1
|
Han H, Feng P, Yuan G. Molecular typing of gliomas on the basis of integrin family genes and a functional study of ITGA7. Sci Rep 2025; 15:12306. [PMID: 40210748 PMCID: PMC11985493 DOI: 10.1038/s41598-025-97342-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025] Open
Abstract
Gliomas are highly malignant tumors of the central nervous system, and their complex molecular heterogeneity poses major therapeutic challenges. Integrins are important members of the class of cell adhesion molecules (CAMs), consisting of α-subunits and β-subunits that form 24 different heterodimers. To elucidate the complex role of integrins in glioma pathogenesis, we analyzed integrin family genes. We used a scoring system based on gene set enrichment analysis (GSEA) to identify prognostic biomarkers and nonnegative matrix factorization (NMF) to establish a new integrin-based molecular classification of gliomas. Subsequent analyses of the clinical relevance of the molecular subtypes and the underlying mechanisms demonstrated a strong correlation between integrin-based molecular subtypes and glioma malignancy. We further characterized the different clinical features and tumor microenvironments (TMEs) associated with these subtypes. We identified subtype-specific driver genes using the limma R package and weighted gene coexpression network analysis (WGCNA). We subsequently identified key integrin-mediated genes that significantly contribute to poor prognosis through a combined approach of machine learning (ML) and protein‒protein interaction (PPI) network analysis. Finally, we performed in vitro cellular experiments on the integrin family gene ITGA7 and demonstrated that ITGA7 can serve as a biomarker for gliomas. Our findings provide important insights into the multifaceted roles of integrins in glioma biology, provide an opportunity for the discovery of novel targeted therapies on the basis of the subtype-specific vulnerability of integrins, and provide a basis for the study of the role of ITGA7 in gliomas.
Collapse
Affiliation(s)
- Hongxi Han
- Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, People's Republic of China
- Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Peng Feng
- Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, People's Republic of China
- Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Guoqiang Yuan
- Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, People's Republic of China.
- Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, No. 82, Cuiyingmen, Chengguan District, Lanzhou City, 730000, Gansu Province, People's Republic of China.
| |
Collapse
|
2
|
Pan J, Shao C, Xu C, Zhang G, Jiang H, Tang T, Tang H, Wu N. Association between hormone therapy and glioma risk in US women: a cancer screening trial. Menopause 2025; 32:346-352. [PMID: 39808122 DOI: 10.1097/gme.0000000000002507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
OBJECTIVE Gliomas are the most common primary brain tumors in adults, and the role of hormone therapy (HT) in their development remains controversial. This study with a cohort design aimed to investigate the association between HT use and glioma risk using the data from the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. METHODS We analyzed data from 75,335 women, aged 50-78, who were enrolled between 1993 and 2001. The median follow-up period was 11.82 years. Cox proportional hazard models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for the relationship between HT use and glioma risk, adjusting for various potential confounders. RESULTS Over the follow-up period, 101 participants were diagnosed with glioma. After adjusting for relevant variables, there was no significant association between HT use and glioma risk (HR, 1.16; 95% CI, 0.75-1.81). Similarly, no significant associations were found when considering HT status or duration of use. However, in subgroup analysis by education, marital status, body mass index, oral contraceptive, hysterectomy, ovariectomy, ever been pregnant, age at menarche, and age at menopause, we found that a significant positive association was only observed in the group with at least college graduate (HR, 3.00; 95% CI, 1.02-8.84). The interaction effect for education was not significant ( P = 0.056). CONCLUSIONS Our findings suggest no overall link between HT use and glioma risk. Further research is needed to confirm these results.
Collapse
Affiliation(s)
- Jinyu Pan
- From the Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Chuan Shao
- From the Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Chao Xu
- From the Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Gang Zhang
- From the Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Haotian Jiang
- From the Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Tao Tang
- From the Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Hui Tang
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, China
| | - Nan Wu
- From the Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing, China
| |
Collapse
|
3
|
Bilgin M, Bilgin SS, Akkurt BH, Heindel W, Mannil M, Musigmann M. Computed Tomography-Image-Based Glioma Grading Using Radiomics and Machine Learning: A Proof-of-Principle Study. Cancers (Basel) 2025; 17:322. [PMID: 39858104 PMCID: PMC11763433 DOI: 10.3390/cancers17020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES In recent years, numerous studies have been published on determining the WHO grade of central nervous system (CNS) tumors using machine learning algorithms. These studies are usually based on magnetic resonance imaging (MRI) and sometimes also on positron emission tomography (PET) images. To date, however, there are virtually no corresponding studies based on routinely generated computed tomography (CT) images. The aim of our proof-of-concept study is to investigate whether machine learning-based tumor diagnosis is also possible using CT images. METHODS We investigate the differentiability of histologically confirmed low-grade and high-grade gliomas. Three conventional machine learning algorithms and a neural net are tested. In addition, we analyze which of the common imaging methods (MRI or CT) appears to be best suited for the diagnostic question under investigation when machine learning algorithms are used. For this purpose, we compare our results based on CT images with numerous studies based on MRI scans. RESULTS Our best-performing model includes six features and is obtained using univariate analysis for feature preselection and a Naive Bayes approach for model construction. Using independent test data, this model yields a mean AUC of 0.903, a mean accuracy of 0.839, a mean sensitivity of 0.807 and a mean specificity of 0.864. CONCLUSIONS Our results demonstrate that low-grade and high-grade gliomas can be differentiated with high accuracy using machine learning algorithms, not only based on the usual MRI scans, but also based on CT images. In the future, such CT-image-based models can help to further accelerate brain tumor diagnostics and to reduce the number of necessary biopsies.
Collapse
|
4
|
Mesut B, Al-Mohaya M, Gholap AD, Yeşilkaya E, Das U, Akhtar MS, Sah R, Khan S, Moin A, Faiyazuddin M. Demystifying the potential of lipid-based nanocarriers in targeting brain malignancies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9243-9279. [PMID: 38963550 DOI: 10.1007/s00210-024-03212-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/02/2024] [Indexed: 07/05/2024]
Abstract
Drug targeting for brain malignancies is restricted due to the presence of the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB), which act as barriers between the blood and brain parenchyma. Certainly, the limited therapeutic options for brain malignancies have made notable progress with enhanced biological understanding and innovative approaches, such as targeted therapies and immunotherapies. These advancements significantly contribute to improving patient prognoses and represent a promising shift in the landscape of brain malignancy treatments. A more comprehensive understanding of the histology and pathogenesis of brain malignancies is urgently needed. Continued research focused on unraveling the intricacies of brain malignancy biology holds the key to developing innovative and tailored therapies that can improve patient outcomes. Lipid nanocarriers are highly effective drug delivery systems that significantly improve their solubility, bioavailability, and stability while also minimizing unwanted side effects. Surface-modified lipid nanocarriers (liposomes, niosomes, solid lipid nanoparticles, nanostructured lipid carriers, lipid nanocapsules, lipid-polymer hybrid nanocarriers, lipoproteins, and lipoplexes) are employed to improve BBB penetration and uptake through various mechanisms. This systematic review illuminates and covers various topics related to brain malignancies. It explores the different methods of drug delivery used in treating brain malignancies and delves into the benefits, limitations, and types of brain-targeted lipid-based nanocarriers. Additionally, this review discusses ongoing clinical trials and patents related to brain malignancy therapies and provides a glance into future perspectives for treating this condition.
Collapse
Affiliation(s)
- Burcu Mesut
- Pharmaceutical Technology Department, Faculty of Pharmacy, Istanbul University, Istanbul, 34216, Turkey
| | - Mazen Al-Mohaya
- Institute of Health Sciences, Istanbul University, Istanbul, 34216, Turkey
| | - Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, 401404, Maharashtra, India
| | - Eda Yeşilkaya
- Institute of Health Sciences, Istanbul University, Istanbul, 34216, Turkey
| | - Ushasi Das
- Pharmaceutical Technology Department, Jadavpur University, Kolkata, West Bengal, India
| | - Mohammad Shabib Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Ranjit Sah
- Department of Microbiology, Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu, 44600, Nepal.
- Department of Microbiology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, 411018, Maharashtra, India.
- Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, 411018, Maharashtra, India.
| | | | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Hail, 2440, Hail, Saudi Arabia
| | - Md Faiyazuddin
- School of Pharmacy, Al - Karim University, Katihar, 854106, Bihar, India.
- Centre for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India.
| |
Collapse
|
5
|
Mafi A, Hedayati N, Kahkesh S, Khoshayand S, Alimohammadi M, Farahani N, Hushmandi K. The landscape of circRNAs in gliomas temozolomide resistance: Insights into molecular pathways. Noncoding RNA Res 2024; 9:1178-1189. [PMID: 39022676 PMCID: PMC11250881 DOI: 10.1016/j.ncrna.2024.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/01/2024] [Accepted: 05/20/2024] [Indexed: 07/20/2024] Open
Abstract
As the deadliest type of primary brain tumor, gliomas represent a significant worldwide health concern. Circular RNA (circRNA), a unique non-coding RNA molecule, seems to be one of the most alluring target molecules involved in the pathophysiology of many kinds of cancers. CircRNAs have been identified as prospective targets and biomarkers for the diagnosis and treatment of numerous disorders, particularly malignancies. Recent research has established a clinical link between temozolomide (TMZ) resistance and certain circRNA dysregulations in glioma tumors. CircRNAs may play a therapeutic role in controlling or overcoming TMZ resistance in gliomas and may provide guidance for a novel kind of individualized glioma therapy. To address the biological characteristics of circRNAs and their potential to induce resistance to TMZ, this review has highlighted and summarized the possible roles that circRNAs may play in molecular pathways of drug resistance, including the Ras/Raf/ERK PI3K/Akt signaling pathway and metabolic processes in gliomas.
