1
|
Saadeldin IM, Ehab S, Alshammari MEF, Abdelazim AM, Assiri AM. The Mammalian Oocyte: A Central Hub for Cellular Reprogramming and Stemness. Stem Cells Cloning 2025; 18:15-34. [PMID: 39991743 PMCID: PMC11846613 DOI: 10.2147/sccaa.s513982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/13/2025] [Indexed: 02/25/2025] Open
Abstract
The mammalian oocyte is pivotal in reproductive biology, acting as a central hub for cellular reprogramming and stemness. It uniquely contributes half of the zygotic nuclear genome and the entirety of the mitochondrial genome, ensuring individual development and health. Oocyte-mediated reprogramming, exemplified by nuclear transfer, resets somatic cell identity to achieve pluripotency and has transformative potential in regenerative medicine. This process is critical for understanding cellular differentiation, improving assisted reproductive technologies, and advancing cloning and stem cell research. During fertilization, the maternal-zygotic transition shifts developmental control from maternal factors to zygotic genome activation, establishing totipotency. Oocytes also harbor reprogramming factors that guide nuclear remodeling, epigenetic modifications, and metabolic reprogramming, enabling early embryogenesis. Structures like mitochondria, lipid droplets, and cytoplasmic lattices contribute to energy production, molecular regulation, and cellular organization. Recent insights into oocyte components, such as ooplasmic nanovesicles and endolysosomal vesicular assemblies (ELVAS), highlight their roles in maintaining cellular homeostasis, protein synthesis, and reprogramming efficiency. By unraveling the reprogramming mechanisms inherent in oocytes, we advance our understanding of cloning, cell differentiation, and stem cell therapy, highlighting their valuable significance in developmental biology and regenerative medicine.
Collapse
Affiliation(s)
- Islam M Saadeldin
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, 11533, Saudi Arabia
| | - Seif Ehab
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | | | - Aaser M Abdelazim
- Department of Medical Laboratories Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 67714, Saudi Arabia
| | - Abdullah M Assiri
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, 11533, Saudi Arabia
| |
Collapse
|
2
|
Su G, Wei Z, Bai C, Li D, Zhao X, Liu X, Song L, Zhang L, Li G, Yang L. Generation of Codon-Optimized Fad3 Gene Transgenic Bovine That Produce More n-3 Polyunsaturated Fatty Acids. Animals (Basel) 2025; 15:93. [PMID: 39795036 PMCID: PMC11718938 DOI: 10.3390/ani15010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Polyunsaturated fatty acids (PUFAs) such as linoleic acid (18:2, n-6) and α-linolenic acid (18:3, n-3) are essential for the growth, development, and well-being of mammals. However, most mammals, including humans, cannot synthesize n-3 and n-6 PUFAs and these must be obtained through diet. The beneficial effect of converting n-6 polyunsaturated fatty acids (n-6 PUFAs) into n-3 polyunsaturated fatty acids (n-3 PUFAs) has led to extensive research on the flax fatty acid desaturase 3 (Fad3) gene, which encodes fatty acid desaturase. Still, the plant-derived Fad3 gene is used much less in transgenic animals than the Fat-1 gene from Caenorhabditis elegans. To address this problem, we used somatic cell nuclear transfer (SCNT) technology to create codon-optimized Fad3 transgenic cattle. Gas chromatographic analysis showed that the n-3 PUFA content of transgenic cattle increased significantly, and the ratio of n-6 PUFAs to n-3 PUFAs decreased from 3.484 ± 0.46 to about 2.78 ± 0.14 (p < 0.05). In conclusion, Fad3 gene knock-in cattle are expected to improve the nutritional value of beef and can be used as an animal model to study the therapeutic effects of n-3 PUFAs in various diseases.
Collapse
Affiliation(s)
- Guanghua Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China; (Z.W.); (C.B.); (D.L.); (X.Z.); (X.L.); (L.S.); (L.Z.); (G.L.)
