1
|
Alsabhan JF, Al Backer NB, Hassan FM, Albaker AB, Assiry G. Metabolic Side Effects of Risperidone in Pediatric Patients with Neurological Disorders: A Prospective Cohort Study. J Clin Med 2024; 13:5565. [PMID: 39337049 PMCID: PMC11432673 DOI: 10.3390/jcm13185565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Risperidone-related metabolic side effects in children have been primarily linked to variations between guideline-recommended and clinical treatment procedures. We explored the metabolic effects of risperidone administration in pediatric patients diagnosed with neurological disorders, thus evaluating its influence on metabolic indicators. Methods: This prospective cohort study gathered data from electronic health records, medical databases, and clinical reports. These data included patient demographics (e.g., age, sex, and body mass index) and information on risperidone use, including dosage, dosing frequency, and treatment duration. Additionally, laboratory tests were conducted at baseline and during treatment, along with other pertinent clinical variables. Result: A total of 52 eligible children (male; 73.1%) with neurological disorders treated with risperidone were included. The mean age was 13.4 ± 2.2 years. Risperidone was administered to 32.7% of patients for <2 years, 40.4% for 2-5 years, and 26.9% for 6-9 years, with a mean duration of 3.6 years. Most (53.8%) of the children experienced at least one metabolic side effect, with hyperlipidemia being the most common (34.6%). The median prolactin level increased slightly from 448.5 ng/mL at baseline to 479 ng/mL after 6-8 weeks. No significant associations were found between age, sex, duration of treatment, dosage form, dosing frequency, and hemoglobin A1c levels. Conclusion: Monitoring metabolic and anthropometric parameters in children receiving risperidone for neurological disorders is cardinal. Clinicians should consider individualized treatment plans, closely monitor metabolic markers, and address potential risks associated with long-term risperidone use in this vulnerable population.
Collapse
Affiliation(s)
- Jawza F Alsabhan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11322, Saudi Arabia
| | - Nouf Backer Al Backer
- Department of Pediatrics, King Saud University Medical City, College of Medicine, King Saud University, Riyadh 11375, Saudi Arabia
| | - Fatimah M Hassan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11322, Saudi Arabia
| | - Awatif B Albaker
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11322, Saudi Arabia
| | - Ghadeer Assiry
- Department of Pediatrics, King Saud University Medical City, College of Medicine, King Saud University, Riyadh 11375, Saudi Arabia
| |
Collapse
|
2
|
Bondrescu M, Dehelean L, Farcas S, Dragan PA, Podaru CA, Popa L, Andreescu N. Into a Deeper Understanding of CYP2D6's Role in Risperidone Monotherapy and the Potential Side Effects in Schizophrenia Spectrum Disorders. Int J Mol Sci 2024; 25:6350. [PMID: 38928058 PMCID: PMC11204263 DOI: 10.3390/ijms25126350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Schizophrenia spectrum disorders (SSD) are a group of diseases characterized by one or more abnormal features in perception, thought processing and behavior. Patients suffering from SSD are at risk of developing life-threatening complications. Pharmacogenetic studies have shown promising results on personalized treatment of psychosis. In the current study, 103 patients diagnosed with SSD treated with risperidone as antipsychotic monotherapy were enrolled. Socio-demographics and clinical data were recorded, and laboratory tests and genotyping standard procedure for cytochrome P450 (CYP) 2D6*4 were performed. Patients were evaluated by the Positive and Negative Syndrome Scale (PANSS) on admission and at discharge. Based on the reduction in the PANSS total score, subjects were divided into non-responders, partial responders and full responders. Only 11 subjects had a full response to risperidone (10.67%), 53 subjects (51.45%) had a partial response, and 39 participants (37.86%) were non-responders. Patients at first episode psychosis showed significantly higher levels of blood glucose and prolactin levels, while chronic patients showed significantly higher LDL levels. Adverse drug reactions (ADR) such as tremor and stiffness significantly correlated with genetic phenotypes (p = 0.0145). While CYP2D6 showed no impact on treatment response, ADR were significantly more frequent among poor and intermediate metabolizers.
Collapse
Affiliation(s)
- Mariana Bondrescu
- Department of Neurosciences-Psychiatry, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
- Timis County Emergency Clinical Hospital “Pius Brinzeu”, Liviu Rebreanu 156, 300723 Timisoara, Romania;
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
| | - Liana Dehelean
- Department of Neurosciences-Psychiatry, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
- Timis County Emergency Clinical Hospital “Pius Brinzeu”, Liviu Rebreanu 156, 300723 Timisoara, Romania;
| | - Simona Farcas
- Discipline of Medical Genetics, Department of Microscopic Morphology, Center of Genomic Medicine “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (S.F.); (N.A.)
| | - Patricia Alexandra Dragan
- Timis County Emergency Clinical Hospital “Pius Brinzeu”, Liviu Rebreanu 156, 300723 Timisoara, Romania;
| | | | - Laura Popa
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
| | - Nicoleta Andreescu
- Discipline of Medical Genetics, Department of Microscopic Morphology, Center of Genomic Medicine “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (S.F.); (N.A.)
| |
Collapse
|
3
|
Li S, Yang D, Zhou X, Chen L, Liu L, Lin R, Li X, Liu Y, Qiu H, Cao H, Liu J, Cheng Q. Neurological and metabolic related pathophysiologies and treatment of comorbid diabetes with depression. CNS Neurosci Ther 2024; 30:e14497. [PMID: 37927197 PMCID: PMC11017426 DOI: 10.1111/cns.14497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND The comorbidity between diabetes mellitus and depression was revealed, and diabetes mellitus increased the prevalence of depressive disorder, which ranked 13th in the leading causes of disability-adjusted life-years. Insulin resistance, which is common in diabetes mellitus, has increased the risk of depressive symptoms in both humans and animals. However, the mechanisms behind the comorbidity are multi-factorial and complicated. There is still no causal chain to explain the comorbidity exactly. Moreover, Selective serotonin reuptake inhibitors, insulin and metformin, which are recommended for treating diabetes mellitus-induced depression, were found to be a risk factor in some complications of diabetes. AIMS Given these problems, many researchers made remarkable efforts to analyze diabetes complicating depression from different aspects, including insulin resistance, stress and Hypothalamic-Pituitary-Adrenal axis, neurological system, oxidative stress, and inflammation. Drug therapy, such as Hydrogen Sulfide, Cannabidiol, Ascorbic Acid and Hesperidin, are conducive to alleviating diabetes mellitus and depression. Here, we reviewed the exact pathophysiology underlying the comorbidity between depressive disorder and diabetes mellitus and drug therapy. METHODS The review refers to the available literature in PubMed and Web of Science, searching critical terms related to diabetes mellitus, depression and drug therapy. RESULTS In this review, we found that brain structure and function, neurogenesis, brain-derived neurotrophic factor and glucose and lipid metabolism were involved in the pathophysiology of the comorbidity. Obesity might lead to diabetes mellitus and depression through reduced adiponectin and increased leptin and resistin. In addition, drug therapy displayed in this review could expand the region of potential therapy. CONCLUSIONS The review summarizes the mechanisms underlying the comorbidity. It also overviews drug therapy with anti-diabetic and anti-depressant effects.