Collapse
Affiliation(s)
- Alireza Mafi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Samaneh Kahkesh
- Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sara Khoshayand
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
6
|
Huang H, Long Z, Deng Y, Huang Z, Lv Z, Sun Q, Liu H, Liang H, Hu F. Alterations in Astrocyte Subpopulations in Glioma and Identification of Cuproptosis-Related Genes Using Single-Cell RNA Sequencing. J Inflamm Res 2024; 17:6329-6344. [PMID: 39281776 PMCID: PMC11402359 DOI: 10.2147/jir.s473932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/31/2024] [Indexed: 09/18/2024] Open
Abstract
Purpose Mitochondrial metabolism is essential for energy production and the survival of brain cells, particularly in astrocytes. Cuproptosis is a newly identified form of programmed cell death that occurs due to the disruption of mitochondrial metabolism caused by excessive copper toxicity. However, the relationship between cuproptosis-related genes (CRGs) in the tumor microenvironment (TME) and the prognosis of gliomas remains unclear. Patients and Methods In this study, we utilized 32,293 cells obtained from three in-house single-cell RNA sequencing (scRNA-seq) datasets, along with 6,148 cells acquired from the Chinese Glioma Genome Atlas (CGGA) involving 14 glioma patients, to identify and validate the TME of gliomas. Results Based on an analysis of 32,293 single cells, we investigated intra-tumor heterogeneity, intercellular communication, and astrocyte differentiation trajectories in gliomas. Our findings revealed that the TGFβ signaling pathway exhibited a higher relative strength in astrocyte subpopulations. Additionally, we identified a novel three-gene signature (CDKN2A, SOX2, and MPC1) was identified for prognostic prediction. Furthermore, glioma patients with a high-risk score demonstrated poorer overall survival (OS) compared to those with a low-risk score in both training and testing datasets (P training set < 0.001; P test set = 0.037). Conclusion Our study revealed the prognostic value of the CRGs in astrocytes exhibiting tumor immunosuppressive characteristics in glioma. We established a novel three-gene prognostic model that offers new insights into the prognosis and treatment strategies for gliomas.
Collapse
Affiliation(s)
- Hao Huang
- Department of Preventive Medicine, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, People's Republic of China
| | - Zhiping Long
- Department of Epidemiology, Public Health School of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Ying Deng
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, People's Republic of China
| | - Zhicong Huang
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, People's Republic of China
| | - Zhonghua Lv
- Department of Neurosurgery, Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Qian Sun
- Department of Neurosurgery, Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Hui Liu
- Department of Neurosurgery, Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Hongsheng Liang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Fulan Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
7
|
Chen M, Xu X, Wang F, Xu X. Development of Predicting Nomograms for Diffuse Astrocytoma and Anaplastic Astrocytoma: A Study Based on the Surveillance, Epidemiology, and End Results Database. World Neurosurg 2024; 188:e513-e530. [PMID: 38821404 DOI: 10.1016/j.wneu.2024.05.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Astrocytoma is a type of adult-type diffuse gliomas that includes diffuse astrocytoma (DA) and anaplastic astrocytoma (AA). However, comprehensive investigations into the risk assessment and prognosis of DA and AA using population-based studies remain noticeably scarce. METHODS In this study, we developed 2 predictive nomograms to evaluate the susceptibility and prognosis associated with DA and AA. The study cohort comprised 3837 individuals diagnosed with DA or AA between 2010 and 2019 selected from the Surveillance, Epidemiology, and End Results (SEER) database. Independent predictors were identified and used to construct the nomograms for overall death and cancer-specific death rates. The performance of the models was assessed using C-index, calibration curves, and receiver operating characteristic curve, and the clinical applicability was evaluated using decision curve analysis. RESULTS The receiver operating characteristic curves in this study show excellent clinical applicability and predictive power. Notably, the area under the curves of the training and verification queues was higher than 0.80, thereby cementing the models' precision. Additionally, the calibration plots demonstrate that the anticipated mortality rates strikingly match the measured values. This alignment of figures is sustained in the validation cohort. Furthermore, the decision curve analysis corroborates the models' translational potential, reinforcing their relevance within real-world clinical settings. CONCLUSIONS The presented nomograms have not only exhibited good predictive performance but also showcased pragmatic clinical utility in prognosticating patient outcomes. Significantly, this will undoubtedly serve as a valuable asset for oncologists, facilitating informed treatment decisions and meticulous follow-up planning.
Collapse
Affiliation(s)
- Mingyi Chen
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China; Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Xiaoxin Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China; Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Fang Wang
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China; Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Xiaohong Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China; Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Lai Y, Lu X, Liao Y, Ouyang P, Wang H, Zhang X, Huang G, Qi S, Li Y. Crosstalk between glioblastoma and tumor microenvironment drives proneural-mesenchymal transition through ligand-receptor interactions. Genes Dis 2024; 11:874-889. [PMID: 37692522 PMCID: PMC10491977 DOI: 10.1016/j.gendis.2023.05.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/28/2023] [Accepted: 05/25/2023] [Indexed: 09/12/2023] Open
Abstract
Glioblastoma (GBM) is the most common intrinsic and aggressive primary brain tumor in adults, with a median survival of approximately 15 months. GBM heterogeneity is considered responsible for the treatment resistance and unfavorable prognosis. Proneural-mesenchymal transition (PMT) represents GBM malignant progression and recurrence, which might be a breakthrough to understand GBM heterogeneity and overcome treatment resistance. PMT is a complicated process influenced by crosstalk between GBM and tumor microenvironment, depending on intricate ligand-receptor interactions. In this review, we summarize the autocrine and paracrine pathways in the GBM microenvironment and related ligand-receptor interactions inducing PMT. We also discuss the current therapies targeting the PMT-related autocrine and paracrine pathways. Together, this review offers a comprehensive understanding of the failure of GBM-targeted therapy and ideas for future tendencies of GBM treatment.
Collapse
Affiliation(s)
- Yancheng Lai
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaole Lu
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yankai Liao
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Pei Ouyang
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hai Wang
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xian Zhang
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Guanglong Huang
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Songtao Qi
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yaomin Li
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
9
|
Biricioiu MR, Sarbu M, Ica R, Vukelić Ž, Kalanj-Bognar S, Zamfir AD. Advances in Mass Spectrometry of Gangliosides Expressed in Brain Cancers. Int J Mol Sci 2024; 25:1335. [PMID: 38279335 PMCID: PMC10816113 DOI: 10.3390/ijms25021335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Gangliosides are highly abundant in the human brain where they are involved in major biological events. In brain cancers, alterations of ganglioside pattern occur, some of which being correlated with neoplastic transformation, while others with tumor proliferation. Of all techniques, mass spectrometry (MS) has proven to be one of the most effective in gangliosidomics, due to its ability to characterize heterogeneous mixtures and discover species with biomarker value. This review highlights the most significant achievements of MS in the analysis of gangliosides in human brain cancers. The first part presents the latest state of MS development in the discovery of ganglioside markers in primary brain tumors, with a particular emphasis on the ion mobility separation (IMS) MS and its contribution to the elucidation of the gangliosidome associated with aggressive tumors. The second part is focused on MS of gangliosides in brain metastases, highlighting the ability of matrix-assisted laser desorption/ionization (MALDI)-MS, microfluidics-MS and tandem MS to decipher and structurally characterize species involved in the metastatic process. In the end, several conclusions and perspectives are presented, among which the need for development of reliable software and a user-friendly structural database as a search platform in brain tumor diagnostics.
Collapse
Affiliation(s)
- Maria Roxana Biricioiu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania; (M.R.B.); (M.S.); (R.I.)
- Faculty of Physics, West University of Timisoara, 300223 Timisoara, Romania
| | - Mirela Sarbu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania; (M.R.B.); (M.S.); (R.I.)
| | - Raluca Ica
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania; (M.R.B.); (M.S.); (R.I.)
| | - Željka Vukelić
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Svjetlana Kalanj-Bognar
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Alina D. Zamfir
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania; (M.R.B.); (M.S.); (R.I.)
- Department of Technical and Natural Sciences, “Aurel Vlaicu” University of Arad, 310330 Arad, Romania
| |
Collapse
|
10
|
Rasa SM, Islam MM, Talukder MA, Uddin MA, Khalid M, Kazi M, Kazi MZ. Brain tumor classification using fine-tuned transfer learning models on magnetic resonance imaging (MRI) images. Digit Health 2024; 10:20552076241286140. [PMID: 39381813 PMCID: PMC11459499 DOI: 10.1177/20552076241286140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/30/2024] [Indexed: 10/10/2024] Open
Abstract
OBJECTIVE Brain tumors are a leading global cause of mortality, often leading to reduced life expectancy and challenging recovery. Early detection significantly improves survival rates. This paper introduces an efficient deep learning model to expedite brain tumor detection through timely and accurate identification using magnetic resonance imaging images. METHODS Our approach leverages deep transfer learning with six transfer learning algorithms: VGG16, ResNet50, MobileNetV2, DenseNet201, EfficientNetB3, and InceptionV3. We optimize data preprocessing, upsample data through augmentation, and train the models using two optimizers: Adam and AdaMax. We perform three experiments with binary and multi-class datasets, fine-tuning parameters to reduce overfitting. Model effectiveness is analyzed using various performance scores with and without cross-validation. RESULTS With smaller datasets, the models achieve 100% accuracy in both training and testing without cross-validation. After applying cross-validation, the framework records an outstanding accuracy of 99.96% with a receiver operating characteristic of 100% on average across five tests. For larger datasets, accuracy ranges from 96.34% to 98.20% across different models. The methodology also demonstrates a small computation time, contributing to its reliability and speed. CONCLUSION The study establishes a new standard for brain tumor classification, surpassing existing methods in accuracy and efficiency. Our deep learning approach, incorporating advanced transfer learning algorithms and optimized data processing, provides a robust and rapid solution for brain tumor detection.