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Zhuying Wei
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China; (Z.W.); (C.B.); (D.L.); (X.Z.); (X.L.); (L.S.); (L.Z.); (G.L.)
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China; (Z.W.); (C.B.); (D.L.); (X.Z.); (X.L.); (L.S.); (L.Z.); (G.L.)
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Danyi Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China; (Z.W.); (C.B.); (D.L.); (X.Z.); (X.L.); (L.S.); (L.Z.); (G.L.)
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Xiaoyu Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China; (Z.W.); (C.B.); (D.L.); (X.Z.); (X.L.); (L.S.); (L.Z.); (G.L.)
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Xuefei Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China; (Z.W.); (C.B.); (D.L.); (X.Z.); (X.L.); (L.S.); (L.Z.); (G.L.)
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Lishuang Song
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China; (Z.W.); (C.B.); (D.L.); (X.Z.); (X.L.); (L.S.); (L.Z.); (G.L.)
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Li Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China; (Z.W.); (C.B.); (D.L.); (X.Z.); (X.L.); (L.S.); (L.Z.); (G.L.)
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China; (Z.W.); (C.B.); (D.L.); (X.Z.); (X.L.); (L.S.); (L.Z.); (G.L.)
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China; (Z.W.); (C.B.); (D.L.); (X.Z.); (X.L.); (L.S.); (L.Z.); (G.L.)
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| |
Collapse
|
3
|
Samiec M. Molecular Mechanisms of Somatic Cell Cloning and Other Assisted Reproductive Technologies in Mammals: Which Determinants Have Been Unraveled Thus Far?-Current Status, Further Progress and Future Challenges. Int J Mol Sci 2024; 25:13675. [PMID: 39769437 PMCID: PMC11679799 DOI: 10.3390/ijms252413675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Taking into consideration recent reports on the successful creation of cloned rhesus monkeys [...].
Collapse
Affiliation(s)
- Marcin Samiec
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice, Poland
| |
Collapse
|
4
|
Vazquez-Avendaño JR, Cortez-Romero C, Ambríz-García DA, Rodríguez-Suástegui JL, Hernández-Pichardo JE, Navarro-Maldonado MDC. The Influence of Oviductal and Uterine Fluid Supplementation on the In Vitro Development and Quality of Cloned Sheep Embryos. Animals (Basel) 2024; 14:2894. [PMID: 39409843 PMCID: PMC11475708 DOI: 10.3390/ani14192894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Somatic cell nuclear transfer (SCNT) has great potential for the replication of high-commercial-value animals, threatened wild species for conservation purposes, and transgenic animals for biomedical purposes. However, SCNT has a low success rate due to intrinsic factors of the technique itself, which leads to low rates of embryonic development and epigenetic alterations in cloned embryos. The objective of this study was to evaluate the effect of OF-UF on the intracellular concentrations of ROS and GSH and the development of cloned and parthenogenetic Ovis aries embryos. The results do not show a beneficial effect on the development of parthenogenetic and cloned embryos at concentrations of 0.5% OF-UF. Furthermore, at 1% OF-UF, an adverse effect was observed in cloned embryos at the blastocyst stage and 2% OF and UF in parthenogenetic embryos during the first divisions. Decreases in ROS and GSH levels were observed in the parthenogenetic blastocysts treated with 1% OF-UF, but not in the clones, in which a higher concentration of GSH and a similar concentration of ROS were observed. No effect of OF-UF was observed on embryonic development and redox balance in sheep embryos cloned via handmade cloning.
