1
|
Neubauer J, Dørum G, Haas C. Exploring transcriptomic signatures in sudden unexplained death (SUD) cases. Int J Legal Med 2025:10.1007/s00414-025-03414-4. [PMID: 39982482 DOI: 10.1007/s00414-025-03414-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/06/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Molecular autopsy in sudden unexplained death (SUD) has successfully identified pathogenic variants in cardiovascular genes in a substantial proportion of cases, contributing to prevention strategies in family members. However, many SUD cases remain genetically unresolved, prompting investigations into other omics technologies to better understand the pathogenic mechanisms leading to a sudden death event. In this study, whole transcriptome sequencing was performed on heart samples from 43 SUD cases and 17 heart-healthy controls, with the aim to identify disease-specific transcriptome signatures in sudden unexplained death. RESULTS PCA based on the top 500 genes with the highest variance among the samples showed no clear separation between SUD and controls or among the three SUD subgroups. DESeq2 identified 1,676 differentially expressed genes between SUD and controls with significantly upregulated genes involved in biological processes such as angiogenesis, blood vessel development, vasculogenesis and cell adhesion. Pathway analysis of the differentially expressed genes showed that most were downregulated and involved in amide/peptide biosynthesis and fatty acid metabolism. Additional analysis of SUD subgroups revealed unique gene expression patterns and highlighted differentially expressed genes within each subgroup. CONCLUSION Gene expression analysis of SUD heart tissue is a promising approach to identify cardiac disease-related pathways to further understand the pathological mechanisms leading to a sudden death event. However, due to the heterogeneity of the SUD cases and the unclear phenotype, further studies in larger cohorts are needed.
Collapse
Affiliation(s)
- Jacqueline Neubauer
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Guro Dørum
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
- Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Cordula Haas
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Hassanpour P, Sadeghsoltani F, Saghebasl S, Boroumand S, Khanicheragh P, Tafti SHA, Rahbarghazi R, Rahmati M. Mitochondrial transplantation for cardioprotection and induction of angiogenesis in ischemic heart disease. Stem Cell Res Ther 2025; 16:54. [PMID: 39920826 PMCID: PMC11806797 DOI: 10.1186/s13287-025-04193-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/27/2025] [Indexed: 02/09/2025] Open
Abstract
To date, the regenerative potential of mitochondrial transplantation (MT) has been extensively investigated under several pathologies. Among various cardiovascular diseases, ischemic heart disease (IHD), the most prevalent pathological condition in human medicine, is induced by coronary artery narrowing, or occlusion, leading to bulk necrotic changes and fibrosis within the myocardium. Data associated with the pro-angiogenic activity of mitochondria have not been completely elucidated in terms of cardiac tissue regeneration. Here, we aimed to highlight the recent studies and advantages related to the application of mitochondrial mass in the ischemic myocardium. How and by which mechanisms, mitochondria can reduce aberrant myocardial tissue remodeling via different pathways such as angiogenesis and de novo blood formation was discussed in detail. We hope that data from the current review article help us understand the molecular and cellular mechanisms by which transplanted mitochondria exert their regenerative properties in the ischemic myocardium.
Collapse
Affiliation(s)
- Parisa Hassanpour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran
| | | | - Solmaz Saghebasl
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safieh Boroumand
- Research Center for Advanced Technologies In Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Khanicheragh
- Student Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Hossein Ahmadi Tafti
- Research Center for Advanced Technologies In Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, 5166653431, Iran.
| | - Mohammad Rahmati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran.
| |
Collapse
|
3
|
Piamsiri C, Maneechote C, Chattipakorn SC, Chattipakorn N. Therapeutic Potential of Gasdermin D-Mediated Myocardial Pyroptosis in Ischaemic Heart Disease: Expanding the Paradigm From Bench to Clinical Insights. J Cell Mol Med 2025; 29:e70357. [PMID: 39929748 PMCID: PMC11810530 DOI: 10.1111/jcmm.70357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/05/2024] [Accepted: 12/30/2024] [Indexed: 02/14/2025] Open
Abstract
Ischaemic heart disease (IHD) remains a leading cause of global morbidity and mortality. One significant contributor to the pathology of IHD is the excessive release of inflammatory mediators during the disease progression. Pyroptosis is a form of programmed cell death (PCD) triggered by the activation of inflammasomes and caspase 1. The activation of inflammatory caspase 1 proteolytically cleaves gasdermin D (GSDMD) to the activated form amino acid terminus (GSDMD-NT), leading to disruption of the plasma membrane. This cascade of events is considered the canonical pathway of pyroptosis. IHD also caused oxidative stress, thereby triggering noncanonical pyroptosis via the activation of caspases 4/5/11. Previous studies have provided compelling evidence of the close relationship between pyroptosis and the aetiology of IHD (e.g., acute myocardial infarction, myocardial ischaemia and reperfusion injury and chronic myocardial infarction), as well as the association of pyroptosis with unfavourable clinical outcomes. Several interventions aimed at targeting pyroptosis have demonstrated promising therapeutic benefits against IHD-related pathologies. This review provides mechanistic insights into the roles of pyroptosis in IHD from in vitro, in vivo and clinical perspectives. In-depth understanding into this area could also pave the way for the future development of novel therapeutic strategies targeting pyroptosis in IHD.