Collapse
Affiliation(s)
- Sadia Maduri Rasa
- Department of Computer Science and Engineering, Jagannath University, Dhaka, Bangladesh
| | | | - Mohammed Alamin Talukder
- Department of Computer Science and Engineering, International University of Business Agriculture and Technology, Dhaka, Bangladesh
| | | | - Majdi Khalid
- Department of Computer Science and Artificial Intelligence,
College of Computing, Umm Al-Qura University, Makkah,
Saudi Arabia
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Zobayer Kazi
- Department of Computer Science and Engineering, Jagannath University, Dhaka, Bangladesh
| |
Collapse
|
11
|
Marecki R, Kałuska J, Kolanek A, Hakało D, Waszkiewicz N. Zuranolone - synthetic neurosteroid in treatment of mental disorders: narrative review. Front Psychiatry 2023; 14:1298359. [PMID: 38116383 PMCID: PMC10729607 DOI: 10.3389/fpsyt.2023.1298359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
With each passing year, the number of people suffering from mental disorders grows at a disturbing speed. Neuroactive steroids are a new promising group of drugs with the potential for use in many diseases like postpartum depression, postnatal psychosis, major depression, insomnia, bipolar disorder, and Parkinson's tremor, due to their ability to modulate the activity of GABAA receptor. Neurosteroids are progesterone metabolites that are synthesized from cholesterol or steroid hormones in various brain regions. They regulate neuronal development, regeneration, and neurotransmission. They are implicated in mood disorders, anxiety disorders, schizophrenia, PTSD, and impulsive aggression. Neurosteroids have been studied for their potential to prevent or treat neurodegenerative diseases such as Alzheimer's disease and HIV-associated dementia. They can promote neurogenesis, neuronal survival, myelination, and memory function. They can also affect the growth and sensitivity of hormone-dependent brain tumors such as gliomas. Zuranolone, a newly registered neurosteroid drug has shown huge flexibility in both clinical and ambulatory treatment thanks to its pharmacokinetic traits, especially the possibility for oral administration, unlike its predecessor Brexanolone. Zuranolone is a synthetic positive allosteric modulator of the GABAA receptor that can be taken orally. The review aims to summarize the current knowledge on zuranolone as a novel neurosteroid drug for various mental disorders, especially for postpartum mental disorders for which this drug was meant originally. It covers studies indexed in the PubMed, Scopus, and Web of Science databases published since 2017. Keywords used in the search, as well as inclusion and exclusion criteria, are given in the aims and methodology section. The review explains the evidence for the role of neurosteroids, especially allopregnanolone, in the pathophysiology and treatment of postpartum depression. It discusses the mechanisms of neurosteroid action, the changes in neurosteroid levels during pregnancy and postpartum, and the clinical trials of brexanolone and zuranolone, two synthetic analogs of allopregnanolone, for postpartum depression. It provides an overview of the biosynthesis and metabolism of neurosteroids in the central and peripheral nervous system. Furthermore, it explains the different sources and pathways of neurosteroid production and the factors that influence their synthesis and regulation, such as stress, hormones, drugs, and genetic variations. The review also explores the potential relevance of neurosteroids for other psychiatric disorders, such as major depression, bipolar disorder, post-traumatic stress disorder (PTSD), schizophrenia, and premenstrual dysphoric disorder. Finally, it highlights the associations between neurosteroid levels and symptom severity and the effects of neurosteroid modulation on mood, cognition, and neuroplasticity.
Collapse
|
12
|
Siddiqui MIA, Parihar P, Mishra GV, Sood A, Saboo K. World Health Organization (WHO) Grade 1 Astrocytoma in a Female From Rural India: A Case Report. Cureus 2023; 15:e50554. [PMID: 38226132 PMCID: PMC10788676 DOI: 10.7759/cureus.50554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024] Open
Abstract
Astrocytomas are rare in adults and less common in the parietal and temporal regions of the brain parenchyma. The current case is of a 26-year-old female patient who presented with a four-month history of headaches and a two-month history of vomiting. The patient's MRI brain showed an ill-defined, thick-walled lesion in the right parietal and temporal region with mass effect, which on histopathology confirmed to be a case of WHO Grade 1 astrocytoma. This manuscript describes the imaging and histopathological appearance of WHO Grade 1 astrocytoma in an adult female.
Collapse
Affiliation(s)
| | - Pratap Parihar
- Department of Radiodiagnosis, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Gaurav V Mishra
- Department of Radiodiagnosis, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Anshul Sood
- Department of Radiodiagnosis, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Keyur Saboo
- Department of Medicine, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
13
|
Pourhadi N, Meaidi A, Friis S, Torp-Pedersen C, Mørch LS. Menopausal hormone therapy and central nervous system tumors: Danish nested case-control study. PLoS Med 2023; 20:e1004321. [PMID: 38113227 PMCID: PMC10729984 DOI: 10.1371/journal.pmed.1004321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Use of estrogen-containing menopausal hormone therapy has been shown to influence the risk of central nervous system (CNS) tumors. However, it is unknown how the progestin-component affects the risk and whether continuous versus cyclic treatment regimens influence the risk differently. METHODS AND FINDINGS Nested case-control studies within a nationwide cohort of Danish women followed for 19 years from 2000 to 2018. The cohort comprised 789,901 women aged 50 to 60 years during follow-up, without prior CNS tumor diagnosis, cancer, or contraindication for treatment with menopausal hormone therapy. Information on cumulative exposure to female hormonal drugs was based on filled prescriptions. Statistical analysis included educational level, use of antihistamines, and use of anti-asthma drugs as covariates. During follow-up, 1,595 women were diagnosed with meningioma and 1,167 with glioma. The median (first-third quartile) follow-up time of individuals in the full cohort was 10.8 years (5.0 years to 17.5 years). Compared to never-use, exposure to estrogen-progestin or progestin-only were both associated with increased risk of meningioma, hazard ratio (HR) 1.21; (95% confidence interval (CI) [1.06, 1.37] p = 0.005) and HR 1.28; (95% CI [1.05, 1.54] p = 0.012), respectively. Corresponding HRs for glioma were HR 1.00; (95% CI [0.86, 1.16] p = 0.982) and HR 1.20; (95% CI [0.95, 1.51] p = 0.117). Continuous estrogen-progestin exhibited higher HR of meningioma 1.34; (95% CI [1.08, 1.66] p = 0.008) than cyclic treatment 1.13; (95% CI [0.94, 1.34] p = 0.185). Previous use of estrogen-progestin 5 to 10 years prior to diagnosis yielded the strongest association with meningioma, HR 1.26; (95% CI [1.01, 1.57] p = 0.044), whereas current/recent use of progestin-only yielded the highest HRs for both meningioma 1.64; (95% CI [0.90, 2.98] p = 0.104) and glioma 1.83; (95% CI [0.98, 3.41] p = 0.057). Being an observational study, residual confounding could occur. CONCLUSIONS Use of continuous, but not cyclic estrogen-progestin was associated with increased meningioma risk. There was no evidence of increased glioma risk with estrogen-progestin use. Use of progestin-only was associated with increased risk of meningioma and potentially glioma. Further studies are warranted to evaluate our findings and investigate the influence of long-term progestin-only regimens on CNS tumor risk.
Collapse
Affiliation(s)
- Nelsan Pourhadi
- Danish Dementia Research Centre, Department of Neurology, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- Cancer Surveillance and Pharmacoepidemiology, Danish Cancer Institute, Danish Cancer Society, Copenhagen, Denmark
| | - Amani Meaidi
- Cancer Surveillance and Pharmacoepidemiology, Danish Cancer Institute, Danish Cancer Society, Copenhagen, Denmark
| | - Søren Friis
- Cancer Surveillance and Pharmacoepidemiology, Danish Cancer Institute, Danish Cancer Society, Copenhagen, Denmark
| | - Christian Torp-Pedersen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Nordsjællands Hospital, Hillerød, Denmark
| | - Lina S. Mørch
- Cancer Surveillance and Pharmacoepidemiology, Danish Cancer Institute, Danish Cancer Society, Copenhagen, Denmark
| |
Collapse
|
14
|
Hirtz A, Rech F, Dubois-Pot-Schneider H, Dumond H. Estrogen signaling in healthy and tumor brain. Steroids 2023; 199:109285. [PMID: 37543222 DOI: 10.1016/j.steroids.2023.109285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/07/2023]
Abstract
Sex-specific differences in brain organization and function are widely explored in multidisciplinary studies, ranging from sociology and biology to digital modelling. In addition, there is growing evidence that natural or disturbed hormonal environments play a crucial role in the onset of brain disorders and pathogenesis. For example, steroid hormones, but also enzymes involved in steroidogenesis and receptors triggering hormone signaling are key players of gliomagenesis. In the present review we summarize the current knowledge about steroid hormone, particularly estrogens synthesis and signaling, in normal brain compared to the tumor brain. We will focus on two key molecular players, aromatase and the G Protein-Coupled Estrogen Receptor, GPER.
Collapse
Affiliation(s)
- Alex Hirtz
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France.
| | - Fabien Rech
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurochirurgie, F-54000 Nancy, France.
| | | | - Hélène Dumond
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France.
| |
Collapse
|
15
|
Nahar Metu CL, Sutihar SK, Sohel M, Zohora F, Hasan A, Miah MT, Rani Kar T, Hossain MA, Rahman MH. Unraveling the signaling mechanism behind astrocytoma and possible therapeutics strategies: A comprehensive review. Cancer Rep (Hoboken) 2023; 6:e1889. [PMID: 37675821 PMCID: PMC10598261 DOI: 10.1002/cnr2.1889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/09/2023] [Accepted: 07/28/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND A form of cancer called astrocytoma can develop in the brain or spinal cord and sometimes causes death. A detailed overview of the precise signaling cascade underlying astrocytoma formation has not yet been revealed, although various factors have been investigated. Therefore, our objective was to unravel and summarize our current understanding of molecular genetics and associated signaling pathways with some possible therapeutic strategies for astrocytoma. RECENT FINDINGS In general, four different forms of astrocytoma have been identified in individuals, including circumscribed, diffuse, anaplastic, and multiforme glioblastoma, according to a recent literature review. All types of astrocytoma have a direct connection with some oncogenic signaling cascade. Common signaling is MAPK cascade, including Ras-Raf-ERK, up-regulated with activating EGFR/AKT/PTEN/mTOR and PDGFR. Recent breakthrough studies found that BRAF mutations, including KIAA1549: BRAF and BRAF V600E are responsible for astrocytoma progression. Additionally, cancer progression is influenced by mutations in some tumor suppressor genes, such as the Tp53/ATRX and MGMT mutant. As synthetic medications must cross the blood-brain barrier (BBB), modulating signal systems such as miRNA is the primary option for treating patients with astrocytoma. However, available surgery, radiation therapy, and experimental therapies such as adjuvant therapy, anti-angiogenic therapy, and EGFR-targeting antibody drug are the usual treatment for most types of astrocytoma. Similar to conventional anticancer medications, some phytochemicals slow tumor growth by simultaneously controlling several cellular proteins, including those involved in cell cycle regulation, apoptosis, metastatic spread, tyrosine kinase, growth factor receptor, and antioxidant-related proteins. CONCLUSION In conclusion, cellular and molecular signaling is directly associated with the development of astrocytoma, and a combination of conventional and alternative therapies can improve the malignancy of cancer patients.
