-specific bacteria and circulating microbiome DNA. They might function as noninvasive liquid biopsy techniques for lung cancer early detection. Furthermore, potential microbial therapies have displayed initial efficacy in lung cancer treatment, providing multiple avenues for therapeutic intervention. Herein, we will discuss the molecular mechanisms and signaling pathways through which microbes influence lung cancer initiation and development. Additionally, we will summarize recent findings on microbial biomarkers as a member of tumor liquid biopsy techniques and provide an overview of the latest advances in various microbe-assisted/mediated therapeutic approaches for lung cancer.
Collapse
Affiliation(s)
- Weici Liu
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Zheshun Pi
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Xiaokun Wang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chenwei Shang
- The First Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chenghu Song
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Ruixin Wang
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Zhao He
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Xu Zhang
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China.
| | - Yuan Wan
- The Pq Laboratory of Biome Dx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton 13850, USA.
| | - Wenjun Mao
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China.
| |
Collapse
|
10
|
Gu Z, Liu Y. A bibliometric and visualized in oral microbiota and cancer research from 2013 to 2022. Discov Oncol 2024; 15:24. [PMID: 38302656 PMCID: PMC10834930 DOI: 10.1007/s12672-024-00878-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/30/2024] [Indexed: 02/03/2024] Open
Abstract
Numerous studies have highlighted the implication of oral microbiota in various cancers. However, no bibliometric analysis has been conducted on the relationship between oral microbiota and cancer. This bibliometric analysis aimed to identify the research hotspots in oral microbiota and cancer research, as well as predict future research trends. The literature published relating to oral microbiota and cancer was searched from the Web of Science Core Collection database (WoSCC) from 2013 to 2022. VOSviewer or Citespace software was used to perform the bibliometric analysis, focusing on countries, institutions, authors, journals, keywords and references. A total of 1516 publications were included in the analysis. The number of publications related oral microbiota and cancer increased annually, reaching its peak in 2022 with 287 papers. The United States (456) and China (370) were the countries with the most publications and made significant contributions to the field. Sears CL and Zhou XD were the most productive authors. The high frequency of keywords revealed key topics, including cancer (colorectal cancer, oral cancer), oral microbiota (Fusobacterium nucleatum, Porphyromonas gingivalis), and inflammation (periodontal disease). The latest trend keywords were F. nucleatum, dysbiosis, prognosis, tumor microenvironment, gastric microbiota, complications and survival, suggesting a new hotspot in the field of oral microbiota and cancer. Our study provides a comprehensive analysis of oral microbiota and cancer research, revealing an increase in publications in recent years. Future research directions will continue to focus on the diversity of oral microbiota impacted by cancers and the underlying mechanism connecting them, providing new ideas for targeted therapy of tumorigenesis.
Collapse
Affiliation(s)
- Zhiyu Gu
- Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Yunkun Liu
- Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
11
|
Ji N, Wang F, Wang M, Zhang W, Liu H, Su J. Engineered bacterial extracellular vesicles for central nervous system diseases. J Control Release 2023; 364:46-60. [PMID: 37866404 DOI: 10.1016/j.jconrel.2023.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
The prevalence of central nervous system (CNS) diseases is on the rise as the population ages. The presence of various obstacles, particularly the blood-brain barrier (BBB), poses a challenge for drug delivery to the CNS. An expanding body of study suggests that gut microbiota (GM) plays an important role in CNS diseases. The communication between GM and CNS diseases has received increasing attention. Accumulating evidence indicates that the GM can modulate host signaling pathways to regulate distant organ functions by delivering bioactive substances to host cells via bacterial extracellular vesicles (BEVs). BEVs have emerged as a promising platform for the treatment of CNS diseases due to their nanostructure, ability to penetrate the BBB, as well as their low toxicity, high biocompatibility, ease of modification and large-scale culture. Here, we discuss the biogenesis, internalization mechanism and engineering modification methods of BEVs. We then focus on the use and potential role of BEVs in the treatment of CNS diseases. Finally, we outline the main challenges and future prospects for the application of BEVs in CNS diseases. We hope that the comprehensive understanding of the BEVs-based gut-brain axis will provide new insights into the treatment of CNS diseases.
Collapse
Affiliation(s)
- Ning Ji
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Fuxiao Wang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Miaomiao Wang
- Department of Rehabilitation Medicine, Shanghai Zhongye Hospital, Shanghai 200941, China
| | - Wencai Zhang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangdong, Guangzhou 510630, China.
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
12
|
Lücking D, Mercier C, Alarcón-Schumacher T, Erdmann S. Extracellular vesicles are the main contributor to the non-viral protected extracellular sequence space. ISME COMMUNICATIONS 2023; 3:112. [PMID: 37848554 PMCID: PMC10582014 DOI: 10.1038/s43705-023-00317-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023]
Abstract
Environmental virus metagenomes, commonly referred to as "viromes", are typically generated by physically separating virus-like particles (VLPs) from the microbial fraction based on their size and mass. However, most methods used to purify VLPs, enrich extracellular vesicles (EVs) and gene transfer agents (GTAs) simultaneously. Consequently, the sequence space traditionally referred to as a "virome" contains host-associated sequences, transported via EVs or GTAs. We therefore propose to call the genetic material isolated from size-fractionated (0.22 µm) and DNase-treated samples protected environmental DNA (peDNA). This sequence space contains viral genomes, DNA transduced by viruses and DNA transported in EVs and GTAs. Since there is no genetic signature for peDNA transported in EVs, GTAs and virus particles, we rely on the successful removal of contaminating remaining cellular and free DNA when analyzing peDNA. Using marine samples collected from the North Sea, we generated a thoroughly purified peDNA dataset and developed a bioinformatic pipeline to determine the potential origin of the purified DNA. This pipeline was applied to our dataset as well as existing global marine "viromes". Through this pipeline, we identified known GTA and EV producers, as well as organisms with actively transducing proviruses as the source of the peDNA, thus confirming the reliability of our approach. Additionally, we identified novel and widespread EV producers, and found quantitative evidence suggesting that EV-mediated gene transfer plays a significant role in driving horizontal gene transfer (HGT) in the world's oceans.