Collapse
Affiliation(s)
- Sixin Li
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Dong Yang
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Xuhui Zhou
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Lu Chen
- Department of Gastroenterology, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of GastroenterologyBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Lini Liu
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Ruoheng Lin
- Department of Psychiatry, National Clinical Research Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Xinyu Li
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Ying Liu
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Huiwen Qiu
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Hui Cao
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Jian Liu
- Center for Medical Research and Innovation, The First Hospital, Hunan University of Chinese MedicineChangshaHunanChina
| | - Quan Cheng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
4
|
Yi W, Wu H, Fu W, Feng H, Huang J, Li H, Song Z, Chen Y, Zheng Y, She S. Prevalence and Risk Factors of Non-Alcoholic Fatty Liver Disease (NAFLD) in Non-Obese Patients with Schizophrenia: A Retrospective Study. Diabetes Metab Syndr Obes 2024; 17:841-849. [PMID: 38406266 PMCID: PMC10893889 DOI: 10.2147/dmso.s437811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
Background To assess the prevalence and risk factors of NAFLD in non-obese patients with schizophrenia in a public psychiatric hospital in China. Methods A total of 1,305 adult inpatients with schizophrenia in 2019 were included in this retrospective study. Body mass index (BMI) ≥ 25 kg/m2 was considered obese, and BMI < 25 kg/m2 was considered non-obese. We obtained the data from electronic records of the Affiliated Brain Hospital of Guangzhou Medical University. Results A total of 1,045 non-obese patients and 260 obese patients were included in this study. The prevalence of NAFLD in non-obese patients was 25.0%, and it was much lower that in the obese patients (25.0% vs 64.6%, p < 0.001). Among the non-obese patients, there were significant differences in age, BMI, alanine aminotransferase (ALT), metabolic indices, and the prevalence of diabetes and hypertension between patients with NAFLD and patients without NAFLD. According to the results of binary logistic regression analysis, age, BMI, ALT, triglyceride (TG) and diabetes were significantly related to NAFLD among non-obese patients with schizophrenia. In contrast, HDL-C was was negatively associated with NAFLD among non-obese patients. Conclusion This study suggested that NAFLD was common in patients with schizophrenia, even in non-obese patients with schizophrenia. In non-obese patients with schizophrenia, age, BMI, ALT, TG and diabetes are significantly associated with NAFLD. Moreover, HDL-C level was an independent protective factor against NAFLD. Given the adverse outcomes of NAFLD, it is necessary to increase awareness of NAFLD in patients with schizophrenia, especially in non-obese patients with schizophrenia.
Collapse
Affiliation(s)
- Wenying Yi
- Department of Psychiatry, the Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Haibo Wu
- Department of Psychiatry, the Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Weibin Fu
- Department of Psychiatry, the Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Huimei Feng
- Department of Psychiatry, the Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jie Huang
- Department of Psychiatry, the Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Haijing Li
- Department of Psychiatry, the Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Zhen Song
- Department of Psychiatry, the Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yuwei Chen
- Department of Psychiatry, the Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yingjun Zheng
- Department of Psychiatry, the Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Shenglin She
- Department of Psychiatry, the Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
5
|
Zhao S, Lin Q, Xiong W, Li L, Straub L, Zhang D, Zapata R, Zhu Q, Sun X, Zhang Z, Funcke JB, Li C, Chen S, Zhu Y, Jiang N, Li G, Xu Z, Wyler SC, Wang MY, Bai J, Han X, Kusminski CM, Zhang N, An Z, Elmquist JK, Osborn O, Liu C, Scherer PE. Hyperleptinemia contributes to antipsychotic drug-associated obesity and metabolic disorders. Sci Transl Med 2023; 15:eade8460. [PMID: 37992151 PMCID: PMC11755893 DOI: 10.1126/scitranslmed.ade8460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/17/2023] [Indexed: 11/24/2023]
Abstract
Despite their high degree of effectiveness in the management of psychiatric conditions, exposure to antipsychotic drugs, including olanzapine and risperidone, is frequently associated with substantial weight gain and the development of diabetes. Even before weight gain, a rapid rise in circulating leptin concentrations can be observed in most patients taking antipsychotic drugs. To date, the contribution of this hyperleptinemia to weight gain and metabolic deterioration has not been defined. Here, with an established mouse model that recapitulates antipsychotic drug-induced obesity and insulin resistance, we not only confirm that hyperleptinemia occurs before weight gain but also demonstrate that hyperleptinemia contributes directly to the development of obesity and associated metabolic disorders. By suppressing the rise in leptin through the use of a monoclonal leptin-neutralizing antibody, we effectively prevented weight gain, restored glucose tolerance, and preserved adipose tissue and liver function in antipsychotic drug-treated mice. Mechanistically, suppressing excess leptin resolved local tissue and systemic inflammation typically associated with antipsychotic drug treatment. We conclude that hyperleptinemia is a key contributor to antipsychotic drug-associated weight gain and metabolic deterioration. Leptin suppression may be an effective approach to reducing the undesirable side effects of antipsychotic drugs.
Collapse
Affiliation(s)
- Shangang Zhao
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Division of Endocrinology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Qian Lin
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Wei Xiong
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas health Science Center, Houston, TX 77030, USA
| | - Li Li
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Leon Straub
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Dinghong Zhang
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Rizaldy Zapata
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Qingzhang Zhu
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xuenan Sun
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Zhuzhen Zhang
- College of Life Sciences, Wuhan University, Wuhan, Hubei Sheng, 430072, China
| | - Jan-Bernd Funcke
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Chao Li
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Shiuhwei Chen
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yi Zhu
- Children’s Nutrition Research Center, Department of Pediatric, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nisi Jiang
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Division of Endocrinology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Guannan Li
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Division of Endocrinology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Ziying Xu
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Division of Endocrinology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Steven C Wyler
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - May-Yun Wang
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Juli Bai
- Department of Cell Systems & Anatomy and Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Xianlin Han
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Division of Endocrinology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Christine M. Kusminski
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ningyan Zhang
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas health Science Center, Houston, TX 77030, USA
| | - Zhiqiang An
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas health Science Center, Houston, TX 77030, USA
| | - Joel K. Elmquist
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Olivia Osborn
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Chen Liu
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Neuroscience, UT Southwestern Medical Center, TX, 75390, USA
- Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, TX, 75390, USA
| | - Philipp E. Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
6
|
Duc Nguyen H, Hee Jo W, Hong Minh Hoang N, Kim MS. Short-term treatment with risperidone ameliorated 1,2-diacetylbenzene-induced liver dysfunction. Int Immunopharmacol 2023; 123:110687. [PMID: 37499398 DOI: 10.1016/j.intimp.2023.110687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
1,2-Diacetylbenze (C10H10O2, DAB) is a potential inducer or activator of toxic mechanisms. DAB exerts high absorption by the gastrointestinal tract and high blood-brain barrier penetration. However, only the effects of DAB on the central nervous system were reported, with a dearth of evidence of DAB's effects on the liver, which is more susceptible to toxic substances. Risperidone, an atypical antipsychotic drug, has been shown to protect against DAB-induced cognitive impairment in an animal model. Risperidone was found to have little or no effect on the liver after short-term administration. The question of whether risperidone can protect against DAB-induced liver dysfunction, particularly after short-term administration, is unknown. Thus, this study aimed to assess the hepatoprotective effects of risperidone on DAB-induced liver dysfunction in male C57BL/6 mice treated with DAB 5 mg/kg for 1 week and risperidone 0.125-0.25 mg/kg for 2 weeks. After exposure to DAB 5 mg/kg for 1 week, we found that DAB induced liver damage by increasing liver function biomarkers (GGT, ALT, and AST), reactive oxygen species, nitric oxide, and proinflammatory cytokines (IL-1α, IL-1β, IL-6, IL-12, and TNF- α), activating apoptosis (elevated Caspase-3 and Bax levels and reduced Bcl2 level), TLR4/JNK/NF-κB, Jak2/Stat5 pathways, and suppressing Jak2/Stat3 and IRS1/PI3K/AKT/MDM2 pathways. After a 2-week course of treatment, risperidone was able to lessen these effects; the higher dose (0.25 mg/kg) appeared to be more effective than the lower dose (0.125 mg/kg). To strengthen findings from in vivo analysis, in silico analysis also found three targets (Stat3, Caspase-3, AKT, IL-1β), two miRNAs (miR-26b-5p and miR-34a-5p), two transcription factors (NFKB1 and NFKB2), and numerous pathways ("AGE-RAGE signaling pathway in diabetic complications", "hepatitis B", "alcoholic liver disease", "apoptosis", and "liver cirrhosis") as the key molecular processes involved in the pathogenesis of DAB-induced liver damage and targeted by risperidone. The physicochemical characteristics and pharmacokinetics of DAB and risperidone also support the toxic effects of DAB and the beneficial properties of risperidone in the liver. In conclusion, these findings reflect the therapeutic effects of risperidone on DAB-induced liver dysfunction after 1 week and 2 weeks exposure to DAB and risperidone, respectively.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Won Hee Jo
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Ngoc Hong Minh Hoang
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea.