Collapse
Affiliation(s)
- Chowdhury Lutfun Nahar Metu
- Biochemistry and Molecular BiologyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
| | - Sunita Kumari Sutihar
- Biochemistry and Molecular BiologyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
| | - Md Sohel
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
- Department of Biochemistry and Molecular BiologyPrimeasia UniversityDhakaBangladesh
| | - Fatematuz Zohora
- Department of Pharmacy, Faculty of PharmacyUniversity of DhakaDhakaBangladesh
| | - Akayed Hasan
- Department of PharmacyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Md. Thandu Miah
- Department of PharmacyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Tanu Rani Kar
- Department of Biochemistry and Molecular BiologyPrimeasia UniversityDhakaBangladesh
| | - Md. Arju Hossain
- Department of Biotechnology and Genetic EngineeringMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Md Habibur Rahman
- Department of Computer Science and EngineeringIslamic UniversityKushtiaBangladesh
| |
Collapse
|
16
|
Pourhadi N, Meaidi A, Friis S, Torp-Pedersen C, Mørch LS. Central nervous system tumours among users of vaginal oestradiol tablets: A nationwide population-based study. Eur J Neurol 2023; 30:2811-2820. [PMID: 37309803 DOI: 10.1111/ene.15914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND PURPOSE It is currently unknown whether vaginal oestradiol is associated with development of meningioma and glioma. The aim of this study was to examine associations between cumulative use and treatment intensity of vaginally administered oestradiol tablets and incidence of meningioma and glioma in a nationwide, population-based study. METHODS We conducted a nested case-control study within a nationwide cohort of Danish women followed from 2000 to 2018. The cohort consisted of 590,676 women aged 50-60 years at study start, without prior cancer diagnosis or use of systemic hormone therapy. Information on cumulative dose, duration, and intensity of vaginal oestradiol tablet use was assessed from filled prescriptions. Conditional logistic regression provided adjusted hazard ratios (HRs) for the association between vaginal oestradiol use and diagnosis of meningioma or glioma. RESULTS We identified 1108 women with meningioma and 835 with glioma. Of these, 19.8% and 14.0% used vaginal oestradiol tablets, respectively. The HRs in those with ever-use of vaginal oestradiol tablets was 1.14 (95% confidence interval [CI] 0.97-1.34) for meningioma and 0.90 (95% CI 0.73-1.11) for glioma. The corresponding HRs for new users exclusively were 1.18 (95% CI 0.99-1.40) for meningioma and 0.89 (95% CI 0.71-1.13) for glioma. Intensity of vaginal oestradiol tablet use according to duration and user status yielded slightly elevated HRs for meningioma without an apparent dose-response pattern, while the HRs for glioma were generally below unity. Among new users, the HR with high intensity of current or recent vaginal oestradiol tablet use for 2+ years was 1.66 (95% CI 1.09-2.55) for meningioma and 0.77 (95% CI 0.41-1.44) for glioma. CONCLUSION Use of vaginal oestradiol tablets was associated with a slightly increased incidence of meningioma but not of glioma. Owing to the observational nature of the study, residual bias cannot be ruled out.
Collapse
Affiliation(s)
- Nelsan Pourhadi
- Danish Dementia Research Centre, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Cancer Surveillance and Pharmacoepidemiology, Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark
| | - Amani Meaidi
- Cancer Surveillance and Pharmacoepidemiology, Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark
| | - Søren Friis
- Cancer Surveillance and Pharmacoepidemiology, Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark
| | - Christian Torp-Pedersen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Nordsjaellands Hospital, Hillerød, Denmark
| | - Lina S Mørch
- Cancer Surveillance and Pharmacoepidemiology, Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark
| |
Collapse
|
17
|
Pakdel F. The Role of Estrogen Receptors in Health and Disease. Int J Mol Sci 2023; 24:11354. [PMID: 37511113 PMCID: PMC10378944 DOI: 10.3390/ijms241411354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Many biological and physiological events, including growth, development, and metabolism of reproductive and non-reproductive tissues in men and women, are regulated by estrogens and estrogen receptors (ERs) [...].
Collapse
Affiliation(s)
- Farzad Pakdel
- Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, EHESP, Inserm, Université de Rennes, F-35000 Rennes, France
| |
Collapse
|
18
|
Wang R, Cui J, Diao Y, Jin C, Chen Y, Lv X, Li X. Risk factor analysis and nomogram establishment and verification of brain astrocytoma patients based on SEER database. Sci Rep 2023; 13:7754. [PMID: 37173353 PMCID: PMC10182035 DOI: 10.1038/s41598-023-33537-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
Astrocytoma is a common brain tumor that can occur in any part of the central nervous system. This tumor is extremely harmful to patients, and there are no clear studies on the risk factors for astrocytoma of the brain. This study was conducted based on the SEER database to determine the risk factors affecting the survival of patients with astrocytoma of the brain. Patients diagnosed with brain astrocytoma in the SEER database from 2004 to 2015 were screened by inclusion exclusion criteria. Final screened brain astrocytoma patients were classified into low grade and high grade according to WHO classification. The risk factors affecting the survival of patients with low-grade and high-grade brain astrocytoma were analyzed by univariate Kaplan-Meier curves and log-rank tests, individually. Secondly, the data were randomly divided into training set and validation set according to the ratio of 7:3, and the training set data were analyzed by univariate and multivariate Cox regression, and the risk factors affecting the survival of patients were screened and nomogram was established to predict the survival rates of patients at 3 years and 5 years. The area under the ROC curve (AUC value), C-index, and Calibration curve are used to evaluate the sensitivity and calibration of the model. Univariate Kaplan-Meier survival curve and log-rank test showed that the risk factors affecting the prognosis of patients with low-grade astrocytoma included Age, Primary site, Tumor histological type, Grade, Tumor size, Extension, Surgery, Radiation, Chemotherapy and Tumor number; risk factors affecting the prognosis of patients with high-grade astrocytoma include Age, Primary site, Tumor histological type, Tumor size, Extension, Laterality, Surgery, Radiation, Chemotherapy and Tumor number. Through Cox regression, independent risk factors of patients with two grades were screened separately, and nomograms of risk factors for low-grade and high-grade astrocytoma were successfully established to predict the survival rate of patients at 3 and 5 years. The AUC values of low-grade astrocytoma training set patients were 0.829 and 0.801, and the C-index was 0.818 (95% CI 0.779, 0.857). The AUC values of patients in the validation set were 0.902, 0.829, and the C-index was 0.774 (95% CI 0.758, 0.790), respectively. The AUC values of high-grade astrocytoma training set patients were 0.814 and 0.806, the C-index was 0.774 (95% CI 0.758, 0.790), the AUC values of patients in the validation set were 0.802 and 0.823, and the C-index was 0.766 (95% CI 0.752, 0.780), respectively, and the calibration curves of the two levels of training set and validation set were well fitted. This study used data from the SEER database to identify risk factors affecting the survival prognosis of patients with brain astrocytoma, which can provide some guidance for clinicians.
Collapse
Affiliation(s)
- Ruiqi Wang
- Department of Epidemiology and Health Statistics, Dalian Medical University, 9 Lvshun South Road, Liaoning Dalian, 116044, China
| | - Jiaxue Cui
- Department of Epidemiology and Health Statistics, Dalian Medical University, 9 Lvshun South Road, Liaoning Dalian, 116044, China
| | - Yizhuo Diao
- Department of Epidemiology and Health Statistics, Dalian Medical University, 9 Lvshun South Road, Liaoning Dalian, 116044, China
| | - Chenxin Jin
- Department of Epidemiology and Health Statistics, Dalian Medical University, 9 Lvshun South Road, Liaoning Dalian, 116044, China
| | - Yongxing Chen
- Department of Epidemiology and Health Statistics, Dalian Medical University, 9 Lvshun South Road, Liaoning Dalian, 116044, China
| | - Xiupeng Lv
- Department of Radiation Oncology, First Affiliated Hospital, Dalian Medical University, Dalian Liaoning, 116044, China.
| | - Xiaofeng Li
- Department of Epidemiology and Health Statistics, Dalian Medical University, 9 Lvshun South Road, Liaoning Dalian, 116044, China.
| |
Collapse
|
19
|
Hypocretin-1 suppresses malignant progression of glioblastoma cells through Notch1 signaling pathway. Brain Res Bull 2023; 196:46-58. [PMID: 36925051 DOI: 10.1016/j.brainresbull.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Hypocretin-1 is a multifunctional neuropeptide that has been identified as a potential antitumor agent for its role in inhibiting tumor growth, including in colon cancer, neuroendocrine tumor, and prostate cancer. However, the role and mechanism of hypocretin-1 in the occurrence and development of malignant glioma have not been well studied. Therefore, we investigated the effect of hypocretin-1 on glioblastoma proliferation, apoptosis, migration and invasion and its mechanism. We found that the hypocretin-1 receptor was expressed in both glioma cell lines and glioma tissues. Hypocretin-1 treatment can inhibit glioblastoma cell proliferation, migration and invasion, and induce cell apoptosis. Meanwhile, hypocretin-1 treatment significantly reduces tumor growth rate and tumor weight. In addition, mechanistic studies have found that hypocretin-1 exerts antitumor effects by inhibiting NOTCH signaling pathway. Overexpression of NICD significantly reversed the antitumor effect of hypocretin on glioblastoma. Taken together, these findings suggest that hypocretin-1 inhibits glioblastoma proliferation, migration and invasion and induces apoptosis in vitro and in vivo through NOTCH signaling pathway.