Collapse
Affiliation(s)
- Dominik Lücking
- Max-Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| | - Coraline Mercier
- Max-Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| | | | - Susanne Erdmann
- Max-Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany.
| |
Collapse
|
13
|
Li D, Zhu L, Wang Y, Zhou X, Li Y. Bacterial outer membrane vesicles in cancer: Biogenesis, pathogenesis, and clinical application. Biomed Pharmacother 2023; 165:115120. [PMID: 37442066 DOI: 10.1016/j.biopha.2023.115120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/18/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Outer membrane vesicles (OMVs) are spherical, nano-sized particles of bilayer lipid structure secreted by Gram-negative bacteria. They contain a series of cargos from bacteria and are important messengers for communication between bacteria and their environment. OMVs play multiple roles in bacterial survival and adaptation and can affect host physiological functions and disease development by acting on host cell membranes and altering host cell signaling pathways. This paper summarizes the mechanisms of OMV genesis and the multiple roles of OMVs in the tumor microenvironment. Also, this paper discusses the prospects of OMVs for a wide range of applications in drug delivery, tumor diagnosis, and therapy.
Collapse
Affiliation(s)
- Deming Li
- Anesthesia Department, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, Liaoning, China
| | - Lisi Zhu
- Department of General surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, Liaoning, China
| | - Yuxiao Wang
- Anesthesia Department, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, Liaoning, China
| | - Xiangyu Zhou
- Department of General surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, Liaoning, China.
| | - Yan Li
- Department of General surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, Liaoning, China.
| |
Collapse
|
14
|
Marascio N, Scarlata GGM, Romeo F, Cicino C, Trecarichi EM, Quirino A, Torti C, Matera G, Russo A. The Role of Gut Microbiota in the Clinical Outcome of Septic Patients: State of the Art and Future Perspectives. Int J Mol Sci 2023; 24:ijms24119307. [PMID: 37298258 DOI: 10.3390/ijms24119307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Sepsis is a life-threatening multiple-organ dysfunction caused by a dysregulated host response to infection, with high mortality worldwide; 11 million deaths per year are attributable to sepsis in high-income countries. Several research groups have reported that septic patients display a dysbiotic gut microbiota, often related to high mortality. Based on current knowledge, in this narrative review, we revised original articles, clinical trials, and pilot studies to evaluate the beneficial effect of gut microbiota manipulation in clinical practice, starting from an early diagnosis of sepsis and an in-depth analysis of gut microbiota.
Collapse
Affiliation(s)
- Nadia Marascio
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Graecia" University of Catanzaro, "Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Giuseppe Guido Maria Scarlata
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Graecia" University of Catanzaro, "Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Francesco Romeo
- Infectious and Tropical Diseases Unit, Department of Medical and Surgical Sciences, "Magna Graecia" University, "Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Claudia Cicino
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Graecia" University of Catanzaro, "Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Enrico Maria Trecarichi
- Infectious and Tropical Diseases Unit, Department of Medical and Surgical Sciences, "Magna Graecia" University, "Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Angela Quirino
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Graecia" University of Catanzaro, "Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Carlo Torti
- Infectious and Tropical Diseases Unit, Department of Medical and Surgical Sciences, "Magna Graecia" University, "Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Giovanni Matera
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Graecia" University of Catanzaro, "Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Alessandro Russo
- Infectious and Tropical Diseases Unit, Department of Medical and Surgical Sciences, "Magna Graecia" University, "Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| |
Collapse
|
15
|
Tsafarova B, Hodzhev Y, Yordanov G, Tolchkov V, Kalfin R, Panaiotov S. Morphology of blood microbiota in healthy individuals assessed by light and electron microscopy. Front Cell Infect Microbiol 2023; 12:1091341. [PMID: 36741978 PMCID: PMC9889553 DOI: 10.3389/fcimb.2022.1091341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/30/2022] [Indexed: 01/20/2023] Open
Abstract
Introduction The blood microbiome is still an enigma. The existence of blood microbiota in clinically healthy individuals was proven during the last 50 years. Indirect evidence from radiometric analysis suggested the existence of living microbial forms in erythrocytes. Recently targeted nucleic acid sequencing demonstrated rich microbial biodiversity in the blood of clinically healthy individuals. The morphology and proliferation cycle of blood microbiota in peripheral blood mononuclear cells (PBMC) isolated from freshly drawn and cultured whole blood are obscure. Methods To study the life cycle of blood microbiota we focused on light, and electron microscopy analysis. Peripheral blood mononuclear cells isolated from freshly drawn blood and stress-cultured lysed whole blood at 43°C in presence of vitamin K from healthy individuals were studied. Results Here, we demonstrated that free circulating microbiota in the PMBC fraction possess a well-defined cell wall and proliferate by budding or through a mechanism similar to the extrusion of progeny bodies. By contrast, stress-cultured lysed whole blood microbiota proliferated as cell-wall deficient microbiota by forming electron-dense or electron-transparent bodies. The electron-dense bodies proliferated by fission or produce in chains Gram-negatively stained progeny cells or enlarged and burst to release progeny cells of 180 - 200 nm size. On the other hand, electron-transparent bodies enlarged and emitted progeny cells through the membrane. A novel proliferation mechanism of blood microbiota called by us "a cell within a cell" was observed. It combines proliferation of progeny cells within a progeny cell which is growing within the "mother" cell. Discussion The rich biodiversity of eukaryotic and prokaryotic microbiota identified in blood by next-generation sequencing technologies and our microscopy results suggest different proliferation mechanisms in whole and cultured blood. Our documented evidence and conclusions provide a more comprehensive view of the existence of normal blood microbiota in healthy individuals.
Collapse
Affiliation(s)
- Borislava Tsafarova
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Yordan Hodzhev
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Georgi Yordanov
- Faculty of Chemistry and Pharmacy, Sofia University, Sofia, Bulgaria
| | - Vladimir Tolchkov
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
- Department of Health Care, South-West University “Neofit Rilski”, Blagoevgrad, Bulgaria
| | - Stefan Panaiotov
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| |
Collapse
|
16
|
Assessment of Small Cellular Particles from Four Different Natural Sources and Liposomes by Interferometric Light Microscopy. Int J Mol Sci 2022; 23:ijms232415801. [PMID: 36555442 PMCID: PMC9779747 DOI: 10.3390/ijms232415801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/28/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Small particles in natural sources are a subject of interest for their potential role in intercellular, inter-organism, and inter-species interactions, but their harvesting and assessment present a challenge due to their small size and transient identity. We applied a recently developed interferometric light microscopy (ILM) to assess the number density and hydrodynamic radius (Rh) of isolated small cellular particles (SCPs) from blood preparations (plasma and washed erythrocytes) (B), spruce needle homogenate (S), suspension of flagellae of microalgae Tetraselmis chuii (T), conditioned culture media of microalgae Phaeodactylum tricornutum (P), and liposomes (L). The aliquots were also assessed by flow cytometry (FCM), dynamic light scattering (DLS), ultraviolet-visible spectrometry (UV-vis), and imaging by cryogenic transmission electron microscopy (cryo-TEM). In Rh, ILM showed agreement with DLS within the measurement error in 10 out of 13 samples and was the only method used here that yielded particle density. Cryo-TEM revealed that representative SCPs from Tetraselmis chuii flagella (T) did not have a globular shape, so the interpretation by Rh of the batch methods was biased. Cryo-TEM showed the presence of thin filaments in isolates from Phaeodactylum tricornutum conditioned culture media (P), which provides an explanation for the considerably larger Rh obtained by batch methods than the sizes of particles observed by cryo-TEM images. ILM proved convenient for assessment of number density and Rh of SCPs in blood preparations (e.g., plasma); therefore, its use in population and clinical studies is indicated.
