1
|
Zhu H, Li B, Huang T, Wang B, Li S, Yu K, Cai L, Ye Y, Chen S, Zhu H, Xu J, Lu Q, Ji L. Update in the molecular mechanism and biomarkers of diabetic retinopathy. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167758. [PMID: 40048937 DOI: 10.1016/j.bbadis.2025.167758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/27/2025] [Accepted: 02/25/2025] [Indexed: 04/15/2025]
Abstract
Diabetic retinopathy (DR) is a serious complication of diabetes caused by long-term hyperglycemia that leads to microvascular and neuronal damage in the retina. The molecular mechanisms of DR involve oxidative stress, inflammatory responses, neurodegenerative changes, and vascular dysfunction triggered by hyperglycemia. Oxidative stress activates multiple metabolic pathways, such as the polyol, hexosamine, and protein kinase C (PKC) pathways, resulting in the production of, which in turn promote the formation of advanced glycation end products (AGEs). These pathways exacerbate vascular endothelial damage and the release of inflammatory factors, activating inflammatory signaling pathways such as the NF-κB pathway, leading to retinal cell damage and apoptosis. Additionally, DR involves neurodegenerative changes, including the activation of glial cells, neuronal dysfunction, and cell death. Research on the multiomics molecular markers of DR has revealed complex mechanisms at the genetic, epigenetic, and transcriptional levels. Genome-wide association studies (GWASs) have identified multiple genetic loci associated with DR that are involved in metabolic and inflammatory pathways. Noncoding RNAs, such as miRNAs, circRNAs, and lncRNAs, participate in the development of DR by regulating gene expression. Proteomic, metabolomic and lipidomic analyses have revealed specific proteins, metabolites and lipid changes associated with DR, providing potential biomarkers for the early diagnosis and treatment of this disease. This review provides a comprehensive perspective for understanding the molecular network of DR and facilitates the exploration of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Hui Zhu
- Department of Ophthalmology, the Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, China
| | - Bingqi Li
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Tao Huang
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Bin Wang
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Shuoyu Li
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Kuai Yu
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Liwei Cai
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yuxin Ye
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Siyuan Chen
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Haotian Zhu
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jin Xu
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Qinkang Lu
- Department of Ophthalmology, the Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, China.
| | - Lindan Ji
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
2
|
Cui Y, Poudel S, Xu N, Zhou K, Cheng R, Liang W, Yuan T, Zhao L, Qin C, Stevens KG, Duerfeldt AS, Hu J, Xu Q, Ma JX. Sustained release of a novel non-fibrate PPARα agonist from microparticles for neuroprotection in murine models of age-related macular degeneration. J Control Release 2025; 380:910-926. [PMID: 39961437 DOI: 10.1016/j.jconrel.2025.02.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/28/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Prior research has demonstrated the therapeutic potential of peroxisome proliferator-activated receptor α (PPARα) agonist fenofibrate on diabetic retinopathy. In the present study, a novel non-fibrate PPARα agonist, A190, was designed with higher potency and selectivity than fenofibrate in PPARα agonism. A190 was encapsulated in biodegradable microparticles (A190-MP) to ensure sustained drug release, with detection in the retina up to 6 months following a single intravitreal injection. A190-MP alleviated retinal dysfunction as shown by electroretinography in Vldlr-/- (wet-AMD model) and Abca4-/-/Rdh8-/- (dry-AMD model) mice. A190-MP also attenuated the decreases in cone photoreceptor density and outer nuclear layer thickness as demonstrated by optical coherence tomography and histology. Moreover, A190-MP reduced vascular leakage and neovascularization in Vldlr-/- mice, suggesting an anti-inflammatory and anti-angiogenic effect. A190-MP upregulated expression of PPARα, PGC1α, and TOMM20 in the retina of Vldlr-/- and Abca4-/-/Rdh8-/- mice. A190-MP also improved retinal mitochondrial function as shown by Seahorse analysis using retinal biopsy. In vitro, A190 attenuated oxidative stress and preserved cell viability in a photoreceptor-derived cell line exposed to 4-HNE and improved mitochondrial function, via a PPARα-dependent mechanism. These findings revealed sustained therapeutic effects of A190-MP in wet and dry AMD models, through improving mitochondrial function by activating PPARα.