Collapse
|
20
|
A Case-report of Concurrent Pulmonary and Cerebral Lesions in a Patient with Polymyositis: Invasive Aspergillosis or Astrocytoma? Jundishapur J Microbiol 2023. [DOI: 10.5812/jjm-132821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Introduction: Polymyositis is an idiopathic inflammatory myopathy that mainly manifests itself in muscle weakness. Patients with polymyositis have a higher risk of developing infections and malignancies. We report concurrent pulmonary and cerebral lesions in a polymyositis patient with many diagnostic challenges. Case Presentation: A 56-year-old woman complained of a productive cough and dyspnea two weeks ago. Her symptoms gradually progressed until a sudden loss of consciousness occurred. She was a known case of polymyositis and was treated with oral prednisolone. Imaging revealed concurrent pulmonary and cerebral lesions. Initially, the patient underwent empirical therapy. However, the patient underwent a bronchoscopy because she did not respond to treatment. Specimens obtained from respiratory secretions revealed branched septate hyphae, and the culture was positive for Aspergillus fumigatus. She was diagnosed with invasive aspergillosis, so we replaced the therapy with voriconazole. After three months, the lung lesions improved, but the number and extent of cerebral lesions increased. Finally, after a stereotactic biopsy, the patient was diagnosed with astrocytoma and became a candidate for radiotherapy. Conclusions: Patients with polymyositis are prone to contracting opportunistic infections and malignancies. Both of them can mimic each other and present diagnostic challenges to physicians. Thus, they should think about them for early diagnosis and timely treatment.
Collapse
|
21
|
Zhou Y, Xiao X, Peng C, Song D, Ouyang F, Wang L. Progesterone induces glioblastoma cell apoptosis by coactivating extrinsic and intrinsic apoptotic pathways. Mol Cell Toxicol 2023. [DOI: 10.1007/s13273-022-00327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
22
|
Investigational Microbiological Therapy for Glioma. Cancers (Basel) 2022; 14:cancers14235977. [PMID: 36497459 PMCID: PMC9736089 DOI: 10.3390/cancers14235977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022] Open
Abstract
Glioma is the most common primary malignancy of the central nervous system (CNS), and 50% of patients present with glioblastoma (GBM), which is the most aggressive type. Currently, the most popular therapies are progressive chemotherapy and treatment with temozolomide (TMZ), but the median survival of glioma patients is still low as a result of the emergence of drug resistance, so we urgently need to find new therapies. A growing number of studies have shown that the diversity, bioactivity, and manipulability of microorganisms make microbial therapy a promising approach for cancer treatment. However, the many studies on the research progress of microorganisms and their derivatives in the development and treatment of glioma are scattered, and nobody has yet provided a comprehensive summary of them. Therefore, in this paper, we review the research progress of microorganisms and their derivatives in the development and treatment of glioma and conclude that it is possible to treat glioma by exogenous microbial therapies and targeting the gut-brain axis. In this article, we discuss the prospects and pressing issues relating to these therapies with the aim of providing new ideas for the treatment of glioma.
Collapse
|
23
|
Zhang K, Liu X, Li G, Chang X, Li S, Chen J, Zhao Z, Wang J, Jiang T, Chai R. Clinical management and survival outcomes of patients with different molecular subtypes of diffuse gliomas in China (2011-2017): a multicenter retrospective study from CGGA. Cancer Biol Med 2022; 19:j.issn.2095-3941.2022.0469. [PMID: 36350010 PMCID: PMC9630520 DOI: 10.20892/j.issn.2095-3941.2022.0469] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/05/2022] [Indexed: 09/01/2023] Open
Abstract
OBJECTIVE We aimed to summarize the clinicopathological characteristics and prognostic features of various molecular subtypes of diffuse gliomas (DGs) in the Chinese population. METHODS In total, 1,418 patients diagnosed with DG between 2011 and 2017 were classified into 5 molecular subtypes according to the 2016 WHO classification of central nervous system tumors. The IDH mutation status was determined by immunohistochemistry and/or DNA sequencing, and 1p/19q codeletion was detected with fluorescence in situ hybridization. The median clinical follow-up time was 1,076 days. T-tests and chi-square tests were used to compare clinicopathological characteristics. Kaplan-Meier and Cox regression methods were used to evaluate prognostic factors. RESULTS Our cohort included 15.5% lower-grade gliomas, IDH-mutant and 1p/19q-codeleted (LGG-IDHm-1p/19q); 18.1% lower-grade gliomas, IDH-mutant (LGG-IDHm); 13.1% lower-grade gliomas, IDH-wildtype (LGG-IDHwt); 36.1% glioblastoma, IDH-wildtype (GBM-IDHwt); and 17.2% glioblastoma, IDH-mutant (GBM-IDHm). Approximately 63.3% of the enrolled primary gliomas, and the median overall survival times for LGG-IDHm, LGG-IDHwt, GBM-IDHwt, and GBM-IDHm subtypes were 75.97, 34.47, 11.57, and 15.17 months, respectively. The 5-year survival rate of LGG-IDHm-1p/19q was 76.54%. We observed a significant association between high resection rate and favorable survival outcomes across all subtypes of primary tumors. We also observed a significant role of chemotherapy in prolonging overall survival for GBM-IDHwt and GBM-IDHm, and in prolonging post-relapse survival for the 2 recurrent GBM subtypes. CONCLUSIONS By controlling for molecular subtypes, we found that resection rate and chemotherapy were 2 prognostic factors associated with survival outcomes in a Chinese cohort with DG.
Collapse
Affiliation(s)
- Kenan Zhang
- Department of Molecular Pathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Xing Liu
- Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Guanzhang Li
- Department of Molecular Pathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Xin Chang
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Shouwei Li
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Jing Chen
- Department of Molecular Pathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Zheng Zhao
- Department of Molecular Pathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Jiguang Wang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong SAR 999077, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen 518057, China
| | - Tao Jiang
- Department of Molecular Pathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Ruichao Chai
- Department of Molecular Pathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
24
|
Neganova ME, Aleksandrova YR, Sukocheva OA, Klochkov SG. Benefits and limitations of nanomedicine treatment of brain cancers and age-dependent neurodegenerative disorders. Semin Cancer Biol 2022; 86:805-833. [PMID: 35779712 DOI: 10.1016/j.semcancer.2022.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 02/07/2023]
Abstract
The treatment of central nervous system (CNS) malignancies, including brain cancers, is limited by a number of obstructions, including the blood-brain barrier (BBB), the heterogeneity and high invasiveness of tumors, the inaccessibility of tissues for early diagnosis and effective surgery, and anti-cancer drug resistance. Therapies employing nanomedicine have been shown to facilitate drug penetration across the BBB and maintain biodistribution and accumulation of therapeutic agents at the desired target site. The application of lipid-, polymer-, or metal-based nanocarriers represents an advanced drug delivery system for a growing group of anti-cancer chemicals. The nanocarrier surface is designed to contain an active ligand (cancer cell marker or antibody)-binding structure which can be modified to target specific cancer cells. Glioblastoma, ependymoma, neuroblastoma, medulloblastoma, and primary CNS lymphomas were recently targeted by easily absorbed nanocarriers. The metal- (such as transferrin drug-loaded systems), polymer- (nanocapsules and nanospheres), or lipid- (such as sulfatide-containing nanoliposomes)-based nano-vehicles were loaded with apoptosis- and/or ferroptosis-stimulating agents and demonstrated promising anti-cancer effects. This review aims to discuss effective nanomedicine approaches designed to overcome the current limitations in the therapy of brain cancers and age-dependent neurodegenerative disorders. To accent current obstacles for successful CNS-based cancer therapy, we discuss nanomedicine perspectives and limitations of nanodrug use associated with the specificity of nervous tissue characteristics and the effects nanocarriers have on cognition.
Collapse
Affiliation(s)
- Margarita E Neganova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka 142432, Russia
| | - Yulia R Aleksandrova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka 142432, Russia
| | - Olga A Sukocheva
- School of Health Sciences, Flinders University of South Australia, Bedford Park, SA 5042, Australia.
| | - Sergey G Klochkov
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka 142432, Russia
| |
Collapse
|
25
|
Hirtz A, Lebourdais N, Thomassin M, Rech F, Dumond H, Dubois-Pot-Schneider H. Identification of Gender- and Subtype-Specific Gene Expression Associated with Patient Survival in Low-Grade and Anaplastic Glioma in Connection with Steroid Signaling. Cancers (Basel) 2022; 14:cancers14174114. [PMID: 36077653 PMCID: PMC9454517 DOI: 10.3390/cancers14174114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/14/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Gliomas are primary brain tumors that are initially slow growing but progress to be more aggressive and, ultimately, fatal within a few years. They are more common in men than in women, suggesting a protective role for female hormones. By analyzing patient data collected in the public TGCA-LGG database, we have demonstrated a link between the expression level of key steroid biosynthesis enzymes or hormone receptors with patient survival, in ways that are dependent on gender and molecular subtype. We also determined the genes which expression associated with these actors of steroid signaling and the functions they perform, to decipher the mechanisms underlying gender-dependent differences. Together, these results establish, for the first time, the involvement of hormones in low-grade and anaplastic gliomas and provide clues for refining their classification and, thus, facilitating more personalized management of patients. Abstract Low-grade gliomas are rare primary brain tumors, which fatally evolve to anaplastic gliomas. The current treatment combines surgery, chemotherapy, and radiotherapy. If gender differences in the natural history of the disease were widely described, their underlying mechanisms remain to be determined for the identification of reliable markers of disease progression. We mined the transcriptomic and clinical data from the TCGA-LGG and CGGA databases to identify male-over-female differentially expressed genes and selected those associated with patient survival using univariate analysis, depending on molecular characteristics (IDH wild-type/mutated; 1p/19q codeleted/not) and grade. Then, the link between the expression levels (low or high) of the steroid biosynthesis enzyme or receptors of interest and survival was studied using the log-rank test. Finally, a functional analysis of gender-specific correlated genes was performed. HOX-related genes appeared to be differentially expressed between males and females in both grades, suggesting that a glioma could originate in perturbation of developmental signals. Moreover, aromatase, androgen, and estrogen receptor expressions were associated with patient survival and were mainly related to angiogenesis or immune response. Therefore, consideration of the tight control of steroid hormone production and signaling seems crucial for the understanding of glioma pathogenesis and emergence of future targeted therapies.