| |
Collapse
|
7
|
Liao Q, Tang P, Fan H, Song Y, Liang J, Huang H, Pan D, Mo M, Lin M, Chen J, Wei H, Long J, Shao Y, Zeng X, Liu S, Huang D, Qiu X. Association between maternal exposure to per- and polyfluoroalkyl substances and serum markers of liver function during pregnancy in China: A mixture-based approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121348. [PMID: 36842621 DOI: 10.1016/j.envpol.2023.121348] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/12/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Previous studies have shown that per- and polyfluoroalkyl substances (PFAS) may have hepatotoxic effects in animals. However, epidemiological evidence in humans, especially pregnant women, is limited. This study aimed to assess the association of single and multiple PFAS exposure with serum markers of liver function in pregnant women. A total of 420 pregnant women from the Guangxi Zhuang Birth Cohort were enrolled from June 2015 to April 2019. Nine PFAS were measured in the maternal serum in early pregnancy. Data for liver function biomarkers, namely, alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyltransferase (GGT), total bilirubin (TBIL), direct bilirubin (DBIL), and indirect bilirubin (IBIL), were obtained from medical records. In generalized linear model (GLM), there was a positive association of perfluorooctane sulfonate (PFOS) with ALT, perfluorodecanoic acid (PFDA) and perfluorobutanesulfonic acid (PFBS) with GGT, and perfluorohexane sulfonate (PFHxS) with TBIL and IBIL. In contrast, there was a negative association of perfluoroheptanoic acid (PFHpA) with TBIL. There were inverse U-shaped relationships of PFUnA with ALT and AST and PFDA with ALT by restricted cubic spline. The weighted quantile sum (WQS) regression model revealed the positive effects of the PFAS mixture on GGT, TBIL, DBIL, and IBIL. Bayesian kernel machine regression (BKMR) analysis confirmed that the PFAS mixture was positively associated with GGT, and PFBS was the main contributor. In addition, the BKMR model showed a positive association of individual PFBS with GGT, individual PFHxS with TBIL and IBIL, and a negative association of individual PFHpA with TBIL. Our findings provide evidence of an association between individual PFAS, PFAS mixture and maternal serum markers of liver function during pregnancy. Additionally, these findings also enhance concerns over PFAS exposure on maternal liver function and PFAS monitoring in pregnancy, reducing the effect of maternal liver dysfunction on maternal and infant health.
Collapse
Affiliation(s)
- Qian Liao
- Department Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Peng Tang
- Department Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Haoran Fan
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yanye Song
- The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530031, Guangxi, China
| | - Jun Liang
- Department Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Huishen Huang
- Department Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Dongxiang Pan
- Department Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Meile Mo
- Department Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Mengrui Lin
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiehua Chen
- Department Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Huanni Wei
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jinghua Long
- Department Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yantao Shao
- Department of Medical and Health Management, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaoyun Zeng
- Department Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Shun Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaoqiang Qiu
- Department Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
8
|
Yoshikawa S, Taniguchi K, Sawamura H, Ikeda Y, Asai T, Tsuji A, Matsuda S. Metabolic Associated Fatty Liver Disease as a Risk Factor for the Development of Central Nervous System Disorders. LIVERS 2023; 3:21-32. [DOI: 10.3390/livers3010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
MAFLD/NAFLD is the most ordinary liver disease categorized by hepatic steatosis with the increase of surplus fat in the liver and metabolic liver dysfunction, which is associated with bigger mortality and a high medical burden. An association between MAFLD/NAFLD and central nervous system disorders including psychological disorders has been demonstrated. Additionally, MAFLD/NAFLD has been correlated with various types of neurodegenerative disorders such as amyotrophic lateral sclerosis or Parkinson’s disease. Contrasted to healthy controls, patients with MAFLD/NAFLD have a greater prevalence risk of extrahepatic complications within multiple organs. Dietary interventions have emerged as effective strategies for MAFLD/NAFLD. The PI3K/AKT/mTOR signaling pathway involved in the regulation of Th17/Treg balance might promote the pathogenesis of several diseases including MAFLD/NAFLD. As extrahepatic complications may happen across various organs including CNS, cooperative care with individual experts is also necessary for managing patients with MAFLD/NAFLD.
Collapse
Affiliation(s)
- Sayuri Yoshikawa
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Kurumi Taniguchi
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Haruka Sawamura
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Yuka Ikeda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Tomoko Asai
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Ai Tsuji
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
9
|
Zhou Y, Tao H, Xu N, Zhou S, Peng Y, Zhu J, Liu S, Chang Y. Chrysin improves diabetic nephropathy by regulating the AMPK-mediated lipid metabolism in HFD/STZ-induced DN mice. J Food Biochem 2022; 46:e14379. [PMID: 35976957 DOI: 10.1111/jfbc.14379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 07/17/2022] [Accepted: 08/01/2022] [Indexed: 01/13/2023]
Abstract
Diabetic nephropathy (DN) is a highly prevalent and severe diabetic complication. It is urgent to explore high efficiency and minor side effects therapy for DN. Chrysin is a natural flavonoid with various biological activities found in honey and propolis, and has considerable potential to improve DN. The study was designed to explore the effects and the specific underlying mechanism of chrysin for DN in high-fat-diet (HFD) and streptozotocin (STZ) induced DN mice. Firstly, the study revealed that chrysin effectively improved obesity, insulin resistance (IR), renal function, and pathological injury in DN mice. Secondly, the study found that chrysin improved the key indices and markers of lipid accumulation, oxidative stress, and inflammation which are closely related to the development or progression of DN. Moreover, chrysin markedly modulated lipid metabolism by regulating Adenosine 5' monophosphate-activated protein kinase (AMPK) and essential downstream proteins. Furthermore, AMPK inhibitor (Dorsomorphin) intervention partially suppressed the positive effects of chrysin on all testing indicators, indicating that activated AMPK is crucial for chrysin action on DN. The present study demonstrated that chrysin may improve DN by regulating lipid metabolism, and activated AMPK plays a critical role in the regulation of chrysin. PRACTICAL APPLICATIONS: The study verified the positive effects of chrysin on obesity, insulin resistance, kidney injury, renal function, lipid accumulation, inflammation, and oxidative stress, which are closely related to the development or progression of diabetic nephropathy (DN). Moreover, we explored that chrysin improves DN by regulating AMPK-mediated lipid metabolism. Furthermore, the AMPK inhibitor was used to confirm that activated AMPK plays a critical role in the effects of chrysin. These results could offer a full explanation and a potential option for adjuvant therapy of DN diabetes with chrysin.