Collapse
Affiliation(s)
- Yi Cui
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou 350001, China; Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27101, United States of America
| | - Sagun Poudel
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - Nuo Xu
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27101, United States of America; Department of Ophthalmology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, China
| | - Kelu Zhou
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27101, United States of America
| | - Rui Cheng
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27101, United States of America
| | - Wentao Liang
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27101, United States of America
| | - Tian Yuan
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27101, United States of America
| | - Long Zhao
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - Chaolong Qin
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - Katelyn G Stevens
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55414, United States of America
| | - Adam S Duerfeldt
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55414, United States of America
| | - Jianzhang Hu
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou 350001, China.
| | - Qingguo Xu
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, United States of America; Department of Ophthalmology, Pediatrics, Biomedical Engineering, Center for Pharmaceutical Engineering, and Institute for Structural Biology, Drug Discovery & Development (ISB3D), Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States of America.
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27101, United States of America.
| |
Collapse
|
3
|
Kąpa M, Koryciarz I, Kustosik N, Jurowski P, Pniakowska Z. Future Directions in Diabetic Retinopathy Treatment: Stem Cell Therapy, Nanotechnology, and PPARα Modulation. J Clin Med 2025; 14:683. [PMID: 39941353 PMCID: PMC11818668 DOI: 10.3390/jcm14030683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
This narrative review focuses on innovative treatment approaches to diabetic retinopathy to meet the urgent demand for advancements in managing both the early and late stages of the disease. Recent studies highlight the potential of adipose stem cells and their secreted factors in mitigating the retinal complications of diabetes, with promising results in improving visual acuity and reducing inflammation and angiogenesis in diabetic retinopathy. However, caution is warranted regarding the safety and long-term therapeutic effects of adipose stem cells transplantation. Bone marrow mesenchymal stem cells can also mitigate retinal damage in diabetic retinopathy. Studies demonstrate that bone marrow mesenchymal stem cells-derived exosomes can suppress the Wnt/β-catenin pathway, reducing oxidative stress, inflammation, and angiogenesis in the diabetic retina, offering promise for future diabetic retinopathy treatments. Nanotechnology has the ability to precisely target the retina and minimize systemic side effects. Nanoparticles and nanocarriers offer improved bioavailability, sustained release of therapeutics, and potential for synergistic effects. They can be a new way of effective treatment and prevention of diabetic retinopathy. Activation and modulation of PPARα as a means for diabetic retinopathy treatment has been widely investigated in recent years and demonstrated promising effects in clinical trials. PPARα activation turned out to be a promising therapeutic method for treating dyslipidemia, inflammation, and insulin sensitivity. The combination of PPARα modulators with small molecules offers an interesting perspective for retinal diseases' therapy.
Collapse
Affiliation(s)
- Maria Kąpa
- Department of Ophthalmology and Vision Rehabilitation, Medical University of Lodz, 90-549 Lodz, Poland; (M.K.); (N.K.); (P.J.); (Z.P.)
| | - Iga Koryciarz
- Department of Ophthalmology and Vision Rehabilitation, Medical University of Lodz, 90-549 Lodz, Poland; (M.K.); (N.K.); (P.J.); (Z.P.)
| | - Natalia Kustosik
- Department of Ophthalmology and Vision Rehabilitation, Medical University of Lodz, 90-549 Lodz, Poland; (M.K.); (N.K.); (P.J.); (Z.P.)
| | - Piotr Jurowski
- Department of Ophthalmology and Vision Rehabilitation, Medical University of Lodz, 90-549 Lodz, Poland; (M.K.); (N.K.); (P.J.); (Z.P.)
| | - Zofia Pniakowska
- Department of Ophthalmology and Vision Rehabilitation, Medical University of Lodz, 90-549 Lodz, Poland; (M.K.); (N.K.); (P.J.); (Z.P.)