Collapse
Affiliation(s)
- Alex Hirtz
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
| | | | | | - Fabien Rech
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
- Université de Lorraine, CHRU-Nancy, Service de Neurochirurgie, F-54000 Nancy, France
| | - Hélène Dumond
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
| | | |
Collapse
|
26
|
Tumors of the central nervous system among women treated with fertility drugs: a population-based cohort study. Cancer Causes Control 2022; 33:1285-1293. [PMID: 35895242 DOI: 10.1007/s10552-022-01610-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/29/2022] [Indexed: 10/16/2022]
Abstract
PURPOSE To investigate the association between fertility drugs and tumors of the central nervous system (CNS). METHODS This cohort study was based on The Danish Infertility Cohort and included 148,016 infertile women living in Denmark (1995-2017). The study cohort was linked to national registers to obtain information on use of specific fertility drugs, cancer diagnoses, covariates, emigration, and vital status. Cox proportional hazard regression models were used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs) for all CNS tumors and separately for gliomas, meningiomas and diverse benign tumors of the brain and other parts of the CNS. RESULTS During a median 11.3 years of follow-up, 328 women were diagnosed with CNS tumors. No marked associations were observed between use of the fertility drugs clomiphene citrate, gonadotropins, gonadotropin-releasing hormone receptor modulators and progesterone and CNS tumors. However, use of human chorionic gonadotropin was associated with a decreased rate of meningiomas (HR 0.49 95% CI 0.28-0.87). No clear associations with CNS tumors were observed according to time since first use or cumulative dose for any of the fertility drugs. CONCLUSION No associations between use of most types of fertility drugs and CNS tumors were observed. However, our findings only apply to premenopausal women and additional studies with longer follow-up time are necessary.
Collapse
|
27
|
Shao C, Tang H, Wang X, He J, Wang P, Wu N. Oral Contraceptive and Glioma Risk: A Prospective Cohort Study and Meta-Analysis. Front Public Health 2022; 10:878233. [PMID: 35910887 PMCID: PMC9330220 DOI: 10.3389/fpubh.2022.878233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022] Open
Abstract
Background Epidemiological evidence that glioma has a slight male predominance implies that factors associated with sex hormones may play a role in the development of glioma. The association between oral contraceptive (OC) use and glioma risk remains controversial. Method In the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial of 70,516 women in the USA, Cox proportional hazards regression analyses were adopted to calculate the crude and adjusted hazard ratios (HRs) and 95% confidence intervals (CIs). Additionally, a meta-analysis combining the PLCO findings with those of other prospective cohorts was performed. Results During a mean follow-up of ~11.7 years, 110 of 70,516 women aged 50–78 years at baseline were diagnosed with glioma in PLCO studies. Compared with never users, an inverse association of borderline significance was found for OC users (HR 0.67, 95% CI 0.44–1.04, P = 0.074). Analyses assessing glioma risk according to the duration of OC use yielded no significant association. When PLCO was combined with four other prospective studies, there was an inverse association between OC use and glioma risk (HR 0.85, 95% CI 0.75–0.97, I2 = 0.0%). Further dose-response analysis showed a nonlinear, inverse relationship between OC use and glioma risk (P < 0.001). Conclusions This study provided some evidence of a nonlinear, inverse association between OC use and glioma risk. Future larger studies are warranted to validate this finding.
Collapse
Affiliation(s)
- Chuan Shao
- Department of Neurosurgery, Chongqing General Hospital, Chongqing, China
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, China
- Graduate Institute, Chongqing Medical University, Chongqing, China
| | - Hui Tang
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, China
| | - Xiaoya Wang
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, China
| | - Jiaquan He
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, China
| | - Pan Wang
- Department of Neurosurgery, Chongqing General Hospital, Chongqing, China
- *Correspondence: Pan Wang
| | - Nan Wu
- Department of Neurosurgery, Chongqing General Hospital, Chongqing, China
- Nan Wu
| |
Collapse
|
28
|
Dahlberg D, Rummel J, Distante S, De Souza GA, Stensland ME, Mariussen E, Rootwelt H, Voie Ø, Hassel B. Glioblastoma microenvironment contains multiple hormonal and non-hormonal growth-stimulating factors. Fluids Barriers CNS 2022; 19:45. [PMID: 35659255 PMCID: PMC9166426 DOI: 10.1186/s12987-022-00333-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/28/2022] [Indexed: 12/17/2022] Open
Abstract
Background The growth of malignant tumors is influenced by their microenvironment. Glioblastoma, an aggressive primary brain tumor, may have cysts containing fluid that represents the tumor microenvironment. The aim of this study was to investigate whether the cyst fluid of cystic glioblastomas contains growth-stimulating factors. Identification of such growth factors may pave the way for the development of targeted anti-glioblastoma therapies. Methods We performed hormone analysis of cyst fluid from 25 cystic glioblastomas and proteomics analysis of cyst fluid from another 12 cystic glioblastomas. Results Glioblastoma cyst fluid contained hormones within wide concentration ranges: Insulin-like growth factor 1 (0–13.7 nmol/L), insulin (1.4–133 pmol/L), erythropoietin (4.7–402 IU/L), growth hormone (0–0.93 µg/L), testosterone (0.2–10.1 nmol/L), estradiol (0–1.0 nmol/L), triiodothyronine (1.0–11.5). Tumor volume correlated with cyst fluid concentrations of growth hormone and testosterone. Survival correlated inversely with cyst fluid concentration of erythropoietin. Several hormones were present at concentrations that have been shown to stimulate glioblastoma growth in vitro. Concentrations of erythropoietin and estradiol (in men) were higher in cyst fluid than in serum, suggesting formation by tumor or brain tissue. Quantitatively, glioblastoma cyst fluid was dominated by serum proteins, illustrating blood–brain barrier leakage. Proteomics identified several proteins that stimulate tumor cell proliferation and invasiveness, others that inhibit apoptosis or mediate adaption to hypoxia and some that induce neovascularization or blood–brain barrier leakage. Conclusion The microenvironment of glioblastomas is rich in growth-stimulating factors that may originate from the circulation, the tumor, or the brain. The wide variation in cyst fluid hormone concentrations may differentially influence tumor growth. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00333-z.
Collapse
Affiliation(s)
- Daniel Dahlberg
- Department of Neurosurgery, Oslo University Hospital, Nydalen, PO box 4950, 0424, Oslo, Norway.
| | - Jutta Rummel
- Department of Neurohabilitation and Complex Neurology, Oslo University Hospital, Oslo, Norway
| | - Sonia Distante
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Gustavo Antonio De Souza
- Institute of Immunology and Centre for Immune Regulation, Oslo University Hospital, Oslo, Norway.,Department of Biochemistry, Universidade Federal Do Rio Grande Do Norte, Natal, RN, Brazil
| | - Maria Ekman Stensland
- Institute of Immunology and Centre for Immune Regulation, Oslo University Hospital, Oslo, Norway
| | - Espen Mariussen
- Norwegian Defence Research Establishment (FFI), Kjeller, Norway.,Department of Air Quality and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Helge Rootwelt
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Øyvind Voie
- Norwegian Defence Research Establishment (FFI), Kjeller, Norway
| | - Bjørnar Hassel
- Department of Neurohabilitation and Complex Neurology, Oslo University Hospital, Oslo, Norway.,Norwegian Defence Research Establishment (FFI), Kjeller, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
29
|
Feng YH, Lim SW, Lin HY, Wang SA, Hsu SP, Kao TJ, Ko CY, Hsu TI. Allopregnanolone suppresses glioblastoma survival through decreasing DPYSL3 and S100A11 expression. J Steroid Biochem Mol Biol 2022; 219:106067. [PMID: 35114375 DOI: 10.1016/j.jsbmb.2022.106067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/15/2022] [Accepted: 01/28/2022] [Indexed: 12/14/2022]
Abstract
Allopregnanolone (allo) is a physiological regulator of neuronal activity that treats multiple neurological disorders. Allo penetrates the blood-brain barrier with very high efficiency, implying that allo can treat CNS-related diseases, including glioblastoma (GBM), which always recurs after standard therapy. Hence, this study aimed to determine whether allo has a therapeutic effect on GBM. We found that allo enhanced temozolomide (TMZ)-suppressed cell survival and proliferation of TMZ-resistant cells. In particular, allo enhanced TMZ-inhibited cell migration and TMZ-induced apoptosis. Additionally, allo strongly induced DNA damage characterized by γH2Ax. Furthermore, quantitative proteomic analysis, iTRAQ, showed that allo significantly decreased the levels of DPYSL3, S100A11, and S100A4, reflecting the poor prognosis of patients with GBM confirmed by differential gene expression and survival analysis. Moreover, single-cell RNA-Seq revealed that S100A11, expressed in malignant cells, oligodendrocytes, and macrophages, was significantly associated with immune cell infiltration. Furthermore, overexpression of DPYSL3 or S100A11 prevented allo-induced cell death. In conclusion, allo suppresses GBM cell survival by decreasing DPYSL3/S100A11 expression and inducing DNA damage.