Collapse
Affiliation(s)
- José Roberto Vazquez-Avendaño
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, México City 3855, México;
- Department of Biology of Reproduction, Division of Biological and Health Sciences, Universidad Autónoma Metropolitana Unidad Iztapalapa, México City 09310, México;
| | - César Cortez-Romero
- Program in Genetic Resources and Productivity-Livestock, Campus Montecillo, Colegio de Postgraduados, Texcoco de Mora 56264, México;
- Program in Innovation in Natural Resources Management, Campus San Luis Potosí, Colegio de Postgraduados, Salinas de Hidalgo 78620, México
| | - Demetrio Alonso Ambríz-García
- Department of Biology of Reproduction, Division of Biological and Health Sciences, Universidad Autónoma Metropolitana Unidad Iztapalapa, México City 09310, México;
| | - José Luis Rodríguez-Suástegui
- Department of Agriculture and Animal Production, Division of Biological and Health Sciences, Universidad Autónoma Metropolitana Unidad Xochimilco, México City 04960, México; (J.L.R.-S.); (J.E.H.-P.)
| | - José Ernesto Hernández-Pichardo
- Department of Agriculture and Animal Production, Division of Biological and Health Sciences, Universidad Autónoma Metropolitana Unidad Xochimilco, México City 04960, México; (J.L.R.-S.); (J.E.H.-P.)
| | - María del Carmen Navarro-Maldonado
- Department of Biology of Reproduction, Division of Biological and Health Sciences, Universidad Autónoma Metropolitana Unidad Iztapalapa, México City 09310, México;
| |
Collapse
|
5
|
Tompkins JD. Transgenerational Epigenetic DNA Methylation Editing and Human Disease. Biomolecules 2023; 13:1684. [PMID: 38136557 PMCID: PMC10742326 DOI: 10.3390/biom13121684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
During gestation, maternal (F0), embryonic (F1), and migrating primordial germ cell (F2) genomes can be simultaneously exposed to environmental influences. Accumulating evidence suggests that operating epi- or above the genetic DNA sequence, covalent DNA methylation (DNAme) can be recorded onto DNA in response to environmental insults, some sites which escape normal germline erasure. These appear to intrinsically regulate future disease propensity, even transgenerationally. Thus, an organism's genome can undergo epigenetic adjustment based on environmental influences experienced by prior generations. During the earliest stages of mammalian development, the three-dimensional presentation of the genome is dramatically changed, and DNAme is removed genome wide. Why, then, do some pathological DNAme patterns appear to be heritable? Are these correctable? In the following sections, I review concepts of transgenerational epigenetics and recent work towards programming transgenerational DNAme. A framework for editing heritable DNAme and challenges are discussed, and ethics in human research is introduced.
Collapse
Affiliation(s)
- Joshua D Tompkins
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
6
|
Wu H, Zhou W, Liu H, Cui X, Ma W, Wu H, Li G, Wang L, Zhang J, Zhang X, Ji P, Lian Z, Liu G. Whole-genome methylation analysis reveals epigenetic variation between wild-type and nontransgenic cloned, ASMT transgenic cloned dairy goats generated by the somatic cell nuclear transfer. J Anim Sci Biotechnol 2022; 13:145. [PMID: 36434676 PMCID: PMC9701027 DOI: 10.1186/s40104-022-00764-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND SCNT (somatic cell nuclear transfer) is of great significance to biological research and also to the livestock breeding. However, the survival rate of the SCNT cloned animals is relatively low compared to other transgenic methods. This indicates the potential epigenetic variations between them. DNA methylation is a key marker of mammalian epigenetics and its alterations will lead to phenotypic differences. In this study, ASMT (acetylserotonin-O-methyltransferase) ovarian overexpression transgenic goat was produced by using SCNT. To investigate whether there are epigenetic differences between cloned and WT (wild type) goats, WGBS (whole-genome bisulfite sequencing) was used to measure the whole-genome methylation of these animals. RESULTS It is observed that the different mCpG sites are mainly present in the intergenic and intronic regions between cloned and WT animals, and their CG-type methylation sites are strongly correlated. DMR (differentially methylated region) lengths are located around 1000 bp, mainly distributed in the exonic, intergenic and intronic functional domains. A total of 56 and 36 DMGs (differentially methylated genes) were identified by GO and KEGG databases, respectively. Functional annotation showed that DMGs were enriched in biological-process, cellular-component, molecular-function and other signaling pathways. A total of 10 identical genes related to growth and development were identified in GO and KEGG databases. CONCLUSION The differences in methylation genes among the tested animals have been identified. A total of 10 DMGs associated with growth and development were identified between cloned and WT animals. The results indicate that the differential patterns of DNA methylation between the cloned and WT goats are probably caused by the SCNT. These novel observations will help us to further identify the unveiled mechanisms of somatic cell cloning technology, particularly in goats.