- Optegra Eye Clinic, 90-127 Lodz, Poland
| |
Collapse
|
4
|
Honoré B, Hajari JN, Pedersen TT, Ilginis T, Al-Abaiji HA, Lønkvist CS, Saunte JP, Olsen DA, Brandslund I, Vorum H, Slidsborg C. Proteomic analysis of diabetic retinopathy identifies potential plasma-protein biomarkers for diagnosis and prognosis. Clin Chem Lab Med 2024; 62:1177-1197. [PMID: 38332693 DOI: 10.1515/cclm-2023-1128] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 01/16/2024] [Indexed: 02/10/2024]
Abstract
OBJECTIVES To identify molecular pathways and prognostic- and diagnostic plasma-protein biomarkers for diabetic retinopathy at various stages. METHODS This exploratory, cross-sectional proteomics study involved plasma from 68 adults, including 15 healthy controls and 53 diabetes patients for various stages of diabetic retinopathy: non-diabetic retinopathy, non-proliferative diabetic retinopathy, proliferative diabetic retinopathy and diabetic macular edema. Plasma was incubated with peptide library beads and eluted proteins were tryptic digested, analyzed by liquid chromatography-tandem mass-spectrometry followed by bioinformatics. RESULTS In the 68 samples, 248 of the 731 identified plasma-proteins were present in all samples. Analysis of variance showed differential expression of 58 proteins across the five disease subgroups. Protein-Protein Interaction network (STRING) showed enrichment of various pathways during the diabetic stages. In addition, stage-specific driver proteins were detected for early and advanced diabetic retinopathy. Hierarchical clustering showed distinct protein profiles according to disease severity and disease type. CONCLUSIONS Molecular pathways in the cholesterol metabolism, complement system, and coagulation cascade were enriched in patients at various stages of diabetic retinopathy. The peroxisome proliferator-activated receptor signaling pathway and systemic lupus erythematosus pathways were enriched in early diabetic retinopathy. Stage-specific proteins for early - and advanced diabetic retinopathy as determined herein could be 'key' players in driving disease development and potential 'target' proteins for future therapies. For type 1 and 2 diabetes mellitus, the proteomic profiles were especially distinct during the early disease stage. Validation studies should aim to clarify the role of the detected molecular pathways, potential biomarkers, and potential 'target' proteins for future therapies in diabetic retinopathy.
Collapse
Affiliation(s)
- Bent Honoré
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Javad Nouri Hajari
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Tobias Torp Pedersen
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Tomas Ilginis
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Hajer Ahmad Al-Abaiji
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Claes Sepstrup Lønkvist
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jon Peiter Saunte
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Dorte Aalund Olsen
- Department of Biochemistry and Immunology, University of Southern Denmark, Vejle Hospital, Southern Denmark, Denmark
| | - Ivan Brandslund
- Department of Biochemistry and Immunology, University of Southern Denmark, Vejle Hospital, Southern Denmark, Denmark
| | - Henrik Vorum
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark
| | - Carina Slidsborg
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
5
|
Hu B, Ma JX, Duerfeldt AS. The cGAS-STING pathway in diabetic retinopathy and age-related macular degeneration. Future Med Chem 2023; 15:717-729. [PMID: 37166075 PMCID: PMC10194038 DOI: 10.4155/fmc-2022-0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/28/2023] [Indexed: 05/12/2023] Open
Abstract
Diabetic retinopathy and age-related macular degeneration are common retinal diseases with shared pathophysiology, including oxidative stress-induced inflammation. Cellular mechanisms responsible for converting oxidative stress into retinal damage are ill-defined but have begun to clarify. One common outcome of retinal oxidative stress is mitochondrial damage and subsequent release of mitochondrial DNA into the cytosol. This leads to activation of the cGAS-STING pathway, resulting in interferon release and disease-amplifying inflammation. This review summarizes the evolving link between aberrant cGAS-STING signaling and inflammation in common retinal diseases and provides prospective for targeting this system in diabetic retinopathy and age-related macular degeneration. Further defining the roles of this system in the retina is expected to reveal new disease pathology and novel therapeutic approaches.
Collapse
Affiliation(s)
- Bo Hu
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55414, USA
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA
| | - Adam S Duerfeldt
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55414, USA
| |
Collapse
|
6
|
Yang C, Zhao Q, Li S, Pu L, Yu L, Liu Y, Lai X. Effects of Lycium barbarum L. Polysaccharides on Vascular Retinopathy: An Insight Review. Molecules 2022; 27:5628. [PMID: 36080395 PMCID: PMC9457721 DOI: 10.3390/molecules27175628] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
Vascular retinopathy is a pathological change in the retina caused by ocular or systemic vascular diseases that can lead to blurred vision and the risk of blindness. Lycium barbarum polysaccharides (LBPs) are extracted from the fruit of traditional Chinese medicine, L. barbarum. They have strong biological activities, including immune regulation, antioxidation, and neuroprotection, and have been shown to improve vision in numerous studies. At present, there is no systematic literature review of LBPs on vascular retinal prevention and treatment. We review the structural characterization and extraction methods of LBPs, focus on the mechanism and pharmacokinetics of LBPs in improving vascular retinopathy, and discuss the future clinical application and lack of work. LBPs are involved in the regulation of VEGF, Rho/ROCK, PI3K/Akt/mTOR, Nrf2/HO-1, AGEs/RAGE signaling pathways, which can alleviate the occurrence and development of vascular retinal diseases in an inflammatory response, oxidative stress, apoptosis, autophagy, and neuroprotection. LBPs are mainly absorbed by the small intestine and stomach and excreted through urine and feces. Their low bioavailability in vivo has led to the development of novel dosage forms, including multicompartment delivery systems and scaffolds. Data from the literature confirm the medicinal potential of LBPs as a new direction for the prevention and complementary treatment of vascular retinopathy.