Collapse
|
17
|
Khan I, Khan I, Usman M, Xiao Wei Z, Ping X, Khan S, Khan F, Jianye Z, Zhiqiang L, Lizhe A. Circulating microbiota and metabolites: Insights into cardiovascular diseases. J Clin Lab Anal 2022; 36:e24779. [DOI: 10.1002/jcla.24779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/10/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Affiliation(s)
- Ikram Khan
- Department of Microbiology, School of Life Sciences Lanzhou University Lanzhou Gansu China
- School of Stomatology Northwest Minzu University Lanzhou Gansu China
| | - Imran Khan
- Department of Microbiology Khyber Medical University Peshawar Peshawar Khyber Pakhtunkhwa Pakistan
| | - Muhammad Usman
- State Key Laboratory of Grassland Agro‐ecosystem, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Ruler Affairs, Collegeof Pastoral Agriculture Sciences and Technology Lanzhou University Lanzhou Gansu China
| | - Zhang Xiao Wei
- Department of Cardiology Lanzhou University Second Hospital Lanzhou Gansu China
| | - Xie Ping
- Department of Cardiology Gansu Provincial Hospital Lanzhou China
| | - Sarmir Khan
- Department of Reproductive Medicine, Academy of Medical Sciences The First Affiliated Hospital of Zheng University Zhengzhou Henan China
| | - Feroz Khan
- Department of Zoology, Wildlife, and Fisheries PirMehr Ali Shah Arid Agriculture University Rawalpindi Pakistan
| | - Zhou Jianye
- School of Stomatology Northwest Minzu University Lanzhou Gansu China
| | - Li Zhiqiang
- School of Stomatology Northwest Minzu University Lanzhou Gansu China
| | - An Lizhe
- Department of Microbiology, School of Life Sciences Lanzhou University Lanzhou Gansu China
| |
Collapse
|
18
|
Prasad R, Patton MJ, Floyd JL, Fortmann S, DuPont M, Harbour A, Wright J, Lamendella R, Stevens BR, Oudit GY, Grant MB. Plasma Microbiome in COVID-19 Subjects: An Indicator of Gut Barrier Defects and Dysbiosis. Int J Mol Sci 2022; 23:9141. [PMID: 36012406 PMCID: PMC9409329 DOI: 10.3390/ijms23169141] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/16/2022] Open
Abstract
The gut is a well-established route of infection and target for viral damage by SARS-CoV-2. This is supported by the clinical observation that about half of COVID-19 patients exhibit gastrointestinal (GI) complications. We aimed to investigate whether the analysis of plasma could provide insight into gut barrier dysfunction in patients with COVID-19 infection. Plasma samples of COVID-19 patients (n = 146) and healthy individuals (n = 47) were collected during hospitalization and routine visits. Plasma microbiome was analyzed using 16S rRNA sequencing and gut permeability markers including fatty acid binding protein 2 (FABP2), peptidoglycan (PGN), and lipopolysaccharide (LPS) in both patient cohorts. Plasma samples of both cohorts contained predominately Proteobacteria, Firmicutes, Bacteroides, and Actinobacteria. COVID-19 subjects exhibit significant dysbiosis (p = 0.001) of the plasma microbiome with increased abundance of Actinobacteria spp. (p = 0.0332), decreased abundance of Bacteroides spp. (p = 0.0003), and an increased Firmicutes:Bacteroidetes ratio (p = 0.0003) compared to healthy subjects. The concentration of the plasma gut permeability marker FABP2 (p = 0.0013) and the gut microbial antigens PGN (p < 0.0001) and LPS (p = 0.0049) were significantly elevated in COVID-19 patients compared to healthy subjects. These findings support the notion that the intestine may represent a source for bacteremia and contribute to worsening COVID-19 outcomes. Therapies targeting the gut and prevention of gut barrier defects may represent a strategy to improve outcomes in COVID-19 patients.
Collapse
Affiliation(s)
- Ram Prasad
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, 1670 University BLVD, VH490, Birmingham, AL 35294, USA
| | - Michael John Patton
- Hugh Kaul Precision Medicine Institute, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jason Levi. Floyd
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, 1670 University BLVD, VH490, Birmingham, AL 35294, USA
| | - Seth Fortmann
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, 1670 University BLVD, VH490, Birmingham, AL 35294, USA
| | - Mariana DuPont
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, 1670 University BLVD, VH490, Birmingham, AL 35294, USA
| | - Angela Harbour
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, 1670 University BLVD, VH490, Birmingham, AL 35294, USA
| | | | | | - Bruce R. Stevens
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32611, USA
| | - Gavin Y. Oudit
- Division of Cardiology, Department of Medicine, University of Alberta, Mazankowski Alberta Heart Institute, Edmonton, AB T6G 2B7, Canada
| | - Maria B. Grant
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, 1670 University BLVD, VH490, Birmingham, AL 35294, USA
| |
Collapse
|
19
|
Liu H, Zhang Q, Wang S, Weng W, Jing Y, Su J. Bacterial extracellular vesicles as bioactive nanocarriers for drug delivery: Advances and perspectives. Bioact Mater 2022; 14:169-181. [PMID: 35310361 PMCID: PMC8892084 DOI: 10.1016/j.bioactmat.2021.12.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Nanosized extracellular vesicles derived from bacteria contain diverse cargo and transfer intercellular bioactive molecules to cells. Due to their favorable intercellular interactions, cell membrane-derived bacterial extracellular vesicles (BEVs) have great potential to become novel drug delivery platforms. In this review, we summarize the biogenesis mechanism and compositions of various BEVs. In addition, an overview of effective isolation and purification techniques of BEVs is provided. In particular, we focus on the application of BEVs as bioactive nanocarriers for drug delivery. Finally, we summarize the advances and challenges of BEVs after providing a comprehensive discussion in each section. We believe that a deeper understanding of BEVs will open new avenues for their exploitation in drug delivery applications. Bacterial extracellular vesicles (BEVs) are excellent nanomaterials as drug delivery systems. The unique nanosized structures and biofunctions of BEVs are attractive for their use as nanomedicine platforms. BEVs have been investigated as biotherapeutics due to their loading capacity, ease of modification and industrialization. This review provides new insights of BEVs in drug delivery applications, discussing potential opportunities and challenges.