Collapse
Affiliation(s)
- Yingjun Zhou
- The State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Heng Tao
- The State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Nuo Xu
- The State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Shichun Zhou
- Agricultural and Rural Bureau, Haiyang, Shandong, People's Republic of China
| | - Yuke Peng
- The State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Jianxiang Zhu
- Shanghai Cao Yang No. 2 High School, Shanghai, People's Republic of China
| | - Shaowei Liu
- The State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Yaning Chang
- The State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
10
|
Si MD, Wu M, Cheng XZ, Ma ZH, Zheng YG, Li J, Li S, Song YX, Ma D. Swertia mussotii prevents high-fat diet-induced non-alcoholic fatty liver disease in rats by inhibiting expression the TLR4/MyD88 and the phosphorylation of NF-κB. PHARMACEUTICAL BIOLOGY 2022; 60:1960-1968. [PMID: 36205548 PMCID: PMC9559049 DOI: 10.1080/13880209.2022.2127153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/27/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Swertia mussotii Franch. (Gentianaceae) is a source of the traditional Tibetan medicine, ZangYinChen, and is used to treat chronic hepatitis and many types of jaundice. OBJECTIVE This study explored the therapeutic effects and mechanism of S. mussotii on non-alcoholic fatty liver disease in diet-induced hypercholesterolaemia. MATERIALS AND METHODS After a week of adaptive feeding, 32 Sprague-Dawley rats were divided into four groups: (1) Control, (2) Control-S, (3) Model, and (4) Model-S. During the 12 experimental weeks, we established the Model using a high-fat diet. Control-S and Model-S were given 1.0 g/kg S. mussotii water extract via gavage starting in the fifth week until the end of experiment. RESULTS When compared with Model rats, the S. mussotii water extract led to a reduction in high-density lipoproteins (43.9%) and albumin (13.9%) and a decrease in total cholesterol (54.0%), triglyceride (45.6%), low-density lipoproteins (8.6%), aspartate aminotransferase (11.0%), alanine aminotransferase (15.5%), alkaline phosphatase (19.1%), total protein (6.4%), and glucose (20.8%) in serum. A reduction in three cytokines (IL-1β, IL-6, and TNFα) was detected. Histopathological examination showed that liver steatosis was significantly relieved in S. mussotii-treated high-fat diet rats. S. mussotii also caused a downregulation in the expression of TLR4 (43.2%), MyD88 (33.3%), and a decrease in phosphorylation of NF-κB. DISCUSSION AND CONCLUSIONS Our findings indicate that S. mussotii may act as a potential anti-inflammation drug via inhibition of the TLR4/MyD88/NF-κB pathway. Further in vivo and in vitro studies are needed to validate its potential in clinical medicine.
Collapse
Affiliation(s)
- Ming Dong Si
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Meng Wu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xi Zhen Cheng
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Zhi Hong Ma
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yu Guang Zheng
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China
| | - Jing Li
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China
| | - Si Li
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yong Xing Song
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China
| | - Donglai Ma
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China
| |
Collapse
|
11
|
The development of the Metabolic-associated Fatty Liver Disease during pharmacotherapy of mental disorders - a review. CURRENT PROBLEMS OF PSYCHIATRY 2022. [DOI: 10.2478/cpp-2022-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Introduction: Metabolic-associated Fatty Liver Disease (MAFLD) is a term for Non-alcoholic Fatty Liver Disease (NAFLD) that highlights its association with components of the Metabolic Syndrome (MetS). MAFLD is becoming a clinically significant problem due to its increasing role in the pathogenesis of cryptogenic cirrhosis of the liver.
Material and methods: The resulting work is a review of the most important information on the risk of MAFLD development in the context of the use of particular groups of psychotropic drugs. The study presents the epidemiology, with particular emphasis on the population of psychiatric patients, pathophysiology and scientific reports analyzing the effect of the psychotropic medications on MAFLD development.
Results: The drugs that can have the greatest impact on the development of MAFLD are atypical antipsychotics, especially olanzapine, and mood stabilizers (MS) - valproic acid (VPA). Their effect is indirect, mainly through dysregulation of organism’s carbohydrate and lipid metabolism.
Conclusions: The population of psychiatric patients is particularly vulnerable to the development of MAFLD. At the root of this disorder lies the specificity of mental disorders, improper dietary habits, low level of physical activity and tendency to addictions. Also, the negative impact of the psychotropic drugs on the systemic metabolism indirectly contributes to the development of MAFLD. In order to prevent fatty liver disease, it is necessary to monitor metabolic and liver parameters regularly, and patients should be screened by ultrasound examination of the liver. There are also important preventive actions from the medical professionals, including education of patients and sensitizing to healthy lifestyle.
Collapse
|
12
|
Lin CT, Lin CF, Wu JT, Tsai HP, Cheng SY, Liao HJ, Lin TC, Wu CH, Lin YC, Wang JH, Chang GR. Effects of Para-Toluenesulfonamide on Canine Melanoma Xenotransplants in a BALB/c Nude Mouse Model. Animals (Basel) 2022; 12:2272. [PMID: 36077992 PMCID: PMC9454485 DOI: 10.3390/ani12172272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
The pharmacological pathway of para-toluenesulfonamide (PTS) restricts the kinase activity of the mammalian target of rapamycin, potentially leading to reductions in cell division, cell growth, cell proliferation, and inflammation. These pathways have a critical effect on tumorigenesis. We aimed to examine the antitumor effect of PTS or PTS combined with cisplatin on canine melanoma implanted in BALB/c nude mice by estimating tumor growth, apoptosis expression, inflammation, and metastasis. The mice were randomly divided into four groups: control, cisplatin, PTS, and PTS combined with cisplatin. Mice treated with PTS or PTS combined with cisplatin had retarded tumor growth and increased tumor apoptosis through the enhanced expression of cleaved caspase 3 and extracellular signal-regulated kinase phosphorylation, decreased inflammatory cytokine levels, reduced inflammation-related factors, enhanced anti-inflammation-related factors, and inhibition of metastasis-related factors. Mice treated with PTS combined with cisplatin exhibited significantly retarded tumor growth, reduced tumor size, and increased tumor inhibition compared with those treated with cisplatin or PTS alone. PTS or PTS combined with cisplatin could retard canine melanoma growth and inhibit tumorigenesis. PTS and cisplatin were found to have an obvious synergistic tumor-inhibiting effect on canine melanoma. PTS alone and PTS combined with cisplatin may be antitumor agents for canine melanoma treatment.
Collapse
Affiliation(s)
- Chien-Teng Lin
- Ph.D. Program of Agriculture Science, National Chiayi University, 300 University Road, Chiayi 60004, Taiwan
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan
| | - Chuen-Fu Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 912301, Taiwan
| | - Jui-Te Wu
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan
| | - Hsiao-Pei Tsai
- Ph.D. Program of Agriculture Science, National Chiayi University, 300 University Road, Chiayi 60004, Taiwan
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan
| | - Shu-Ying Cheng
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan
- Department of Pet Medicine, Gongwin Biopharma Co., Ltd., 1 Section, 80 Jianguo North Road, Zhongshan District, Taipei 104001, Taiwan
| | - Huei-Jyuan Liao
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan
| | - Tzu-Chun Lin
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan
| | - Chao-Hsuan Wu
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan
- Department of Pet Medicine, Gongwin Biopharma Co., Ltd., 1 Section, 80 Jianguo North Road, Zhongshan District, Taipei 104001, Taiwan
| | - Yu-Chin Lin
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan
- Department of Pet Medicine, Gongwin Biopharma Co., Ltd., 1 Section, 80 Jianguo North Road, Zhongshan District, Taipei 104001, Taiwan
| | - Jiann-Hsiung Wang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan
| | - Geng-Ruei Chang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan
| |
Collapse
|
13
|
Xenobiotic-Induced Aggravation of Metabolic-Associated Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms23031062. [PMID: 35162986 PMCID: PMC8834714 DOI: 10.3390/ijms23031062] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 01/09/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD), which is often linked to obesity, encompasses a large spectrum of hepatic lesions, including simple fatty liver, steatohepatitis, cirrhosis and hepatocellular carcinoma. Besides nutritional and genetic factors, different xenobiotics such as pharmaceuticals and environmental toxicants are suspected to aggravate MAFLD in obese individuals. More specifically, pre-existing fatty liver or steatohepatitis may worsen, or fatty liver may progress faster to steatohepatitis in treated patients, or exposed individuals. The mechanisms whereby xenobiotics can aggravate MAFLD are still poorly understood and are currently under deep investigations. Nevertheless, previous studies pointed to the role of different metabolic pathways and cellular events such as activation of de novo lipogenesis and mitochondrial dysfunction, mostly associated with reactive oxygen species overproduction. This review presents the available data gathered with some prototypic compounds with a focus on corticosteroids and rosiglitazone for pharmaceuticals as well as bisphenol A and perfluorooctanoic acid for endocrine disruptors. Although not typically considered as a xenobiotic, ethanol is also discussed because its abuse has dire consequences on obese liver.