Collapse
Affiliation(s)
- Chunhong Yang
- Department of Chinese Medicine and Pharmacy, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qi Zhao
- Department of Chinese Medicine and Pharmacy, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shiling Li
- Department of Chinese Medicine and Pharmacy, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lili Pu
- Department of Chinese Medicine and Pharmacy, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liqiong Yu
- Department of Chinese Medicine and Pharmacy, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yaqin Liu
- Department of Chinese Medicine and Pharmacy, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianrong Lai
- Department of Ethnic Medicine, College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
7
|
Wang F, Zhang M. Circ_001209 aggravates diabetic retinal vascular dysfunction through regulating miR-15b-5p/COL12A1. J Transl Med 2021; 19:294. [PMID: 34233716 PMCID: PMC8265106 DOI: 10.1186/s12967-021-02949-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/18/2021] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Diabetic retinopathy, a common complication of diabetes mellitus and a major cause of blindness. circRNAs spongs target miRNA and thus influencing mRNA expression in DR. We investigated the mechanism of circ_001209 in regulating diabetic retinal vascular dysfunction. METHODS QRT-PCR analysis was performed to detect the expression of miR-15b-5p, COL12A1 and circ_001209 in human retinal vascular endothelial cells (HRVECs) under high glucose conditions. Western blot assay, wound healing assay, transwell assay and tube formation were used to explore the roles of circ_001209/miR-15b-5p/COL12A1 in retinal vascular dysfunction. Bioinformatics analysis and luciferase reporter, RNA-FISH, and overexpression assays were performed to reveal the mechanisms of the circ_001209/miR-15b-5p/COL12A1 interaction. TUNEL staining and H&E staining were used to evaluate the pathological changes in streptozotocin (STZ)-induced DR in rats. RESULTS Downregulation of miR-15b-5p under HG conditions promoted proliferation, migration, and tube formation of HRVECs. QRT-PCR and western blot results revealed that miR-15b-5p affected the HRVECs function through targeting COL12A1. Under HG conditions, circ_001209, which acts as a sponge of miR-15b-5p, is upregulated. Besides, overexpression of circ_001209 can affect HRVEC function and aggravate retinal injury in diabetic rats. CONCLUSION Upregulation of circ_001209 contributes to vascular dysfunction in diabetic retinas through regulating miR-15b-5p and COL12A1, providing a potential treatment strategy for diabetic retinopathy.
Collapse
Affiliation(s)
- Fang Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Meixia Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
8
|
Chang X, Zhu G, Cai Z, Wang Y, Lian R, Tang X, Ma C, Fu S. miRNA, lncRNA and circRNA: Targeted Molecules Full of Therapeutic Prospects in the Development of Diabetic Retinopathy. Front Endocrinol (Lausanne) 2021; 12:771552. [PMID: 34858342 PMCID: PMC8631471 DOI: 10.3389/fendo.2021.771552] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022] Open
Abstract
Diabetic retinopathy (DR) is a common diabetic complication and the main cause of blindness worldwide, which seriously affects the quality of life of patients. Studies have shown that noncoding RNA (ncRNA) has distinct differentiated expression in DR and plays an important role in the occurrence and development of DR. ncRNAs represented by microRNAs (miRNAs), lncRNAs (lncRNAs), and circRNAs (circRNAs) have been shown to be widely involved in the regulation of gene expression and affect multiple biological processes of retinopathy. This article will review three RNAs related to the occurrence and development of DR on the basis of previous studies (especially their effects on retinal microangiopathy, retinal pigment epithelial cells, and retinal nerve cells) and discuss their underlying mechanisms and connections. Overall, this review will help us better understand the role of ncRNAs in the occurrence and development of DR and provide ideas for exploring potential therapeutic directions and targets.
Collapse
Affiliation(s)
- Xingyu Chang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Guomao Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Zongyan Cai
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yaqi Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Rongna Lian
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xulei Tang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Endocrine Disease, Lanzhou, China
| | - Chengxu Ma
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Songbo Fu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Endocrine Disease, Lanzhou, China
- *Correspondence: Songbo Fu,
| |
Collapse
|