Collapse
Affiliation(s)
| | - Sher-Wei Lim
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Department of Neurosurgery, Chi-Mei Medical Center, Tainan 722, Taiwan; Department of Nursing, Min-Hwei College of Health Care Management, Tainan 736, Taiwan
| | - Hong-Yi Lin
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan
| | - Shao-An Wang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Sung-Po Hsu
- Department of Physiology, School of Medicine, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Tzu-Jen Kao
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan
| | - Chiung-Yuan Ko
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan.
| | - Tsung-I Hsu
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei 110, Taiwan.
| |
Collapse
|
30
|
Estrogens, Cancer and Immunity. Cancers (Basel) 2022; 14:cancers14092265. [PMID: 35565393 PMCID: PMC9101338 DOI: 10.3390/cancers14092265] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 02/05/2023] Open
Abstract
Sex hormones are included in many physiological and pathological pathways. Estrogens belong to steroid hormones active in female sex. Estradiol (E2) is the strongest female sex hormone and, with its receptors, contributes to oncogenesis, cancer progression and response to treatment. In recent years, a role of immunosurveillance and suppression of immune response in malignancy has been well defined, forming the basis for cancer immunotherapy. The interplay of sex hormones with cancer immunity, as well as the response to immune checkpoint inhibitors, is of interest. In this review, we investigate the impact of sex hormones on natural immune response with respect to main active elements in anticancer immune surveillance: dendritic cells, macrophages, lymphocytes and checkpoint molecules. We describe the main sex-dependent tumors and the contribution of estrogen in their progression, response to treatment and especially modulation of anticancer immune response.
Collapse
|
31
|
Ng S, Duffau H. Factors Associated With Long-term Survival in Women Who Get Pregnant After Surgery for WHO Grade II Glioma. Neurology 2022; 99:e89-e97. [PMID: 35410899 DOI: 10.1212/wnl.0000000000200523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/01/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Women with a WHO grade II glioma (GIIG) often question clinicians on the effects of pregnancy on their disease. Previous reports have indicated a higher risk of glioma progression during and after pregnancy. Here, the aim was to investigate post-pregnancy outcomes and predictive factors impacting overall survival in female patients who underwent GIIG surgery. METHODS Inclusion criteria were adult women who have been pregnant after a GIIG resection and with a stable oncological status at the time of pregnancy (no ongoing oncological treatment, no contrast enhancement, no debilitating clinical condition). Relevant cases were identified from a databank (1998-2021) of patients who underwent surgical resection for a histologically-confirmed GIIG in our department. RESULTS Among 345 GIIG women within their reproductive years (age<45y), 16 patients (4.6%, mean age at delivery: 30.9±5.1 years) were pregnant (twice in 5 cases). The mean interval between the last oncological treatment (surgery alone in 11 patients while followed by chemotherapy and/or radiotherapy in 5 patients) and pregnancy was 3.5 years (range 0.75-10 years). Two patients experienced seizures during pregnancy. The delivery was vaginal and uneventful in all cases but one (1 caesarean). All children had normal mental and physical development. The glioma behavior changed in 7 patients (43.7%), with an acceleration of the velocity of diameter expansion (VDE) and/or the occurrence of a contrast enhancement during or within the 3 months after pregnancy, resulting in medical treatment and/or reoperation in the early post-partum period in 7 cases. The median clinical follow-up from delivery was 5.3 years (range 1.25-11.6 years). Four other patients received delayed adjuvant therapy for glioma progression. Seven patients (43.7%) died at a median time from delivery of 3.9 years (range 1.25-5.9 years). Overall, the median survival from delivery was 5.75 years. Crucially, patients who underwent a complete surgical resection and patients with stable lesions before pregnancy lived longer (log rank, p=0.046 and p=0.0026, respectively). CONCLUSIONS Tumor residual volume and tumor speed growth are strong predictive factors conditioning post-pregnancy long-term survival in patients with GIIG. Identifying patients at risk is critical to provide relevant counsel to GIIG women with a desire for motherhood.
Collapse
Affiliation(s)
- Sam Ng
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,Team "Neuroplasticity, Stem Cells and Low-grade Gliomas," INSERM U1191, Institute of Functional Genomics, University of Montpellier, Montpellier, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,Team "Neuroplasticity, Stem Cells and Low-grade Gliomas," INSERM U1191, Institute of Functional Genomics, University of Montpellier, Montpellier, France
| |
Collapse
|
32
|
Differences in the Expression Patterns of TGFβ Isoforms and Associated Genes in Astrocytic Brain Tumors. Cancers (Basel) 2022; 14:cancers14081876. [PMID: 35454784 PMCID: PMC9032667 DOI: 10.3390/cancers14081876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 12/21/2022] Open
Abstract
Genes associated with the TGFβ isoforms are involved in a number of different cancers, and their effect on the progression of brain tumors is also being discussed. Using an oligonucleotide microarray method, we assessed differences in expression patterns of genes in astrocytic brain tumor sections from 43 patients at different stages of disease. Quantitative mRNA assessment of the three TGFβ isoforms was also performed by real-time RT-qPCR. Oligonucleotide microarray data were analyzed using the PL-Grid Infrastructure. The microarray analysis showed a statistically significant (p < 0.05) increase in TGFβ1 and TGFβ2 expression in G3/G4 stage relative to G2, whereas real-time RT-qPCR validation confirmed this change only for the TGFβ2 isoform (p < 0.05). The oligonucleotide microarray method allowed the identification of 16 differential genes associated with TGFβ isoforms. Analysis of the STRING database showed that the proteins encoded by the analyzed genes form a strong interaction network (p < 0.001), and a significant number of proteins are involved in carcinogenesis. Differences in expression patterns of transcripts associated with TGFβ isoforms confirm that they play a role in astrocytic brain tumor transformation. Quantitative assessment of TGFβ2 mRNA may be a valuable method to complement the diagnostic process in the future.
Collapse
|
33
|
Li C, Liu J, Yang W, Chen C, Wu B. The relationship among integrin alpha 7, CD133 and Nestin as well as their correlation with clinicopathological features and prognosis in astrocytoma patients. Clin Neurol Neurosurg 2022; 217:107198. [DOI: 10.1016/j.clineuro.2022.107198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/07/2022] [Accepted: 03/02/2022] [Indexed: 11/29/2022]
|
34
|
Sex Differences in Glioblastoma—Findings from the Swedish National Quality Registry for Primary Brain Tumors between 1999–2018. J Clin Med 2022; 11:jcm11030486. [PMID: 35159938 PMCID: PMC8837060 DOI: 10.3390/jcm11030486] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 02/01/2023] Open
Abstract
Sex disparities in glioblastoma (GBM) have received increasing attention. Sex-related differences for several molecular markers have been reported, which could impact on clinical factors and outcomes. We therefore analyzed data on all patients with GBM reported to the Swedish National Quality Registry for Primary Brain Tumors, according to sex, with a focus on prognostic factors and survival. All glioma patients registered during 20 years, from 1 January 1999 until 31 December 2018, with SNOMED codes 94403, 94413, and 94423, were analyzed. Chi2-test, log-rank test, and Kaplan–Meier analyses were performed. We identified 5243 patients, of which 2083 were females and 3160 males, resulting in a ratio of 1:1.5. We found sex related differences, with women having diagnostic surgery at a significantly higher age (p = 0.001). Women were also reported to have a worse preoperative performance status (PPS) (<0.001). There was no gender difference for the type of surgery performed. For women with radical surgery, overall survival was slightly better than for men (p = 0.045). The time period did not influence survival, neither for 1999–2005 nor 2006–2018, after temozolomide treatment was introduced (p = 0.35 and 0.10, respectively). In the multivariate analysis including sex, age, surgery, and PPS, a survival advantage was noted for women, but this was not clinically relevant (HR = 0.92, p = 0.006). For patients with GBM; sex-related differences in clinical factors could be identified in a population-based cohort. In this dataset, for survival, the only advantage noted was for women who had undergone radical surgery, although this was clinically almost negligible.
Collapse
|
35
|
Gangliosides as Biomarkers of Human Brain Diseases: Trends in Discovery and Characterization by High-Performance Mass Spectrometry. Int J Mol Sci 2022; 23:ijms23020693. [PMID: 35054879 PMCID: PMC8775466 DOI: 10.3390/ijms23020693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 12/16/2022] Open
Abstract
Gangliosides are effective biochemical markers of brain pathologies, being also in the focus of research as potential therapeutic targets. Accurate brain ganglioside mapping is an essential requirement for correlating the specificity of their composition with a certain pathological state and establishing a well-defined set of biomarkers. Among all bioanalytical methods conceived for this purpose, mass spectrometry (MS) has developed into one of the most valuable, due to the wealth and consistency of structural information provided. In this context, the present article reviews the achievements of MS in discovery and structural analysis of gangliosides associated with severe brain pathologies. The first part is dedicated to the contributions of MS in the assessment of ganglioside composition and role in the specific neurodegenerative disorders: Alzheimer’s and Parkinson’s diseases. A large subsequent section is devoted to cephalic disorders (CD), with an emphasis on the MS of gangliosides in anencephaly, the most common and severe disease in the CD spectrum. The last part is focused on the major accomplishments of MS-based methods in the discovery of ganglioside species, which are associated with primary and secondary brain tumors and may either facilitate an early diagnosis or represent target molecules for immunotherapy oriented against brain cancers.
Collapse
|
36
|
Shao C, Tang H, Wang X, He J, Wang P, Wu N. Body mass index and glioma risk: A prospective multicenter study. Front Endocrinol (Lausanne) 2022; 13:933921. [PMID: 36105407 PMCID: PMC9465449 DOI: 10.3389/fendo.2022.933921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/04/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The association between glioma risk and body mass index (BMI) remains obscure. METHODS This study aimed to assess the association between glioma risk and BMI in the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. Cox proportional hazards regression was used to calculate the hazard ratios (HRs) and 95% confidence intervals (CIs). RESULTS The onset of a total of 269 gliomas was observed during a median follow-up period of 12.04 years. Compared with the normal weight, overweight (HR: 1.05; 95% CI: 0.80, 1.39) and obesity (HR: 0.91; 95% CI: 0.56, 1.39) were not significantly associated with glioma risk. Further analysis showed a nonlinear relationship between glioma risk and BMI in men but not women. The multivariable-adjusted HRs per unit increase in BMI were 0.94 (95% CI: 0.89, 1.00; P = 0.037) in men with BMI >25 kg/m2 and 1.16 (95% CI: 0.98, 1.38; P = 0.075) in men with BMI <25 kg/m2. CONCLUSION The present data provide evidence that there may be a nonlinear association between BMI and glioma risk in men. The risk of glioma decreased with increasing BMI among men with BMI >25 kg/m2. Future studies are needed to validate our observation.