Collapse
|
14
|
Fu Y, Yang K, Huang Y, Zhang Y, Li S, Li WD. Deciphering Risperidone-Induced Lipogenesis by Network Pharmacology and Molecular Validation. Front Psychiatry 2022; 13:870742. [PMID: 35509887 PMCID: PMC9058120 DOI: 10.3389/fpsyt.2022.870742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Risperidone is an atypical antipsychotic that can cause substantial weight gain. The pharmacological targets and molecular mechanisms related to risperidone-induced lipogenesis (RIL) remain to be elucidated. Therefore, network pharmacology and further experimental validation were undertaken to explore the action mechanisms of RIL. METHODS RILs were systematically analyzed by integrating multiple databases through integrated network pharmacology, transcriptomics, molecular docking, and molecular experiment analysis. The potential signaling pathways for RIL were identified and experimentally validated using gene ontology (GO) enrichment and Kyoto encyclopedia of genes and genomes (KEGG) analysis. RESULTS Risperidone promotes adipocyte differentiation and lipid accumulation through Oil Red O staining and reverse transcription-polymerase chain reaction (RT-PCR). After network pharmacology and GO analysis, risperidone was found to influence cellular metabolism. In addition, risperidone influences adipocyte metabolism, differentiation, and lipid accumulation-related functions through transcriptome analysis. Intersecting analysis, molecular docking, and pathway validation analysis showed that risperidone influences the adipocytokine signaling pathway by targeting MAPK14 (mitogen-activated protein kinase 14), MAPK8 (mitogen-activated protein kinase 8), and RXRA (retinoic acid receptor RXR-alpha), thereby inhibiting long-chain fatty acid β-oxidation by decreasing STAT3 (signal transducer and activator of transcription 3) expression and phosphorylation. CONCLUSION Risperidone increases adipocyte lipid accumulation by plausibly inhibiting long-chain fatty acid β-oxidation through targeting MAPK14 and MAPK8.
Collapse
Affiliation(s)
- Yun Fu
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ke Yang
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yepei Huang
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuan Zhang
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shen Li
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Department of Psychiatry and Psychology, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Wei-Dong Li
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
15
|
Yan J, Chen Y, Ju P, Gao J, Zhang L, Li J, Wang K, Zhang J, Li C, Xia Q, Zhu C, Zhang X. Network Association of Biochemical and Inflammatory Abnormalities With Psychiatric Symptoms in First-Episode Schizophrenia Patients. Front Psychiatry 2022; 13:834539. [PMID: 35273531 PMCID: PMC8901486 DOI: 10.3389/fpsyt.2022.834539] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/25/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) risk factors such as dyslipidemia and systemic aberrant inflammatory processes may occur in patients with psychotic disorders, which may cause increased mortality. The interplay between immune and metabolic markers and its contribution to the clinical symptoms of schizophrenia (SCZ) remain unclear. This study aimed to examine the association of a series of inflammatory factors, plasma biochemical indicators, and SCZ clinical symptomatology with the severity of SCZ symptoms. METHODS A total of 115 participants, including 79 first-episode drug-naïve patients with SCZ and 36 healthy controls, were enrolled in this study. Semi-structured interviews were used to collect sociodemographic data, family history of SCZ, and medical and psychiatric history. The Brief Psychiatric Rating Scale (BPRS) and the Positive and Negative Syndrome Scale (PANSS) were administered by a clinical psychiatrist to evaluate the symptom severity of patients with SCZ. Plasma inflammatory cytokines were measured by a fully automated electrochemiluminescent immunoassay (Meso Scale Discovery). RESULTS Blood routine, biochemical, and inflammation cytokine test results showed that the levels of white blood cell count, neutrophil count, natrium, CRP, IL-8, IL-6, IL-13, and IL-16 significantly increased in the case group than in the healthy controls (p < 0.05), whereas levels of red blood cell count, hemoglobin concentration, mean corpuscular hemoglobin concentration, total protein, albumin, total bile acid, high-density lipoprotein (HDL), apolipoprotein A1, blood urea nitrogen, kalium and IL-15 were lower than in the healthy controls (p < 0.05). Correlation network analysis results shown that the natrium, HDL and red blood cell count were the top 3 factors closely to with BPRS and PANSS related clinical symptoms among of correlation network (degree = 4). ROC curve analysis explored the IL-16, IL-8, IL-13, IL-15, natrium, and HDL had highly sensitivity and specificity to the predictive validity and effectiveness for SCZ symptoms. CONCLUSION Our study revealed a complex interactive network correlation among the cardiovascular risk factors, biological immunity profiles, and psychotic symptoms in first-episode patients. Abnormal inflammatory factors and CVD risk factors had high sensitivity and specificity for predicting SCZ symptoms. Generally, our study provided novel information on the immune-related mechanisms involved in early CVD risk in patients with psychotic disorders.
Collapse
Affiliation(s)
- Junwei Yan
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Department of Medical Education and Research, Hefei Fourth People's Hospital, Hefei, China.,Department of Medical Education and Research, Anhui Mental Health Center, Hefei, China.,Department of Medical Education and Research, Anhui Clinical Center for Mental and Psychological Diseases, Hefei, China
| | - Yuanyuan Chen
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Department of Medical Education and Research, Hefei Fourth People's Hospital, Hefei, China.,Department of Medical Education and Research, Anhui Mental Health Center, Hefei, China.,Department of Medical Education and Research, Anhui Clinical Center for Mental and Psychological Diseases, Hefei, China
| | - Peijun Ju
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai, China.,Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Psychiatry, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Jianliang Gao
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Department of Medical Education and Research, Hefei Fourth People's Hospital, Hefei, China.,Department of Medical Education and Research, Anhui Mental Health Center, Hefei, China.,Department of Medical Education and Research, Anhui Clinical Center for Mental and Psychological Diseases, Hefei, China
| | - Loufeng Zhang
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Department of Medical Education and Research, Hefei Fourth People's Hospital, Hefei, China.,Department of Medical Education and Research, Anhui Mental Health Center, Hefei, China.,Department of Medical Education and Research, Anhui Clinical Center for Mental and Psychological Diseases, Hefei, China
| | - Jingwei Li
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Department of Medical Education and Research, Hefei Fourth People's Hospital, Hefei, China.,Department of Medical Education and Research, Anhui Mental Health Center, Hefei, China.,Department of Medical Education and Research, Anhui Clinical Center for Mental and Psychological Diseases, Hefei, China
| | - Keming Wang
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Department of Medical Education and Research, Hefei Fourth People's Hospital, Hefei, China.,Department of Medical Education and Research, Anhui Mental Health Center, Hefei, China.,Department of Medical Education and Research, Anhui Clinical Center for Mental and Psychological Diseases, Hefei, China
| | - Jie Zhang
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Department of Medical Education and Research, Hefei Fourth People's Hospital, Hefei, China.,Department of Medical Education and Research, Anhui Mental Health Center, Hefei, China.,Department of Medical Education and Research, Anhui Clinical Center for Mental and Psychological Diseases, Hefei, China
| | - Chao Li
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Department of Medical Education and Research, Hefei Fourth People's Hospital, Hefei, China.,Department of Medical Education and Research, Anhui Mental Health Center, Hefei, China.,Department of Medical Education and Research, Anhui Clinical Center for Mental and Psychological Diseases, Hefei, China
| | - Qingrong Xia
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Department of Medical Education and Research, Hefei Fourth People's Hospital, Hefei, China.,Department of Medical Education and Research, Anhui Mental Health Center, Hefei, China.,Department of Medical Education and Research, Anhui Clinical Center for Mental and Psychological Diseases, Hefei, China