Collapse
Affiliation(s)
- Hao Wu
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China ,Sany Institute of China Agricultural University, Sanya, 572025 China
| | - Wendi Zhou
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Haijun Liu
- Institute of Animal Husbandry and Veterinary, Academy of Agricultural Sciences of Tianjin, Tianjin, 300192 China
| | - Xudai Cui
- Qingdao Senmiao Industrial Co., Ltd., Qingdao, 266101 China
| | - Wenkui Ma
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Haixin Wu
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Guangdong Li
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Likai Wang
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Jinlong Zhang
- Institute of Animal Husbandry and Veterinary, Academy of Agricultural Sciences of Tianjin, Tianjin, 300192 China
| | - Xiaosheng Zhang
- Institute of Animal Husbandry and Veterinary, Academy of Agricultural Sciences of Tianjin, Tianjin, 300192 China
| | - Pengyun Ji
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Zhengxing Lian
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Guoshi Liu
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China ,Sany Institute of China Agricultural University, Sanya, 572025 China
| |
Collapse
|
7
|
Shikata D, Matoba S, Hada M, Sakashita A, Inoue K, Ogura A. Suppression of endogenous retroviral enhancers in mouse embryos derived from somatic cell nuclear transfer. Front Genet 2022; 13:1032760. [PMID: 36425066 PMCID: PMC9681155 DOI: 10.3389/fgene.2022.1032760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
Endogenous retroviruses (ERVs) in the mammalian genome play diverse roles in embryonic development. These developmentally related ERVs are generally repressed in somatic cells and therefore are likely repressed in embryos derived from somatic cell nuclear transfer (SCNT). In this study, we sought to identify ERVs that are repressed in SCNT-derived morulae, which might cause previously unexplained embryonic deaths shortly after implantation. Our transcriptome analysis revealed that, amongst ERV families, ERVK was specifically, and strongly downregulated in SCNT-derived embryos while other transposable elements including LINE and ERVL were unchanged. Among the subfamilies of ERVK, RLTR45-int was most repressed in SCNT-derived embryos despite its highest expression in control fertilized embryos. Interestingly, the nearby genes (within 5–50 kb, n = 18; 50–200 kb, n = 63) of the repressed RLTR45-int loci were also repressed in SCNT-derived embryos, with a significant correlation between them. Furthermore, lysine H3K27 acetylation was enriched around the RLTR45-int loci. These findings indicate that RLTR45-int elements function as enhancers of nearby genes. Indeed, deletion of two sequential RLTR45-int loci on chromosome 4 or 18 resulted in downregulations of nearby genes at the morula stage. We also found that RLTR45-int loci, especially SCNT-low, enhancer-like loci, were strongly enriched with H3K9me3, a repressive histone mark. Importantly, these H3K9me3-enriched regions were not activated by overexpression of H3K9me3 demethylase Kdm4d in SCNT-derived embryos, suggesting the presence of another epigenetic barrier repressing their expressions and enhancer activities in SCNT embryos. Thus, we identified ERVK subfamily RLTR45-int, putative enhancer elements, as a strong reprogramming barrier for SCNT (253 words).