Collapse
Affiliation(s)
- Chanon Piamsiri
- Cardiac Electrophysiology Research and Training Center, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai UniversityChiang MaiThailand
| | - Chayodom Maneechote
- Cardiac Electrophysiology Research and Training Center, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai UniversityChiang MaiThailand
| | - Siriporn C. Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai UniversityChiang MaiThailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of DentistryChiang Mai UniversityChiang MaiThailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai UniversityChiang MaiThailand
| |
Collapse
|
4
|
Svagusa T, Matic N, Mirosevic V, Maldini K, Siljeg M, Milicic D, Gasparovic H, Rudez I, Urlic M, Tokic T, Ivankovic S, Tjesic-Drinkovic D, Sepac A, Muller D, Lucijanic M, Svalina F, Gojmerac L, Zic K, Baric D, Unic D, Kulic A, Bakovic P, Skoric B, Fabijanovic D, Planinc I, Cikes M, Sedlic F. Myocardial deposition of aluminum, arsenic, cadmium, and lead accelerates heart failure and alters UPRmt in humans. Toxicology 2025; 511:154033. [PMID: 39674396 DOI: 10.1016/j.tox.2024.154033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
In the myocardium of control subjects and patients undergoing heart transplantation or left ventricular assist device implantation (LVAD), we analyzed concentrations of Al, As, Cd, Pb, and Ni using inductively coupled plasma mass spectrometry. Myocardial generation of oxidative-stress-induced lipid peroxidation was analyzed by quantifying concentration of 4-Hydroxynonenal (4-HNE) with ELISA and pro-apoptotic DAPK2 gene expression was determined with quantitative RT-PCR. Compared to six control hearts, myocardial samples of 128 individuals undergoing heart transplantation or LVAD implantation exhibited a moderate increase in deposition of five tested non-essential elements, which was significantly increased only for Cd and cumulative deposition of Al, As, Cd, and Pb. Patients with higher cumulative deposition of Al, As, Cd, and Pb, underwent heart transplantation or LVAD implantation at a younger age than those with lower cumulative deposition, which was not observed in individual elements. Also, Al, As, and Ni exhibited a positive correlation with DAPK2 expression. Moreover, Al, As, Cd, and Ni showed positive correlations and Pb negative correlations with several mitochondrial quality control (MQC) genes. None of the elements showed correlation with 4-HNE generation in the myocardium. There was no difference in tested non-essential element deposition between dilated and ischemic cardiomyopathy. In conclusion, patients with higher cumulative deposition of Al, As, Cd, and Pb in the myocardium underwent heart transplantation or LVAD implantation at a younger age, indicating that they may accelerate heart failure, which is associated with induction of DAPK2 expression. Deposition of Al, As, Cd, Ni, and Pb also altered the expression of several MQC genes.
Collapse
Affiliation(s)
- Tomo Svagusa
- Department of Cardiovascular Diseases, Dubrava University Hospital, Croatia
| | - Natalija Matic
- Croatian Waters, Department of Development and Water Management, Croatia
| | - Vid Mirosevic
- Department of Pathophysiology, University of Zagreb School of Medicine, Croatia
| | - Kresimir Maldini
- Main Water Laboratory, Department of Monitoring, Josip Juraj Stossmayer Water Institute, Croatia
| | | | - Davor Milicic
- University of Zagreb School of Medicine, Zagreb, Croatia; Department of Cardiovascular Diseases, University Hospital Centre Zagreb, Croatia
| | - Hrvoje Gasparovic
- Department of Surgery, University of Zagreb School of Medicine, Croatia; Department of Cardiac Surgery, University Hospital Centre Zagreb, Croatia
| | - Igor Rudez
- Department of Surgery, University of Zagreb School of Medicine, Croatia; Department of Cardiac and Transplant Surgery, Dubrava University Hospital, Croatia
| | - Marjan Urlic
- Department of Cardiac Surgery, University Hospital Centre Zagreb, Croatia
| | - Tomislav Tokic
- Department of Cardiac Surgery, University Hospital Centre Zagreb, Croatia
| | - Stjepan Ivankovic
- Department of Cardiac Surgery, University Hospital Centre Split, Croatia
| | - Duska Tjesic-Drinkovic
- Department of Pediatrics, University of Zagreb School of Medicine, Croatia; Department of Pediatrics, University Hospital Centre Zagreb, Croatia
| | - Ana Sepac
- Department of Pathology, University of Zagreb, School of Medicine, Zagreb, Croatia; Ljudevit Jurak Department of Pathology, Sestre milosrdnice University Hospital Centre, Croatia
| | - Danko Muller
- Department of Pathology, University of Zagreb, School of Medicine, Zagreb, Croatia; Department of Pathology and Cytology, Dubrava University Hospital, Croatia
| | - Marko Lucijanic
- University of Zagreb School of Medicine, Zagreb, Croatia; Department of Hematology, Dubrava University Hospital, Croatia
| | | | | | - Katarina Zic
- University of Rijeka, School of Medicine, Croatia
| | - Davor Baric
- Department of Cardiac and Transplant Surgery, Dubrava University Hospital, Croatia
| | - Daniel Unic
- Department of Cardiac and Transplant Surgery, Dubrava University Hospital, Croatia
| | - Ana Kulic
- Department of Oncology, University Hospital Centre Zagreb, Croatia
| | - Petra Bakovic
- Department of Pathophysiology, University of Zagreb School of Medicine, Croatia
| | - Bosko Skoric
- University of Zagreb School of Medicine, Zagreb, Croatia; Department of Cardiovascular Diseases, University Hospital Centre Zagreb, Croatia
| | - Dora Fabijanovic
- Department of Cardiovascular Diseases, University Hospital Centre Zagreb, Croatia
| | - Ivo Planinc
- University of Zagreb School of Medicine, Zagreb, Croatia; Department of Cardiovascular Diseases, University Hospital Centre Zagreb, Croatia
| | - Maja Cikes
- University of Zagreb School of Medicine, Zagreb, Croatia; Department of Cardiovascular Diseases, University Hospital Centre Zagreb, Croatia
| | - Filip Sedlic
- Department of Pathophysiology, University of Zagreb School of Medicine, Croatia.