| | - Cuizhen Zhu
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Department of Medical Education and Research, Hefei Fourth People's Hospital, Hefei, China.,Department of Medical Education and Research, Anhui Mental Health Center, Hefei, China.,Department of Medical Education and Research, Anhui Clinical Center for Mental and Psychological Diseases, Hefei, China
| | - Xulai Zhang
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Department of Medical Education and Research, Hefei Fourth People's Hospital, Hefei, China.,Department of Medical Education and Research, Anhui Mental Health Center, Hefei, China.,Department of Medical Education and Research, Anhui Clinical Center for Mental and Psychological Diseases, Hefei, China
| |
Collapse
|
16
|
The Ameliorative Effects of Saikosaponin in Thioacetamide-Induced Liver Injury and Non-Alcoholic Fatty Liver Disease in Mice. Int J Mol Sci 2021; 22:ijms222111383. [PMID: 34768813 PMCID: PMC8583725 DOI: 10.3390/ijms222111383] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Liver disorders are a major health concern. Saikosaponin-d (SSd) is an effective active ingredient extracted from Bupleurum falcatum, a traditional Chinese medicinal plant, with anti-inflammatory and antioxidant properties. However, its hepatoprotective properties and underlying mechanisms are unknown. We investigated the effects and underlying mechanisms of SSd treatment for thioacetamide (TAA)-induced liver injury and high-fat-diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) in male C57BL/6 mice. The SSd group showed significantly higher food intake, body weight, and hepatic antioxidative enzymes (catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD)) and lower hepatic cyclooxygenase-2 (COX-2), serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and fibroblast growth factor-21 (FGF21) compared with controls, as well as reduced expression of inflammation-related genes (nuclear factor kappa B (NF-κB) and inducible nitric oxide synthase (iNOS)) messenger RNA (mRNA). In NAFLD mice, SSd reduced serum ALT, AST, triglycerides, fatty acid–binding protein 4 (FABP4) and sterol regulatory element–binding protein 1 (SREBP1) mRNA, and endoplasmic reticulum (ER)-stress-related proteins (phosphorylated eukaryotic initiation factor 2α subunit (p-eIF2α), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP). SSd has a hepatoprotective effect in liver injury by suppressing inflammatory responses and acting as an antioxidant.
Collapse
|
17
|
Chang GR, Hou PH, Wang CM, Lin JW, Lin WL, Lin TC, Liao HJ, Chan CH, Wang YC. Imipramine Accelerates Nonalcoholic Fatty Liver Disease, Renal Impairment, Diabetic Retinopathy, Insulin Resistance, and Urinary Chromium Loss in Obese Mice. Vet Sci 2021; 8:189. [PMID: 34564583 PMCID: PMC8473438 DOI: 10.3390/vetsci8090189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
Imipramine is a tricyclic antidepressant that has been approved for treating depression and anxiety in patients and animals and that has relatively mild side effects. However, the mechanisms of imipramine-associated disruption to metabolism and negative hepatic, renal, and retinal effects are not well defined. In this study, we evaluated C57BL6/J mice subjected to a high-fat diet (HFD) to study imipramine's influences on obesity, fatty liver scores, glucose homeostasis, hepatic damage, distribution of chromium, and retinal/renal impairments. Obese mice receiving imipramine treatment had higher body, epididymal fat pad, and liver weights; higher serum triglyceride, aspartate and alanine aminotransferase, creatinine, blood urea nitrogen, renal antioxidant enzyme, and hepatic triglyceride levels; higher daily food efficiency; and higher expression levels of a marker of fatty acid regulation in the liver compared with the controls also fed an HFD. Furthermore, the obese mice that received imipramine treatment exhibited insulin resistance, worse glucose intolerance, decreased glucose transporter 4 expression and Akt phosphorylation levels, and increased chromium loss through urine. In addition, the treatment group exhibited considerably greater liver damage and higher fatty liver scores, paralleling the increases in patatin-like phospholipid domain containing protein 3 and the mRNA levels of sterol regulatory element-binding protein 1 and fatty acid-binding protein 4. Retinal injury worsened in imipramine-treated mice; decreases in retinal cell layer organization and retinal thickness and increases in nuclear factor κB and inducible nitric oxide synthase levels were observed. We conclude that administration of imipramine may result in the exacerbation of nonalcoholic fatty liver disease, diabetes, diabetic retinopathy, and kidney injury.
Collapse
Affiliation(s)
- Geng-Ruei Chang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan; (G.-R.C.); (C.-M.W.); (T.-C.L.); (H.-J.L.)
| | - Po-Hsun Hou
- Department of Psychiatry, Taichung Veterans General Hospital, 4 Section, 1650 Taiwan Boulevard, Taichung 40705, Taiwan;
- Faculty of Medicine, National Yang-Ming University, 2 Section, 155 Linong Street, Beitou District, Taipei 11221, Taiwan
- College of Medicine, National Chung Hsing University, 145 Xingda Road, South District, Taichung 40227, Taiwan
| | - Chao-Min Wang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan; (G.-R.C.); (C.-M.W.); (T.-C.L.); (H.-J.L.)
| | - Jen-Wei Lin
- Bachelor Degree Program in Animal Healthcare, Hungkuang University, 6 Section, 1018 Taiwan Boulevard, Shalu District, Taichung 433304, Taiwan; (J.-W.L.); (W.-L.L.)
| | - Wei-Li Lin
- Bachelor Degree Program in Animal Healthcare, Hungkuang University, 6 Section, 1018 Taiwan Boulevard, Shalu District, Taichung 433304, Taiwan; (J.-W.L.); (W.-L.L.)
- General Education Center, Chaoyang University of Technology, 168 Jifeng Eastern Road, Taichung 413310, Taiwan
| | - Tzu-Chun Lin
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan; (G.-R.C.); (C.-M.W.); (T.-C.L.); (H.-J.L.)
| | - Huei-Jyuan Liao
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan; (G.-R.C.); (C.-M.W.); (T.-C.L.); (H.-J.L.)
| | - Chee-Hong Chan
- Division of Nephrology, Chang Bing Show Chwan Memorial Hospital, 6 Lugong Road, Lukang Township, Changhua 50544, Taiwan
| | - Yu-Chen Wang
- Division of Cardiology, Asia University Hospital, 222 Fuxin Road, Wufeng District, Taichung 41354, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, 500 Lioufeng Road, Wufeng District, Taichung 41354, Taiwan
- Division of Cardiovascular Medicine, China Medical University Hospital, 2 Yude Road, North District, Taichung 404332, Taiwan
- College of Medicine, China Medical University, 91 Hsueh-Shih Road, North District, Taichung 404333, Taiwan
| |
Collapse
|
18
|
Curcumin Improved Glucose Intolerance, Renal Injury, and Nonalcoholic Fatty Liver Disease and Decreased Chromium Loss through Urine in Obese Mice. Processes (Basel) 2021. [DOI: 10.3390/pr9071132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Obesity-associated hyperglycemia underlies insulin resistance, glucose intolerance, and related metabolic disorders including type 2 diabetes, renal damage, and nonalcoholic fatty liver disease. Turmeric root is commonly used in Asia, and curcumin, one of its pharmacological components, can play a role in preventing and treating certain chronic physiological disorders. Accordingly, this study examined how high-fat diet (HFD)-induced hyperglycemia and hyperlipidemia are reduced by curcumin through changes in fatty liver scores, chromium distribution, and renal injury in mice. Relative to the control group, also fed an HFD, the curcumin group weighed less and had smaller adipocytes; it also had lower daily food efficiency, blood urea nitrogen and creatinine levels, serum alanine aminotransferase and aspartate aminotransferase levels, serum and hepatic triglyceride levels, and hepatic lipid regulation marker expression. The curcumin-treated obese group exhibited significantly lower fasting blood glucose, was less glucose intolerant, had higher Akt phosphorylation and glucose transporter 4 (GLUT4) expression, and had greater serum insulin levels. Moreover, the group showed renal damage with lower TNF-α expression along with more numerous renal antioxidative enzymes that included superoxide dismutase, glutathione peroxidase, and catalase. The liver histology of the curcumin-treated obese mice showed superior lipid infiltration and fewer FASN and PNPLA3 proteins in comparison with the control mice. Curcumin contributed to creating a positive chromium balance by decreasing the amount of chromium lost through urine, leading to the chromium mobilization needed to mitigate hyperglycemia. Thus, the results suggest that curcumin prevents HFD-induced glucose intolerance, kidney injury, and nonalcoholic fatty liver disease.