Collapse
Affiliation(s)
- Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Qin Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Sicheng Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Weizong Weng
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Corresponding author.
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Corresponding author.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Corresponding author. Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
20
|
Chiang TY, Yang YR, Zhuo MY, Yang F, Zhang YF, Fu CH, Lee TJ, Chung WH, Chen L, Chang CJ. Microbiome profiling of nasal extracellular vesicles in patients with allergic rhinitis. World Allergy Organ J 2022; 15:100674. [PMID: 36017065 PMCID: PMC9386106 DOI: 10.1016/j.waojou.2022.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022] Open
Abstract
Background Methods Results Conclusion
Collapse
Affiliation(s)
- Tsai-Yeh Chiang
- Department of Otorhinolaryngology, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
| | - Yu-Ru Yang
- Department of Otorhinolaryngology, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
| | - Ming-Ying Zhuo
- Department of Otorhinolaryngology, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
| | - Feng Yang
- Department of Otorhinolaryngology, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
| | - Ying-Fei Zhang
- Department of Otorhinolaryngology, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
| | - Chia-Hsiang Fu
- Department of Otolaryngology-Head and Neck Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Ta-Jen Lee
- Department of Otorhinolaryngology, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Department of Otolaryngology-Head and Neck Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Wen-Hung Chung
- Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Medical Research Center, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Department of Dermatology and Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei and Keelung, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Liang Chen
- Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Department of Respiratory and Critical Care Medicine, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Department of Allergy and Immunology, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Corresponding author. Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, Fujian, China.
| | - Chih-Jung Chang
- Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Medical Research Center, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Department of Dermatology and Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei and Keelung, Taiwan
- School of Medicine, Huaqiao University, Quanzhou, Fujian, China
- Corresponding author. Medical Research Center, Xiamen Chang Gung Hospital, Xiamen, Fujian, China.
| |
Collapse
|
21
|
Urosevic N, Merritt AJ, Inglis TJJ. Plasma cfDNA predictors of established bacteraemic infection. Access Microbiol 2022; 4:acmi000373. [PMID: 36004363 PMCID: PMC9394668 DOI: 10.1099/acmi.0.000373] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction. Increased plasma cell-free DNA (cfDNA) has been reported for various diseases in which cell death and tissue/organ damage contribute to pathogenesis, including sepsis. Gap Statement. While several studies report a rise in plasma cfDNA in bacteraemia and sepsis, the main source of cfDNA has not been identified. Aim. In this study, we wanted to determine which of nuclear, mitochondrial or bacterial cfDNA is the major contributor to raised plasma cfDNA in hospital subjects with bloodstream infections and could therefore serve as a predictor of bacteraemic disease severity. Methodology. The total plasma concentration of double-stranded cfDNA was determined using a fluorometric assay. The presence of bacterial DNA was identified by PCR and DNA sequencing. The copy numbers of human genes, nuclear β globin and mitochondrial MTATP8, were determined by droplet digital PCR. The presence, size and concentration of apoptotic DNA from human cells were established using lab-on-a-chip technology. Results. We observed a significant difference in total plasma cfDNA from a median of 75 ng ml−1 in hospitalised subjects without bacteraemia to a median of 370 ng ml−1 (P=0.0003) in bacteraemic subjects. The copy numbers of nuclear DNA in bacteraemic also differed between a median of 1.6 copies µl−1 and 7.3 copies µl−1 (P=0.0004), respectively. In contrast, increased mitochondrial cfDNA was not specific for bacteraemic subjects, as shown by median values of 58 copies µl−1 in bacteraemic subjects, 55 copies µl−1 in other hospitalised subjects and 5.4 copies µl−1 in healthy controls. Apoptotic nucleosomal cfDNA was detected only in a subpopulation of bacteraemic subjects with documented comorbidities, consistent with elevated plasma C-reactive protein (CRP) levels in these subjects. No bacterial cfDNA was reliably detected by PCR in plasma of bacteraemic subjects over the course of infection with several bacterial pathogens. Conclusions. Our data revealed distinctive plasma cfDNA signatures in different groups of hospital subjects. The total cfDNA was significantly increased in hospital subjects with laboratory-confirmed bloodstream infections comprising nuclear and apoptotic, but not mitochondrial or bacterial cfDNAs. The apoptotic cfDNA, potentially derived from blood cells, predicted established bacteraemia. These findings deserve further investigation in different hospital settings, where cfDNA measurement could provide simple and quantifiable parameters for monitoring a disease progression.
Collapse
Affiliation(s)
- Nadezda Urosevic
- School of Medicine, Faculty of Health & Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
- School of Biomedical Sciences, Faculty of Health & Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Adam J. Merritt
- Department of Microbiology, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, WA, Australia
| | - Timothy J. J. Inglis
- School of Medicine, Faculty of Health & Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
- School of Biomedical Sciences, Faculty of Health & Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
- Department of Microbiology, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, WA, Australia
| |
Collapse
|
22
|
Wang M, Wu SF, Sang WL, Zhang YY, Liu W, Yang Y. Student-Driven Course-Based Undergraduate Research Experience (CUREs) Projects in Identifying Vaginal Microorganism Species Communities to Promote Scientific Literacy Skills. Front Public Health 2022; 10:870301. [PMID: 35570970 PMCID: PMC9096218 DOI: 10.3389/fpubh.2022.870301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/04/2022] [Indexed: 12/03/2022] Open
Abstract
Objectives We aim to build a students' own engagement in original microbiological course-based undergraduate research experience (CUREs) model served two research and teaching scientific purposes including students' scientific literacy skills and instructors' role, which could further be applied as contribution to broader scientific knowledge and conduct novel research in their future research experience and careers. Methods We describe a student-driven CUREs model on the microorganism species in female vaginal using general bacterial culture techniques and high-throughput 16S rRNA gene amplicon sequencing to enable students to center experimental research method under the direction of instructors. A total of 8 undergraduate students and 5 instructors from Shanghai Jiao Tong University School of Medicine participated in the project. The CUREs were divided in four operating scopes: project planning, implementation, summarizing and feedback phases. Instructors help students to develop learning research goals. Results This project helped students to gain "hard skills" experiences in scientific theoretical research process and technical practices. Students reached the conclusion that Lactobacillus species dominated the primary vaginal microbiota in reproductive-age women, 16S rRNA sequencing is a method widely applied for microbiology detection. CUREs also increased students' engagement in scientific experiments and promote 3 learning goals in "soft skills": (1) Develop students' self-study and efficacy ability, expression capability and professional research communication skills; (2) Strengthen students' motivation and ownership in science research, overcoming failure, benefitting persistence and patience, building professional science identity, competence, and confidence in collaboration, implement spirit of rigorous and carefulness; (3) Obtain authorship, independent and logical thinking capability, summarizing ability and confidence enhancement. Instructors proposed guiding research question for the students and determine evidence in achieving pedagogical goals in CUREs. Conclusions Our microbiological CUREs project served two scientific purposes: research and teaching, which increase students' engagement in promoting learning gains in scientific research skills, ownership, identity development, and spirit of motivation, self-efficacy, persistence, collaboration, communication, as well as opportunities to make relevant scientific discoveries. These abilities equipped them with essential foundation for the subsequent collaborative experiments and future scientific study.