Collapse
Affiliation(s)
- Daiki Shikata
- Bioresource Engineering Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shogo Matoba
- Bioresource Engineering Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
- Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Masashi Hada
- Bioresource Engineering Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
- Laboratory of Pathology and Development, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akihiko Sakashita
- Department of Molecular Biology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kimiko Inoue
- Bioresource Engineering Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Atsuo Ogura
- Bioresource Engineering Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- *Correspondence: Atsuo Ogura,
| |
Collapse
|
8
|
Holt WV, Comizzoli P. Conservation Biology and Reproduction in a Time of Developmental Plasticity. Biomolecules 2022; 12:1297. [PMID: 36139136 PMCID: PMC9496186 DOI: 10.3390/biom12091297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
The objective of this review is to ask whether, and how, principles in conservation biology may need to be revisited in light of new knowledge about the power of epigenetics to alter developmental pathways. Importantly, conservation breeding programmes, used widely by zoological parks and aquariums, may appear in some cases to reduce fitness by decreasing animals' abilities to cope when confronted with the 'wild side' of their natural habitats. Would less comfortable captive conditions lead to the selection of individuals that, despite being adapted to life in a captive environment, be better able to thrive if relocated to a more natural environment? While threatened populations may benefit from advanced reproductive technologies, these may actually induce undesirable epigenetic changes. Thus, there may be inherent risks to the health and welfare of offspring (as is suspected in humans). Advanced breeding technologies, especially those that aim to regenerate the rarest species using stem cell reprogramming and artificial gametes, may also lead to unwanted epigenetic modifications. Current knowledge is still incomplete, and therefore ethical decisions about novel breeding methods remain controversial and difficult to resolve.
Collapse
Affiliation(s)
- William V. Holt
- Department of Oncology & Metabolism, The Medical School Beech Hill Road, Sheffield S10 2RX, UK
| | - Pierre Comizzoli
- Smithsonian’s National Zoo and Conservation Biology Institute, Washington, DC 20008, USA
| |
Collapse
|
9
|
Shao W, Ning W, Liu C, Zou Y, Yao Y, Kang J, Cao Z. Histone Methyltransferase SETD2 Is Required for Porcine Early Embryonic Development. Animals (Basel) 2022; 12:ani12172226. [PMID: 36077946 PMCID: PMC9454584 DOI: 10.3390/ani12172226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Normal early embryonic development is important for ensuring sow fertility. Low quality of in vitro production embryos severely limits extensive application of porcine embryo engineering technologies in animal agriculture and the biomedicine field. Histone H3K36 methyltransferase SETD2 reportedly regulates oocyte maturation and preimplantation embryonic development in mice. However, the specific substrate and function of SETD2 in porcine early embryonic development remains unclear. Here, we show that SETD2 preferentially catalyzes H3K36me3 in porcine early embryos. SETD2 knockdown severely impeded blastocyst cavitation and perturbed normal allocation of inner cell mass and trophectoderm. SETD2 knockdown caused the apoptosis of cells within blastocysts. Therefore, SETD2 is essential for porcine early embryonic development. These findings provide a better understanding of porcine early embryonic development and lay a potential basis for improving the quality of porcine in vitro production embryos. Abstract SET domain-containing 2 (SETD2) is a methyltransferase that can catalyze the di- and tri-methylation of lysine 36 on histone H3 (H3K36me2/me3). SETD2 frequently mediates H3K36me3 modification to regulate both oocyte maturation and preimplantation embryonic development in mice. However, the specific substrate and function of SETD2 in porcine early embryonic development are still unclear. In this