Collapse
|
19
|
Chang GR, Liu HY, Yang WC, Wang CM, Wu CF, Lin JW, Lin WL, Wang YC, Lin TC, Liao HJ, Hou PH, Chan CH, Lin CF. Clozapine Worsens Glucose Intolerance, Nonalcoholic Fatty Liver Disease, Kidney Damage, and Retinal Injury and Increases Renal Reactive Oxygen Species Production and Chromium Loss in Obese Mice. Int J Mol Sci 2021; 22:ijms22136680. [PMID: 34206460 PMCID: PMC8268139 DOI: 10.3390/ijms22136680] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/09/2021] [Accepted: 06/18/2021] [Indexed: 12/18/2022] Open
Abstract
Clozapine is widely employed in the treatment of schizophrenia. Compared with that of atypical first-generation antipsychotics, atypical second-generation antipsychotics such as clozapine have less severe side effects and may positively affect obesity and blood glucose level. However, no systematic study of clozapine’s adverse metabolic effects—such as changes in kidney and liver function, body weight, glucose and triglyceride levels, and retinopathy—was conducted. This research investigated how clozapine affects weight, the bodily distribution of chromium, liver damage, fatty liver scores, glucose homeostasis, renal impairment, and retinopathy in mice fed a high fat diet (HFD). We discovered that obese mice treated with clozapine gained more weight and had greater kidney, liver, and retroperitoneal and epididymal fat pad masses; higher daily food efficiency; higher serum or hepatic triglyceride, aspartate aminotransferase, alanine aminotransferase, blood urea nitrogen, and creatinine levels; and higher hepatic lipid regulation marker expression than did the HFD-fed control mice. Furthermore, the clozapine group mice exhibited insulin resistance, poorer insulin sensitivity, greater glucose intolerance, and less Akt phosphorylation; their GLUT4 expression was lower, they had renal damage, more reactive oxygen species, and IL-1 expression, and, finally, their levels of antioxidative enzymes (superoxide dismutase, glutathione peroxidase, and catalase) were lower. Moreover, clozapine reduced the thickness of retinal cell layers and increased iNOS and NF-κB expression; a net negative chromium balance occurred because more chromium was excreted through urine, and this influenced chromium mobilization, which did not help overcome the hyperglycemia. Our clozapine group had considerably higher fatty liver scores, which was supported by the findings of lowered adiponectin protein levels and increased FASN protein, PNPLA3 protein, FABP4 mRNA, and SREBP1 mRNA levels. We conclude that clozapine can worsen nonalcoholic fatty liver disease, diabetes, and kidney and retinal injury. Therefore, long-term administration of clozapine warrants higher attention.
Collapse
Affiliation(s)
- Geng-Ruei Chang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 600023, Taiwan; (G.-R.C.); (C.-M.W.); (C.-F.W.); (T.-C.L.); (H.-J.L.)
| | - Hsien-Yueh Liu
- Bachelor Degree Program in Animal Healthcare, Hungkuang University, 6 Section, 1018 Taiwan Boulevard, Shalu District, Taichung 433304, Taiwan; (H.-Y.L.); (J.-W.L.); (W.-L.L.)
| | - Wei-Cheng Yang
- School of Veterinary Medicine, National Taiwan University, 4 Section, 1 Roosevelt Road, Taipei 100046, Taiwan;
| | - Chao-Min Wang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 600023, Taiwan; (G.-R.C.); (C.-M.W.); (C.-F.W.); (T.-C.L.); (H.-J.L.)
| | - Ching-Fen Wu
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 600023, Taiwan; (G.-R.C.); (C.-M.W.); (C.-F.W.); (T.-C.L.); (H.-J.L.)
| | - Jen-Wei Lin
- Bachelor Degree Program in Animal Healthcare, Hungkuang University, 6 Section, 1018 Taiwan Boulevard, Shalu District, Taichung 433304, Taiwan; (H.-Y.L.); (J.-W.L.); (W.-L.L.)
| | - Wei-Li Lin
- Bachelor Degree Program in Animal Healthcare, Hungkuang University, 6 Section, 1018 Taiwan Boulevard, Shalu District, Taichung 433304, Taiwan; (H.-Y.L.); (J.-W.L.); (W.-L.L.)
- General Education Center, Chaoyang University of Technology, 168 Jifeng Eastern Road, Taichung 413310, Taiwan
| | - Yu-Chen Wang
- Division of Cardiology, Asia University Hospital, 222 Fuxin Road, Wufeng District, Taichung 413505, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, Asia University, 500 Lioufeng Road, Wufeng District, Taichung 413305, Taiwan
- Division of Cardiovascular Medicine, China Medical University Hospital, 2 Yude Road, North District, Taichung 404332, Taiwan
- College of Medicine, China Medical University, 91 Hsueh-Shih Road, North District, Taichung 404333, Taiwan
| | - Tzu-Chun Lin
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 600023, Taiwan; (G.-R.C.); (C.-M.W.); (C.-F.W.); (T.-C.L.); (H.-J.L.)
| | - Huei-Jyuan Liao
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 600023, Taiwan; (G.-R.C.); (C.-M.W.); (C.-F.W.); (T.-C.L.); (H.-J.L.)
| | - Po-Hsun Hou
- Department of Psychiatry, Taichung Veterans General Hospital, 4 Section, 1650 Taiwan Boulevard, Taichung 407219, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, 2 Section, 155 Linong Street, Beitou District, Taipei 112304, Taiwan
- Correspondence: (P.-H.H.); (C.-H.C.); (C.-F.L.); Tel.: +886-4-23592525 (P.-H.H.); +886-975-617071 (C.-H.C.); +886-8-7703202 (C.-F.L.)
| | - Chee-Hong Chan
- Division of Nephrology, Chang Bing Show Chwan Memorial Hospital, 6 Lugong Road, Lukang Township, Changhua 505029, Taiwan
- Correspondence: (P.-H.H.); (C.-H.C.); (C.-F.L.); Tel.: +886-4-23592525 (P.-H.H.); +886-975-617071 (C.-H.C.); +886-8-7703202 (C.-F.L.)
| | - Chuen-Fu Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 912301, Taiwan
- Correspondence: (P.-H.H.); (C.-H.C.); (C.-F.L.); Tel.: +886-4-23592525 (P.-H.H.); +886-975-617071 (C.-H.C.); +886-8-7703202 (C.-F.L.)