Collapse
Affiliation(s)
- Min Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Su-Fang Wu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Lin Sang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying-Ying Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Liu
- Department of Educational, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ye Yang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
An J, Kwon H, Lim W, Moon BI. Staphylococcus aureus-Derived Extracellular Vesicles Enhance the Efficacy of Endocrine Therapy in Breast Cancer Cells. J Clin Med 2022; 11:jcm11072030. [PMID: 35407638 PMCID: PMC9000115 DOI: 10.3390/jcm11072030] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
The microbiome involved in the human estrogen metabolism is known as the estrobolome. This study aimed to show that the estrobolome can be used in breast cancer treatment. We first analyzed the blood microbiome composition of healthy controls and patients with breast cancer. In particular, we investigated the bacteria producing β-glucuronidase and/or β-galactosidase, which are involved in estrogen metabolism in the human body. Staphylococcus species were more abundant in healthy controls than in breast cancer patients and therefore were selected for further analyses. The effect of Staphylococcus aureus on endocrine therapy was analyzed by a combination treatment with tamoxifen. Analysis of the microbiome of blood samples showed that species producing β-glucuronidase were more abundant in breast cancer patients than in healthy controls. Further experiments confirmed that the efficacy of tamoxifen increased when administered in conjugation with the extracellular vesicles (EVs) of S. aureus. Based on our results, we deduced that S. aureus EVs could potentially be used as adjuvants for breast cancer treatment in the future.
Collapse
Affiliation(s)
- Jeongshin An
- Department of Surgery, Ewha Womans University Mokdong Hospital, School of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 07985, Korea; (J.A.); (H.K.); (W.L.)
- Institute of Convergence Medicine Research, Ewha Womans University Mokdong Hospital, School of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 07985, Korea
| | - Hyungju Kwon
- Department of Surgery, Ewha Womans University Mokdong Hospital, School of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 07985, Korea; (J.A.); (H.K.); (W.L.)
| | - Woosung Lim
- Department of Surgery, Ewha Womans University Mokdong Hospital, School of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 07985, Korea; (J.A.); (H.K.); (W.L.)
| | - Byung-In Moon
- Department of Surgery, Ewha Womans University Mokdong Hospital, School of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 07985, Korea; (J.A.); (H.K.); (W.L.)
- Correspondence: ; Tel.: +82-2-2650-5584; Fax: +82-2-2644-7984
| |
Collapse
|
24
|
Khan I, Khan I, Jianye Z, Xiaohua Z, Khan M, Hilal MG, Kakakhel MA, Mehmood A, Lizhe A, Zhiqiang L. Exploring blood microbial communities and their influence on human cardiovascular disease. J Clin Lab Anal 2022; 36:e24354. [PMID: 35293034 PMCID: PMC8993628 DOI: 10.1002/jcla.24354] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 01/03/2023] Open
Abstract
Background Cardiovascular disease (CVD) is the single biggest contributor to global mortality. CVD encompasses multiple disorders, including atherosclerosis, hypertension, platelet hyperactivity, stroke, hyperlipidemia, and heart failure. In addition to traditional risk factors, the circulating microbiome or the blood microbiome has been analyzed recently in chronic inflammatory diseases, including CVD in humans. Methods For this review, all relevant original research studies were assessed by searching in electronic databases, including PubMed, Google Scholar, and Web of Science, by using relevant keywords. Results This review demonstrated that elevated markers of systemic bacterial exposure are associated with noncommunicable diseases, including CVD. Studies have shown that the bacterial DNA sequence found in healthy blood belongs mainly to the Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria phyla. In cardiac events, such as stroke, coronary heart disease, and myocardial infarction, the increased proportion of Proteobacteria and Actinobacteria phyla was found. Lipopolysaccharides are a major component of Proteobacteria, which play a key role in the onset of CVD. Moreover, recently, a study reported the lower cholesterol‐degrading bacteria, including Caulobacterales order and Caulobacteraceae family were both considerably reduced in myocardial infarction. Conclusion Proteobacteria and Actinobacteria were shown to be independent markers of the risk of CVD. This finding is evidence for the new concept of the role played by blood microbiota dysbiosis in CVD. However, the association between blood microbiota and CVD is still inconsistent. Thus, more deep investigations are required in future to fully understand the role of the bacteria community in causing and preventing CVD.
Collapse
Affiliation(s)
- Ikram Khan
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Imran Khan
- Department of Microbiology, Khyber Medical University Peshawar, Peshawar, Pakistan
| | - Zhou Jianye
- Key Laboratory of Oral Diseases of Gansu Province, School of Stomatology, Northwest Minzu University, Lanzhou, China
| | - Zhang Xiaohua
- Key Laboratory of Oral Diseases of Gansu Province, School of Stomatology, Northwest Minzu University, Lanzhou, China
| | - Murad Khan
- Department of Genetics, Hebei Key Laboratory Animal, Hebei Medical University, Shijiazhuang, China
| | - Mian Gul Hilal
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | | | - Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - An Lizhe
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Li Zhiqiang
- Key Laboratory of Oral Diseases of Gansu Province, School of Stomatology, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
25
|
You L, Zhou J, Xin Z, Hauck JS, Na F, Tang J, Zhou X, Lei Z, Ying B. Novel directions of precision oncology: circulating microbial DNA emerging in cancer-microbiome areas. PRECISION CLINICAL MEDICINE 2022; 5:pbac005. [PMID: 35692444 PMCID: PMC9026200 DOI: 10.1093/pcmedi/pbac005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/05/2023] Open
Abstract
Microbiome research has extended into the cancer area in the past decades. Microbes can affect oncogenesis, progression, and treatment response through various mechanisms, including direct regulation and indirect impacts. Microbiota-associated detection methods and agents have been developed to facilitate cancer diagnosis and therapy. Additionally, the cancer microbiome has recently been redefined. The identification of intra-tumoral microbes and cancer-related circulating microbial DNA (cmDNA) has promoted novel research in the cancer-microbiome area. In this review, we define the human system of commensal microbes and the cancer microbiome from a brand-new perspective and emphasize the potential value of cmDNA as a promising biomarker in cancer liquid biopsy. We outline all existing studies on the relationship between cmDNA and cancer and the outlook for potential preclinical and clinical applications of cmDNA in cancer precision medicine, as well as critical problems to be overcome in this burgeoning field.