study, SETD2 preferentially catalyzed H3K36me3 to regulate porcine early embryonic development. SETD2 mRNA is dynamically expressed during early embryonic development. Functional studies using an RNA interference (RNAi) approach revealed that the expression levels of SETD2 mRNA were effectively knocked down by siRNA microinjection. Immunofluorescence analysis indicated that SETD2 knockdown (KD) did not affect H3K36me2 modification but significantly reduced H3K36me3 levels, suggesting a preferential H3K36me3 recognition of SETD2 in porcine embryos. Furthermore, SETD2 KD significantly reduced blastocyst rate and disrupted allocation between inner cell mass (ICM) and trophectoderm (TE) lineage. The expression levels of key genes important for specification of the first two lineages apparently decreased in SETD2 KD blastocysts. SETD2 KD markedly increased the apoptotic percentage of cells within embryos and altered the expression of pro- and anti-apoptotic genes. Therefore, our data indicate that SETD2 is essential for porcine early embryonic development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zubing Cao
- Correspondence: ; Tel.: +86-551-6578-6537
| |
Collapse
|
10
|
Strategies to Improve the Efficiency of Somatic Cell Nuclear Transfer. Int J Mol Sci 2022; 23:ijms23041969. [PMID: 35216087 PMCID: PMC8879641 DOI: 10.3390/ijms23041969] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 01/04/2023] Open
Abstract
Mammalian oocytes can reprogram differentiated somatic cells into a totipotent state through somatic cell nuclear transfer (SCNT), which is known as cloning. Although many mammalian species have been successfully cloned, the majority of cloned embryos failed to develop to term, resulting in the overall cloning efficiency being still low. There are many factors contributing to the cloning success. Aberrant epigenetic reprogramming is a major cause for the developmental failure of cloned embryos and abnormalities in the cloned offspring. Numerous research groups attempted multiple strategies to technically improve each step of the SCNT procedure and rescue abnormal epigenetic reprogramming by modulating DNA methylation and histone modifications, overexpression or repression of embryonic-related genes, etc. Here, we review the recent approaches for technical SCNT improvement and ameliorating epigenetic modifications in donor cells, oocytes, and cloned embryos in order to enhance cloning efficiency.
Collapse
|
11
|
Fang X, Tanga BM, Bang S, Seong G, Saadeldin IM, Lee S, Cho J. Oviduct epithelial cells-derived extracellular vesicles improve preimplantation developmental competence of in vitro produced porcine parthenogenetic and cloned embryos. Mol Reprod Dev 2021; 89:54-65. [PMID: 34843136 DOI: 10.1002/mrd.23550] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs) carry bioactive cargoes involved in the early preimplantation development. This study investigated the effects of EVs obtained from an oviductal epithelial cell (OEC) conditioned medium on the developmental competence of in parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT) porcine embryos. The OEC-EV-treated group showed significant increases in blastocyst formation and hatching rates compared to the control group (40.8% ± 2.2% and 20.1% ± 2.1% vs. 24.9% ± 2.0% and 5.3% ± 1.1%; p < 0.05), respectively. The 7 day OEC-EVs treatment group significantly increased blastocyst formation rate than the 3 day and 0 day-groups (45.0 ± 0.8 vs. 33.0 ± 0.7 and 26.7 ± 0.5; p < 0.05), respectively. SCNT revealed that the OEC-EV increased blastocyst formation rate compared to that of oviductal fluid EVs (OF-EVs) (35.4% ± 1.4% vs. 29.3% ± 1.3%; p < 0.05). Reactive oxygen species levels, apoptosis, and blastocyst lipid content were significantly decreased in the OEC-EVs group compared with the control group. OEC-EV group showed a significantly decreased BAX and increased BCL2, SOD1, POU5F1, SOX2, NANOG, GATA6, PNPLA2, LIPE, and MGLL gene expression than the control group (p < 0.05). In conclusion, OEC-EVs supplementation in embryo culture media improved the quality of porcine embryos, potentially helping porcine-cloned embryonic development possibly through transfer of messenger RNA and proteins to the early embryos.