Collapse
Affiliation(s)
- Chuan Shao
- Department of Neurosurgery, Chongqing General Hospital, Chongqing, China
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, China
- Graduate Institute, Chongqing Medical University, Chongqing, China
| | - Hui Tang
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, China
| | - Xiaoya Wang
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, China
| | - Jiaquan He
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, China
| | - Pan Wang
- Department of Neurosurgery, Chongqing General Hospital, Chongqing, China
| | - Nan Wu
- Department of Neurosurgery, Chongqing General Hospital, Chongqing, China
- *Correspondence: Nan Wu,
| |
Collapse
|
37
|
Wu YY, Xu YM, Lau ATY. Anti-Cancer and Medicinal Potentials of Moringa Isothiocyanate. Molecules 2021; 26:molecules26247512. [PMID: 34946594 PMCID: PMC8708952 DOI: 10.3390/molecules26247512] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 02/05/2023] Open
Abstract
Moringa oleifera (M. oleifera), which belongs to the Moringaceae family, is a common herb, rich in plant compounds. It has a variety of bioactive compounds that can act as antioxidants, antibiotics, anti-inflammatory and anti-cancer agents, etc., which can be obtained in different body parts of M. oleifera. Isothiocyanates (ITCs) from M. oleifera are one class of these active substances that can inhibit cancer proliferation and promote cancer cell apoptosis through multiple signaling pathways, thus curbing cancer migration and metastasis, at the same time they have little adverse effect on normal cells. There are multiple variants of ITCs in M. oleifera, but the predominant phytochemical is 4-(α-L-rhamnosyloxy)benzyl isothiocyanate, also known as moringa isothiocyanate (MIC-1). Studies have shown that MIC-1 has the possibility to be used clinically for the treatment of diabetes, neurologic diseases, obesity, ulcerative colitis, and several cancer types. In this review, we focus on the molecular mechanisms underlying the anti-cancer and anti-chronic disease effects of MIC-1, current trends, and future direction of MIC-1 based treatment strategies. This review combines the relevant literature of the past 10 years, in order to provide more comprehensive information of MIC-1 and to fully exploit its potentiality in the clinical settings.
Collapse
|
38
|
Hirtz A, Lebourdais N, Rech F, Bailly Y, Vaginay A, Smaïl-Tabbone M, Dubois-Pot-Schneider H, Dumond H. GPER Agonist G-1 Disrupts Tubulin Dynamics and Potentiates Temozolomide to Impair Glioblastoma Cell Proliferation. Cells 2021; 10:cells10123438. [PMID: 34943948 PMCID: PMC8699794 DOI: 10.3390/cells10123438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is the most common brain tumor in adults, which is very aggressive, with a very poor prognosis that affects men twice as much as women, suggesting that female hormones (estrogen) play a protective role. With an in silico approach, we highlighted that the expression of the membrane G-protein-coupled estrogen receptor (GPER) had an impact on GBM female patient survival. In this context, we explored for the first time the role of the GPER agonist G-1 on GBM cell proliferation. Our results suggested that G-1 exposure had a cytostatic effect, leading to reversible G2/M arrest, due to tubulin polymerization blockade during mitosis. However, the observed effect was independent of GPER. Interestingly, G-1 potentiated the efficacy of temozolomide, the current standard chemotherapy treatment, since the combination of both treatments led to prolonged mitotic arrest, even in a temozolomide less-sensitive cell line. In conclusion, our results suggested that G-1, in combination with standard chemotherapy, might be a promising way to limit the progression and aggressiveness of GBM.
Collapse
Affiliation(s)
- Alex Hirtz
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (A.H.); (N.L.); (F.R.); (Y.B.); (A.V.); (H.D.-P.-S.)
| | - Nolwenn Lebourdais
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (A.H.); (N.L.); (F.R.); (Y.B.); (A.V.); (H.D.-P.-S.)
| | - Fabien Rech
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (A.H.); (N.L.); (F.R.); (Y.B.); (A.V.); (H.D.-P.-S.)
- Université de Lorraine, CHRU-Nancy, Service de Neurochirurgie, F-54000 Nancy, France
| | - Yann Bailly
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (A.H.); (N.L.); (F.R.); (Y.B.); (A.V.); (H.D.-P.-S.)
| | - Athénaïs Vaginay
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (A.H.); (N.L.); (F.R.); (Y.B.); (A.V.); (H.D.-P.-S.)
- Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France;
| | | | - Hélène Dubois-Pot-Schneider
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (A.H.); (N.L.); (F.R.); (Y.B.); (A.V.); (H.D.-P.-S.)
| | - Hélène Dumond
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (A.H.); (N.L.); (F.R.); (Y.B.); (A.V.); (H.D.-P.-S.)
- Correspondence: ; Tel.: +33-372746115
| |
Collapse
|
39
|
Lim TX, Ahamed M, Reutens DC. The aryl hydrocarbon receptor: A diagnostic and therapeutic target in glioma. Drug Discov Today 2021; 27:422-435. [PMID: 34624509 DOI: 10.1016/j.drudis.2021.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 07/29/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022]
Abstract
Glioblastoma multiforme (GBM) is a deadly disease; 5-year survival rates have shown little improvement over the past 30 years. In vivo positron emission tomography (PET) imaging is an important method of identifying potential diagnostic and therapeutic molecular targets non-invasively. The aryl hydrocarbon receptor (AhR) is a transcription factor that regulates multiple genes involved in immune response modulation and tumorigenesis. The AhR is an attractive potential drug target and studies have shown that its activation by small molecules can modulate innate and adaptive immunity beneficially and prevent AhR-mediated tumour promotion in several cancer types. In this review, we provide an overview of the role of the AhR in glioma tumorigenesis and highlight its potential as an emerging biomarker for glioma therapies targeting the tumour immune response and PET diagnostics.
Collapse
Affiliation(s)
- Ting Xiang Lim
- ARC Centre for Innovation in Biomedical Imaging Technology, Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Muneer Ahamed
- ARC Centre for Innovation in Biomedical Imaging Technology, Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - David C Reutens
- ARC Centre for Innovation in Biomedical Imaging Technology, Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
40
|
Lin HY, Liao KH, Ko CY, Chen GY, Hsu SP, Hung CY, Hsu TI. 17β-estradiol induces temozolomide resistance through NRF2-mediated redox homeostasis in glioblastoma. Free Radic Biol Med 2021; 172:430-440. [PMID: 34186205 DOI: 10.1016/j.freeradbiomed.2021.06.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 11/23/2022]
Abstract
Glioblastoma multiforme (GBM) is the most fatal cancer among brain tumors, and the standard treatment of GBM patients is surgical tumor resection followed by radiotherapy and temozolomide (TMZ) chemotherapy. However, tumors always recur due to the developing drug resistance. It has been shown that neurosteroids, including dehydroepiandrosterone and 17β-estradiol, are synthesized in TMZ-resistant GBM tumors. Therefore, we sought to explore the possible role of 17β-estradiol in the development of drug resistance in GBM. Bioinformatics analysis revealed that aromatase/cytochrome P450 19A1 expression was gradually increased in the development from normal, astrocytoma to GBM. The level of 17β-estradiol was significantly increased in TMZ-resistant cells characterized by ultra performance liquid chromatography-tandem mass spectrometry. Furthermore, 17β-estradiol attenuated TMZ-induced cell death and reduced reactive oxygen species production by mitochondria. In addition, 17β-estradiol attenuated oxidative stress by increasing the expression of superoxide dismutase 1/2, catalase, and nuclear factor erythroid 2-related factor (NRF) 2. We found that NRF2 expression was essential for the induction of drug resistance by 17β-estradiol through the reduction of oxidative stress in GBM.
Collapse
Affiliation(s)
- Hong-Yi Lin
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institute, Taipei, Taiwan
| | - Kuo-Hsing Liao
- Department of Neurosurgery, Wan Fang Hospital, Taipei Medical University, Taiwan; Division of Critical Medicine, Department of Emergency and Critical Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan; Department of Neurotraumatology and Intensive Care, Taipei Neuroscience Institute, Taipei Medical University, Taiwan; Division of Neurosurgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Chiung-Yuan Ko
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institute, Taipei, Taiwan; Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan
| | - Guan-Yuan Chen
- Graduate Institute of Forensic Medicine, National Taiwan University, Taipei, Taiwan
| | - Sung-Po Hsu
- Department of Physiology, School of Medicine, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Yang Hung
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Tsung-I Hsu
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institute, Taipei, Taiwan; Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
41
|
Differential Ca 2+ responses and store operated Ca 2+ entry in primary cells from human brain tumors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119060. [PMID: 33992673 DOI: 10.1016/j.bbamcr.2021.119060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 11/21/2022]
Abstract
Brain tumors comprise a large series of tumor cancer from benign to highly malignant gliomas and metastases from primary tumors outside the brain. Intracellular Ca2+ homeostasis is involved in a large series of cell functions including cell proliferation, migration, and cell death. Store-operated Ca2+ entry (SOCE), the most important Ca2+ entry pathway in non-excitable cells, is involved in cell proliferation and migration and enhanced in tumor cells from breast cancer, colon cancer and cell lines derived from glioblastoma but there are almost no studies in human primary glioblastoma cells or other brain tumors. We have developed a single procedure to obtain primary cells from a large series (n = 49) of human brain tumors including schwannomas, meningiomas, oligodendrogliomas, astrocytomas, glioblastomas and brain metastases from ovary, breast and lung. Cells were characterized by immunofluorescence and subjected to Ca2+ imaging to investigate resting intracellular Ca2+ levels, Ca2+ responses to physiological agonists as well as voltage-operated Ca2+ entry and SOCE. We found significant differences in resting intracellular Ca2+ and Ca2+ responses to plasma membrane depolarization and ATP among the different tumor cells. Only malignant tumor cells, displayed Ca2+ responses to ATP. SOCE is significantly increased in malignant gliomas whereas voltage-gated Ca2+ entry is decreased. In addition, SOCE is significantly larger in high grade gliomas than in low grade gliomas suggesting that SOCE increases with glioma progression. These data may provide new insights on the role of intracellular Ca2+ and purinergic signalling in brain tumors.
Collapse
|