Collapse
Affiliation(s)
- Liting You
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhaodan Xin
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - J Spencer Hauck
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Feifei Na
- Department of Thoracic Cancer, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Tang
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621000,China
| | - Xiaohan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zichen Lei
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
26
|
Yoon LS, Jacobs JP, Hoehner J, Pereira A, Gana JC, Corvalán C, Michels KB. The Association Between Breast Density and Gut Microbiota Composition at 2 Years Post-Menarche: A Cross-Sectional Study of Adolescents in Santiago, Chile. Front Cell Infect Microbiol 2022; 11:794610. [PMID: 34976871 PMCID: PMC8718921 DOI: 10.3389/fcimb.2021.794610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/22/2021] [Indexed: 01/04/2023] Open
Abstract
The gut microbiome has been linked to breast cancer via immune, inflammatory, and hormonal mechanisms. We examined the relation between adolescent breast density and gut microbial composition and function in a cohort of Chilean girls. This cross-sectional study included 218 female participants in the Growth and Obesity Cohort Study who were 2 years post-menarche. We measured absolute breast fibroglandular volume (aFGV) and derived percent FGV (%FGV) using dual energy X-ray absorptiometry. All participants provided a fecal sample. The gut microbiome was characterized using 16S ribosomal RNA sequencing of the V3-V4 hypervariable region. We examined alpha diversity and beta diversity across terciles of %FGV and aFGV. We used MaAsLin2 for multivariable general linear modeling to assess differential taxa and predicted metabolic pathway abundance (MetaCyc) between %FGV and aFGV terciles. All models were adjusted for potential confounding variables and corrected for multiple comparisons. The mean %FGV and aFGV was 49.5% and 217.0 cm3, respectively, among study participants. Similar median alpha diversity levels were found across %FGV and aFGV terciles when measured by the Shannon diversity index (%FGV T1: 4.0, T2: 3.9, T3: 4.1; aFGV T1: 4.0, T2: 4.0, T3: 4.1). %FGV was associated with differences in beta diversity (R2 =0.012, p=0.02). No genera were differentially abundant when comparing %FGV nor aFGV terciles after adjusting for potential confounders (q > 0.56 for all genera). We found no associations between predicted MetaCyc pathway abundance and %FGV and aFGV. Overall, breast density measured at 2 years post-menarche was not associated with composition and predicted function of the gut microbiome among adolescent Chilean girls.
Collapse
Affiliation(s)
- Lara S Yoon
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, United States
| | - Jonathan P Jacobs
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, United States.,Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.,Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | | | - Ana Pereira
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Juan Cristóbal Gana
- Department of Pediatric Gastroenterology and Nutrition, Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camila Corvalán
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Karin B Michels
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, United States.,Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
27
|
Barone M, Barone M, Ricci F, Auteri G, Corradi G, Fabbri F, Papa V, Bandini E, Cenacchi G, Tazzari PL, Vianelli N, Turroni S, Cavo M, Palandri F, Candela M, Catani L. An Abnormal Host/Microbiomes Signature of Plasma-Derived Extracellular Vesicles Is Associated to Polycythemia Vera. Front Oncol 2021; 11:715217. [PMID: 34900671 PMCID: PMC8657945 DOI: 10.3389/fonc.2021.715217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/08/2021] [Indexed: 01/04/2023] Open
Abstract
Polycythemia Vera (PV) is a myeloproliferative neoplasm with increased risk of thrombosis and progression to myelofibrosis. Chronic inflammation is commonly observed in myeloproliferative neoplasms including PV. The inflammatory network includes the extracellular vesicles (EVs), which play a role in cell-cell communication. Recent evidence points to circulating microbial components/microbes as potential players in hemopoiesis regulation. To address the role of EVs in PV, here we investigated phenotype and microbial DNA cargo of circulating EVs through multidimensional analysis. Peripheral blood and feces were collected from PV patients (n=38) and healthy donors (n=30). Circulating megakaryocyte (MK)- and platelet (PLT)-derived EVs were analyzed by flow cytometry. After microbial DNA extraction from feces and isolated EVs, the 16S rDNA V3-V4 region was sequenced. We found that the proportion of circulating MK-derived EVs was significantly decreased in PV patients as compared with the healthy donors. By contrast, the proportion of the PLT-derived EVs was increased. Interestingly, PV was also associated with a microbial DNA signature of the isolated EVs with higher diversity and distinct microbial composition than the healthy counterparts. Of note, increased proportion of isolated lipopolysaccharide-associated EVs has been demonstrated in PV patients. Conversely, the gut microbiome profile failed to identify a distinct layout between PV patients and healthy donors. In conclusion, PV is associated with circulating EVs harbouring abnormal phenotype and dysbiosis signature with a potential role in the (inflammatory) pathogenesis of the disease.
Collapse
Affiliation(s)
- Monica Barone
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.,Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Martina Barone
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Francesca Ricci
- Servizio di Immunoematologia e Trasfusionale, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giuseppe Auteri
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Giulia Corradi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Francesco Fabbri
- Biosciences Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Valentina Papa
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Erika Bandini
- Biosciences Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanna Cenacchi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Pier Luigi Tazzari
- Servizio di Immunoematologia e Trasfusionale, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Nicola Vianelli
- Istituto di Ematologia "Seràgnoli", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Michele Cavo
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Francesca Palandri
- Istituto di Ematologia "Seràgnoli", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Lucia Catani
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| |
Collapse
|
28
|
Jones E, Stentz R, Telatin A, Savva GM, Booth C, Baker D, Rudder S, Knight SC, Noble A, Carding SR. The Origin of Plasma-Derived Bacterial Extracellular Vesicles in Healthy Individuals and Patients with Inflammatory Bowel Disease: A Pilot Study. Genes (Basel) 2021; 12:1636. [PMID: 34681030 PMCID: PMC8535827 DOI: 10.3390/genes12101636] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/10/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract harbors the gut microbiota, structural alterations of which (dysbiosis) are linked with an increase in gut permeability ("leaky gut"), enabling luminal antigens and bacterial products such as nanosized bacterial extracellular vesicles (BEVs) to access the circulatory system. Blood-derived BEVs contain various cargoes and may be useful biomarkers for diagnosis and monitoring of disease status and relapse in conditions such as inflammatory bowel disease (IBD). To progress this concept, we developed a rapid, cost-effective protocol to isolate BEV-associated DNA and used 16S rRNA gene sequencing to identify bacterial origins of the blood microbiome of healthy individuals and patients with Crohn's disease and ulcerative colitis. The 16S rRNA gene sequencing successfully identified the origin of plasma-derived BEV DNA. The analysis showed that the blood microbiota richness, diversity, or composition in IBD, healthy control, and protocol control groups were not significantly distinct, highlighting the issue of 'kit-ome' contamination in low-biomass studies. Our pilot study provides the basis for undertaking larger studies to determine the potential use of blood microbiota profiling as a diagnostic aid in IBD.