| |
Collapse
|
20
|
Wu CF, Wu CY, Chiou RYY, Yang WC, Lin CF, Wang CM, Hou PH, Lin TC, Kuo CY, Chang GR. The Anti-Cancer Effects of a Zotarolimus and 5-Fluorouracil Combination Treatment on A549 Cell-Derived Tumors in BALB/c Nude Mice. Int J Mol Sci 2021; 22:4562. [PMID: 33925400 PMCID: PMC8123799 DOI: 10.3390/ijms22094562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/29/2022] Open
Abstract
Zotarolimus is a semi-synthetic derivative of rapamycin and a novel immunosuppressive agent used to prevent graft rejection. The pharmacological pathway of zotarolimus restricts the kinase activity of the mammalian target of rapamycin (mTOR), which potentially leads to reductions in cell division, cell growth, cell proliferation, and inflammation. These pathways have a critical influence on tumorigenesis. This study aims to examine the anti-tumor effect of zotarolimus or zotarolimus combined with 5-fluorouracil (5-FU) on A549 human lung adenocarcinoma cell line implanted in BALB/c nude mice by estimating tumor growth, apoptosis expression, inflammation, and metastasis. We established A549 xenografts in nude mice, following which we randomly divided the mice into four groups: control, 5-FU (100 mg/kg/week), zotarolimus (2 mg/kg/day), and zotarolimus combined with 5-FU. Compared the results with those for control mice, we found that mice treated with zotarolimus or zotarolimus combined with 5-FU retarded tumor growth; increased tumor apoptosis through the enhanced expression of cleaved caspase 3 and extracellular signal-regulated kinase (ERK) phosphorylation; decreased inflammation cytokines levels (e.g., IL-1β, TNF-α, and IL-6); reduced inflammation-related factors such as cyclooxygenase-2 (COX-2) protein and nuclear factor-κB (NF-κB) mRNA; enhanced anti-inflammation-related factors including IL-10 and inhibitor of NF-κB kinase α (IκBα) mRNA; and inhibited metastasis-related factors such as transforming growth factor β (TGF-β), CD44, epidermal growth factor receptor (EGFR), and vascular endothelial growth factor (VEGF). Notably, mice treated with zotarolimus combined with 5-FU had significantly retarded tumor growth, reduced tumor size, and increased tumor inhibition compared with the groups of mice treated with 5-FU or zotarolimus alone. The in vivo study confirmed that zotarolimus or zotarolimus combined with 5-FU could retard lung adenocarcinoma growth and inhibit tumorigenesis. Zotarolimus and 5-FU were found to have an obvious synergistic tumor-inhibiting effect on lung adenocarcinoma. Therefore, both zotarolimus alone and zotarolimus combined with 5-FU may be potential anti-tumor agents for treatment of human lung adenocarcinoma.
Collapse
Affiliation(s)
- Ching-Feng Wu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Linkou, 5 Fuxing Street, Guishan District, Taoyuan 33305, Taiwan; (C.-F.W.); (C.-Y.W.)
| | - Ching-Yang Wu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Linkou, 5 Fuxing Street, Guishan District, Taoyuan 33305, Taiwan; (C.-F.W.); (C.-Y.W.)
| | - Robin Y.-Y. Chiou
- Department of Food Science, National Chiayi University, 300 University Road, Chiayi 60004, Taiwan;
| | - Wei-Cheng Yang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, 4 Section, 1 Roosevelt Road, Taipei 10617, Taiwan;
| | - Chuen-Fu Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 912301, Taiwan;
| | - Chao-Min Wang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan; (C.-M.W.); (T.-C.L.)
| | - Po-Hsun Hou
- Department of Psychiatry, Taichung Veterans General Hospital, 4 Section, 1650 Taiwan Boulevard, Taichung 40705, Taiwan;
- Faculty of Medicine, National Yang-Ming University, 2 Section, 155 Linong Street, Beitou District, Taipei 11221, Taiwan
| | - Tzu-Chun Lin
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan; (C.-M.W.); (T.-C.L.)
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 289 Jianguo Road, Xindian District, New Taipei City 231405, Taiwan
| | - Geng-Ruei Chang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan; (C.-M.W.); (T.-C.L.)
| |
Collapse
|
21
|
Doxepin Exacerbates Renal Damage, Glucose Intolerance, Nonalcoholic Fatty Liver Disease, and Urinary Chromium Loss in Obese Mice. Pharmaceuticals (Basel) 2021; 14:ph14030267. [PMID: 33809508 PMCID: PMC8001117 DOI: 10.3390/ph14030267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Doxepin is commonly prescribed for depression and anxiety treatment. Doxepin-related disruptions to metabolism and renal/hepatic adverse effects remain unclear; thus, the underlying mechanism of action warrants further research. Here, we investigated how doxepin affects lipid change, glucose homeostasis, chromium (Cr) distribution, renal impairment, liver damage, and fatty liver scores in C57BL6/J mice subjected to a high-fat diet and 5 mg/kg/day doxepin treatment for eight weeks. We noted that the treated mice had higher body, kidney, liver, retroperitoneal, and epididymal white adipose tissue weights; serum and liver triglyceride, alanine aminotransferase, aspartate aminotransferase, blood urea nitrogen, and creatinine levels; daily food efficiency; and liver lipid regulation marker expression. They also demonstrated exacerbated insulin resistance and glucose intolerance with lower Akt phosphorylation, GLUT4 expression, and renal damage as well as higher reactive oxygen species and interleukin 1 and lower catalase, superoxide dismutase, and glutathione peroxidase levels. The treated mice had a net-negative Cr balance due to increased urinary excretion, leading to Cr mobilization, delaying hyperglycemia recovery. Furthermore, they had considerably increased fatty liver scores, paralleling increases in adiponectin, FASN, PNPLA3, FABP4 mRNA, and SREBP1 mRNA levels. In conclusion, doxepin administration potentially worsens renal injury, nonalcoholic fatty liver disease, and diabetes.
Collapse
|
22
|
Chang GR, Hou PH, Wang CM, Wu CF, Su HK, Liao HJ, Chen TP. Chronic everolimus treatment of high-fat diet mice leads to a reduction in obesity but impaired glucose tolerance. Pharmacol Res Perspect 2021; 9:e00732. [PMID: 33715287 PMCID: PMC7955951 DOI: 10.1002/prp2.732] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
Everolimus, which inhibits mTOR kinase activity and is clinically used in graft rejection treatment, may have a two‐sided influence on metabolic syndrome; its role in obesity and hyperglycemic in animals and humans, however, has been explored insufficiently. This study further determined how continual everolimus treatment affects glucose homeostasis and body weight control in C57BL6/J mice with obesity. An obesity mouse model was developed by administering a high‐fat diet (HFD) to C57BL6/J mice over 12 weeks. The experimental group, while continuing their HFD consumption, were administered everolimus daily for 8 weeks. Metabolic parameters, glucose tolerance, fatty liver score, endocrine profile, insulin sensitivity index (ISI), insulin resistance (IR) index, and Akt phosphorylation, GLUT4, TNF‐α, and IL‐1 levels were measured in vivo. Compared with the control group, the everolimus group gained less body weight and had smaller adipocytes and lower fat pad weight; triglyceride (serum and hepatic), patatin‐like phospholipase domain‐containing 3, and fatty acid synthase levels; fatty liver scores; and glucose tolerance test values—all despite consuming more food. However, the everolimus group exhibited decreased ISI and muscle Akt phosphorylation and GLUT4 expression as well as impaired glucose tolerance and serum TNF‐α and IL‐1β levels—even when insulin levels were high. In conclusion, continual everolimus treatment may lead to diabetes with glucose intolerance and IR.
Collapse
Affiliation(s)
- Geng-Ruei Chang
- Department of Veterinary Medicine, National Chiayi University, Chiayi, Taiwan
| | - Po-Hsun Hou
- Department of Psychiatry, Taichung Veterans General Hospital, Taichung, Taiwan.,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chao-Min Wang
- Department of Veterinary Medicine, National Chiayi University, Chiayi, Taiwan
| | - Ching-Feng Wu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung University, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Huang-Kai Su
- Department of Veterinary Medicine, National Chiayi University, Chiayi, Taiwan
| | - Huei-Jyuan Liao
- Department of Veterinary Medicine, National Chiayi University, Chiayi, Taiwan
| | - To-Pang Chen
- Division of Endocrinology and Metabolism, Show Chwan Memorial Hospital, Changhua, Taiwan
| |
Collapse
|