Collapse
Affiliation(s)
- Xun Fang
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Bereket Molla Tanga
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Seonggyu Bang
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Gyeonghwan Seong
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Islam M Saadeldin
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea.,Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea.,Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Sanghoon Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jongki Cho
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
12
|
Jeong PS, Yang HJ, Park SH, Gwon MA, Joo YE, Kim MJ, Kang HG, Lee S, Park YH, Song BS, Kim SU, Koo DB, Sim BW. Combined Chaetocin/Trichostatin A Treatment Improves the Epigenetic Modification and Developmental Competence of Porcine Somatic Cell Nuclear Transfer Embryos. Front Cell Dev Biol 2021; 9:709574. [PMID: 34692674 PMCID: PMC8526721 DOI: 10.3389/fcell.2021.709574] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/15/2021] [Indexed: 01/03/2023] Open
Abstract
Developmental defects in somatic cell nuclear transfer (SCNT) embryos are principally attributable to incomplete epigenetic reprogramming. Small-molecule inhibitors such as histone methyltransferase inhibitors (HMTi) and histone deacetylase inhibitors (HDACi) have been used to improve reprogramming efficiency of SCNT embryos. However, their possible synergistic effect on epigenetic reprogramming has not been studied. In this study, we explored whether combined treatment with an HMTi (chaetocin) and an HDACi (trichostatin A; TSA) synergistically enhanced epigenetic reprogramming and the developmental competence of porcine SCNT embryos. Chaetocin, TSA, and the combination significantly increased the cleavage and blastocyst formation rate, hatching/hatched blastocyst rate, and cell numbers and survival rate compared to control embryos. In particular, the combined treatment improved the rate of development to blastocysts more so than chaetocin or TSA alone. TSA and combined chaetocin/TSA significantly reduced the H3K9me3 levels and increased the H3K9ac levels in SCNT embryos, although chaetocin alone significantly reduced only the H3K9me3 levels. Moreover, these inhibitors also decreased global DNA methylation in SCNT embryos. In addition, the expression of zygotic genome activation- and imprinting-related genes was increased by chaetocin or TSA, and more so by the combination, to levels similar to those of in vitro-fertilized embryos. These results suggest that combined chaetocin/TSA have synergistic effects on improving the developmental competences by regulating epigenetic reprogramming and correcting developmental potential-related gene expression in porcine SCNT embryos. Therefore, these strategies may contribute to the generation of transgenic pigs for biomedical research.
Collapse
Affiliation(s)
- Pil-Soo Jeong
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, South Korea
| | - Hae-Jun Yang
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Soo-Hyun Park
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Animal Science, College of Natural Resources and Life Science, Pusan National University, Miryang, South Korea
| | - Min Ah Gwon
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, South Korea
| | - Ye Eun Joo
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Animal Science, College of Natural Resources and Life Science, Pusan National University, Miryang, South Korea
| | - Min Ju Kim
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Animal Science, College of Natural Resources and Life Science, Pusan National University, Miryang, South Korea
| | - Hyo-Gu Kang
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Animal Science and Biotechnology, College of Agriculture and Life Science, Chungnam National University, Daejeon, South Korea
| | - Sanghoon Lee
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Young-Ho Park
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Bong-Seok Song
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Sun-Uk Kim
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, South Korea
| | - Deog-Bon Koo
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, South Korea
| | - Bo-Woong Sim
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| |
Collapse
|
13
|
Springer C, Wolf E, Simmet K. A New Toolbox in Experimental Embryology-Alternative Model Organisms for Studying Preimplantation Development. J Dev Biol 2021; 9:15. [PMID: 33918361 PMCID: PMC8167745 DOI: 10.3390/jdb9020015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Preimplantation development is well conserved across mammalian species, but major differences in developmental kinetics, regulation of early lineage differentiation and implantation require studies in different model organisms, especially to better understand human development. Large domestic species, such as cattle and pig, resemble human development in many different aspects, i.e., the timing of zygotic genome activation, mechanisms of early lineage differentiations and the period until blastocyst formation. In this article, we give an overview of different assisted reproductive technologies, which are well established in cattle and pig and make them easily accessible to study early embryonic development. We outline the available technologies to create genetically modified models and to modulate lineage differentiation as well as recent methodological developments in genome sequencing and imaging, which form an immense toolbox for research. Finally, we compare the most recent findings in regulation of the first lineage differentiations across species and show how alternative models enhance our understanding of preimplantation development.
Collapse
Affiliation(s)
- Claudia Springer
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (E.W.)
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (E.W.)
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany
| | - Kilian Simmet
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (E.W.)
| |
Collapse
|