Collapse
Affiliation(s)
- Emily Jones
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (E.J.); (R.S.); (A.T.); (G.M.S.); (D.B.); (S.R.)
| | - Régis Stentz
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (E.J.); (R.S.); (A.T.); (G.M.S.); (D.B.); (S.R.)
| | - Andrea Telatin
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (E.J.); (R.S.); (A.T.); (G.M.S.); (D.B.); (S.R.)
| | - George M. Savva
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (E.J.); (R.S.); (A.T.); (G.M.S.); (D.B.); (S.R.)
| | - Catherine Booth
- Core Science Resources, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK;
| | - David Baker
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (E.J.); (R.S.); (A.T.); (G.M.S.); (D.B.); (S.R.)
| | - Steven Rudder
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (E.J.); (R.S.); (A.T.); (G.M.S.); (D.B.); (S.R.)
| | - Stella C. Knight
- Antigen Presentation Research Group, Northwick Park & St. Mark’s Hospital Campus, Imperial College London, Harrow HA1 3UJ, UK; (S.C.K.); (A.N.)
| | - Alistair Noble
- Antigen Presentation Research Group, Northwick Park & St. Mark’s Hospital Campus, Imperial College London, Harrow HA1 3UJ, UK; (S.C.K.); (A.N.)
| | - Simon R. Carding
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (E.J.); (R.S.); (A.T.); (G.M.S.); (D.B.); (S.R.)
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
29
|
Cullin N, Azevedo Antunes C, Straussman R, Stein-Thoeringer CK, Elinav E. Microbiome and cancer. Cancer Cell 2021; 39:1317-1341. [PMID: 34506740 DOI: 10.1016/j.ccell.2021.08.006] [Citation(s) in RCA: 290] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/05/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022]
Abstract
The human microbiome constitutes a complex multikingdom community that symbiotically interacts with the host across multiple body sites. Host-microbiome interactions impact multiple physiological processes and a variety of multifactorial disease conditions. In the past decade, microbiome communities have been suggested to influence the development, progression, metastasis formation, and treatment response of multiple cancer types. While causal evidence of microbial impacts on cancer biology is only beginning to be unraveled, enhanced molecular understanding of such cancer-modulating interactions and impacts on cancer treatment are considered of major scientific importance and clinical relevance. In this review, we describe the molecular pathogenic mechanisms shared throughout microbial niches that contribute to the initiation and progression of cancer. We highlight advances, limitations, challenges, and prospects in understanding how the microbiome may causally impact cancer and its treatment responsiveness, and how microorganisms or their secreted bioactive metabolites may be potentially harnessed and targeted as precision cancer therapeutics.
Collapse
Affiliation(s)
- Nyssa Cullin
- Microbiome and Cancer Division, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Camila Azevedo Antunes
- Microbiome and Cancer Division, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ravid Straussman
- Department of Molecular Cell Biology, Weizmann Institute of Science, 234 Herzl Street, 7610001 Rehovot, Israel
| | - Christoph K Stein-Thoeringer
- Microbiome and Cancer Division, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Eran Elinav
- Microbiome and Cancer Division, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Department of Immunology, Weizmann Institute of Science, 234 Herzl Street, 7610001 Rehovot, Israel.
| |
Collapse
|
30
|
A Specific Host/Microbial Signature of Plasma-Derived Extracellular Vesicles Is Associated to Thrombosis and Marrow Fibrosis in Polycythemia Vera. Cancers (Basel) 2021; 13:cancers13194968. [PMID: 34638452 PMCID: PMC8507916 DOI: 10.3390/cancers13194968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Patients with polycythemia vera, a myeloproliferative neoplasm, are at increased risk of thrombosis and progression to myelofibrosis. However, no disease-specific risk factors have been identified so far. Extracellular vesicles, released from a broad variety of cells, are receiving increasing attention for their effects on cell-to-cell communication. In addition, they play a role in cancer and thrombosis. Interestingly, circulating microbial components/microbes have been recently indicated as potential modifiers of inflammation and coagulation. Here, we identified a signature of thrombosis history and marrow fibrosis by analyzing the phenotype and the microbial DNA cargo of the circulating extracellular vesicles after isolation from the plasma of patients with polycythemia vera. These data may support the role of extracellular vesicles as liquid biomarkers of aggressive disease, thus contributing to refining the prognosis of polycythemia vera. Abstract Polycythemia vera is a myeloproliferative neoplasm with increased risk of thrombosis and progression to myelofibrosis. However, no disease-specific risk factors have been identified so far. Circulating extracellular vesicles (EVs) are mostly of megakaryocyte (MK-EVs) and platelet (PLT-EVs) origin and, along with phosphatidylethanolamine (PE)-EVs, play a role in cancer and thrombosis. Interestingly, circulating microbial components/microbes have been recently indicated as potential modifiers of inflammation and coagulation. Here, we investigated phenotype and microbial DNA cargo of EVs after isolation from the plasma of 38 patients with polycythemia vera. Increased proportion of MK-EVs and reduced proportion of PLT-EVs identify patients with thrombosis history. Interestingly, EVs from patients with thrombosis history were depleted in Staphylococcus DNA but enriched in DNA from Actinobacteria members as well as Anaerococcus. In addition, patients with thrombosis history had also lower levels of lipopolysaccharide-associated EVs. In regard to fibrosis, along with increased proportion of PE-EVs, the EVs of patients with marrow fibrosis were enriched in DNA from Collinsella and Flavobacterium. Here, we identified a polycythemia-vera-specific host/microbial EV-based signature associated to thrombosis history and marrow fibrosis. These data may contribute to refining PV prognosis and to identifying novel druggable targets.
Collapse
|
31
|
Chang CJ, Zhang J, Tsai YL, Chen CB, Lu CW, Huo YP, Liou HM, Ji C, Chung WH. Compositional Features of Distinct Microbiota Base on Serum Extracellular Vesicle Metagenomics Analysis in Moderate to Severe Psoriasis Patients. Cells 2021; 10:2349. [PMID: 34571998 PMCID: PMC8467001 DOI: 10.3390/cells10092349] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 01/14/2023] Open
Abstract
The bacterial microbiota in the skin and intestine of patients with psoriasis were different compared with that of healthy individuals. However, the presence of a distinct blood microbiome in patients with psoriasis is yet to be investigated. In this study, we investigated the differences in bacterial communities in plasma-derived extracellular vesicles (EVs) between patients with moderate to severe psoriasis (PSOs) and healthy controls (HCs). The plasma EVs from the PSO (PASI > 10) (n = 20) and HC (n = 8) groups were obtained via a series of centrifugations, and patterns were examined and confirmed using transmission electron microscopy (TEM) and EV-specific markers. The taxonomic composition of the microbiota was determined by using full-length 16S ribosomal RNA gene sequencing. The PSO group had lower bacterial diversity and richness compared with HC group. Principal coordinate analysis (PCoA)-based clustering was used to assess diversity and validated dysbiosis for both groups. Differences at the level of amplicon sequence variant (ASV) were observed, suggesting alterations in specific ASVs according to health conditions. The HC group had higher levels of the phylum Firmicutes and Fusobacteria than in the PSO group. The order Lactobacillales, family Brucellaceae, genera Streptococcus, and species Kingella oralis and Aquabacterium parvum were highly abundant in the HC group compared with the PSO group. Conversely, the order Bacillales and the genera Staphylococcus and Sphihgomonas, as well as Ralstonia insidiosa, were more abundant in the PSO group. We further predicted the microbiota functional capacities, which revealed significant differences between the PSO and HC groups. In addition to previous studies on microbiome changes in the skin and gut, we demonstrated compositional differences in the microbe-derived EVs in the plasma of PSO patients. Plasma EVs could be an indicator for assessing the composition of the microbiome of PSO patients.
Collapse
Affiliation(s)
- Chih-Jung Chang
- Medical Research Center and Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen 361028, China;
- Drug Hypersensitivity Clinical and Research Center, Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan; (C.-B.C.); (C.-W.L.)
| | - Jing Zhang
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China;
| | - Yu-Ling Tsai
- Department of Pathology, Tri-Service General Hospital, Taipei 114202, Taiwan;
| | - Chun-Bing Chen
- Drug Hypersensitivity Clinical and Research Center, Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan; (C.-B.C.); (C.-W.L.)
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung 20445, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan 333323, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen 361028, China; (Y.-P.H.); (H.-M.L.)
| | - Chun-Wei Lu
- Drug Hypersensitivity Clinical and Research Center, Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan; (C.-B.C.); (C.-W.L.)
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan 333323, Taiwan
| | - Yu-Ping Huo
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen 361028, China; (Y.-P.H.); (H.-M.L.)
| | - Huey-Ming Liou
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen 361028, China; (Y.-P.H.); (H.-M.L.)
| | - Chao Ji
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China;
| | - Wen-Hung Chung
- Medical Research Center and Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen 361028, China;
- Drug Hypersensitivity Clinical and Research Center, Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan; (C.-B.C.); (C.-W.L.)
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung 20445, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan 333323, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen 361028, China; (Y.-P.H.); (H.-M.L.)
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
32
|
Huber BC, Steffen J, Schlichtiger J, Brunner S. Altered nutrition behavior during COVID-19 pandemic lockdown in young adults. Eur J Nutr 2021; 60:2593-2602. [PMID: 33258996 PMCID: PMC7705857 DOI: 10.1007/s00394-020-02435-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE The COVID-19 pandemic and the implemented lockdown strongly impact on everyone's daily life. Stressful situations are known to alter eating habits and increase the risk for obesity. In our study, we aimed to investigate the effect of the lockdown measures on nutrition behavior among young adults. METHODS In this cross-sectional study, we enrolled 1964 voluntary participants from Bavarian universities. All participants were asked to complete an online questionnaire, semi-quantitatively evaluating the amount and type of food before and during pandemic lockdown. Study subjects were inquired to give information about acquisition and food procurement. The primary outcome was the change in food amount, secondary outcomes included alterations of food composition and procurement. RESULTS Our study cohort (mean age 23.3 ± 4.0 years, 28.5% male) had a mean body mass index of 22.1 ± 4.5 kg/m2. The overall food amount increased in 31.2% of participants (n = 610) during lockdown and decreased in 16.8% (n = 328). A multinominal regression model revealed that an increased food intake was less likely in male participants (OR, 0.7 [CI 0.6-0.9]) and more likely with increasing BMI (OR, 1.4 [CI 1.3-2.0]), increased sports activity (OR, 1.3 [CI 1.2-1.8]), augmented mental stress (OR 1.4 [1.1-1.7]), and an alteration of alcohol consumption (reduced alcohol amount, OR, 1.4 [CI 1.1-1.7], increased alcohol, OR, 1.9 [CI 1.4-2.5]). Increase in food intake was mainly triggered by consumption of bread (increased in 46.8%, n = 284) and confectionary (increased in 64.4%, n = 389). CONCLUSION The COVID-19 pandemic lockdown significantly affected eating habits in young adults. Further investigation to evaluate long-term effects on weight change and comorbidities are warranted.
Collapse
Affiliation(s)
- Bruno C Huber
- Department of Medicine I, Ludwig-Maximilians-University Munich, University Hospital, Campus Innenstadt, Ziemssenstrasse 1, 80336, Munich, Germany
| | - Julius Steffen
- Department of Medicine I, Ludwig-Maximilians-University Munich, University Hospital, Campus Innenstadt, Ziemssenstrasse 1, 80336, Munich, Germany
- Munich Heart Alliance (MHA), Partner Site Munich, DZHK (German Centre for Cardiovascular Research), Marchioninistrasse 15, 81377, Munich, Germany
| | - Jenny Schlichtiger
- Department of Medicine I, Ludwig-Maximilians-University Munich, University Hospital, Campus Innenstadt, Ziemssenstrasse 1, 80336, Munich, Germany
| | - Stefan Brunner
- Department of Medicine I, Ludwig-Maximilians-University Munich, University Hospital, Campus Innenstadt, Ziemssenstrasse 1, 80336, Munich, Germany.
| |
Collapse
|