| |
Collapse
|
5
|
Ageev AA, Kozhevnikova MV, Tyurina DA, Korobkova EO, Kondratieva TO, Shestakova KM, Moskaleva NE, Markin PA, Khabarova NV, Appolonova SA, Belenkov YN. Left Ventricular Remodeling Predictors in Chronic Heart Failure of Ischemic Etiology. KARDIOLOGIIA 2024; 64:106-116. [PMID: 39637396 DOI: 10.18087/cardio.2024.11.n2794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Aim To identify metabolomic and structure and function markers of remote left ventricular (LV) remodeling in patients with chronic heart failure (CHF) of ischemic etiology and LV ejection fraction (EF) <50%.Material and methods This prospective study included 56 patients with 3-4 NYHA functional class CHF of ischemic etiology (mean age, 66±7 years) and 50 patients with ischemic heart disease (IHD) without signs of CHF (69 [64; 73.7] years). Concentration of 19 amino acids, 11 products of kynurenine catabolism of tryptophan, 30 acylcarnitines with different chain lengths were measured in all participants. The metabolites that showed statistical differences between the comparison groups were then used for the analysis. Echocardiography was used to assess LV cavity remodeling at the time of the CHF patient inclusion in the study and after 6 months of follow-up. Predictors of long-term LV cavity remodeling were assessed for this cohort taking into account statistically significant echocardiographic parameters and metabolites.Results Patients with CHF of ischemic etiology, predominantly (81%) had pathological calculated types of LV remodeling (concentric and eccentric hypertrophy, 46 and 35%, respectively). However, this classification had limitations in describing this cohort. In addition, in this group, the concentrations of alanine, proline, asparagine, glycine, arginine, histidine, lysine, valine, indolyl-3-acetic acid, indolyl-3-propionic acid, C16-1-OH, and C16-OH were significantly (p<0.05) lower, and the concentrations of most medium- and long-chain acylcarnitines were higher than in patients with IHD without signs of CHF. The long-term (6 months) reverse remodeling of the LV cavity in CHF of ischemic etiology was influenced by changes in the interventricular septum thickness (hazard ratio, HR, 19.07; 95% confidence interval, CI, 1.76-206.8; p=0.006) and concentrations of anthranilic acid (HR 19.8; 95% CI 1.01-387.8; p=0.019) and asparagine (HR 8.76; 95% CI 1.07-71.4; p=0.031).Conclusion The presence of an interventricular septum thickness of more than 13.5 mm, anthranilic acid concentrations of higher than 0.235 μM/l, or an asparagine concentration of less than 135.2 μM/l in patients with CHF of ischemic etiology after 6 months of follow-up affects their achievement of LV cavity reverse remodeling.
Collapse
Affiliation(s)
- A A Ageev
- Sechenov First Moscow State Medical University, Moscow
| | | | - D A Tyurina
- Sechenov First Moscow State Medical University, Moscow
| | - E O Korobkova
- Sechenov First Moscow State Medical University, Moscow
| | | | | | - N E Moskaleva
- Sechenov First Moscow State Medical University, Moscow
| | - P A Markin
- Sechenov First Moscow State Medical University, Moscow
| | - N V Khabarova
- Sechenov First Moscow State Medical University, Moscow
| | | | - Yu N Belenkov
- Sechenov First Moscow State Medical University, Moscow
| |
Collapse
|
6
|
Pham LT, Mangmool S, Parichatikanond W. Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors: Guardians against Mitochondrial Dysfunction and Endoplasmic Reticulum Stress in Heart Diseases. ACS Pharmacol Transl Sci 2024; 7:3279-3298. [PMID: 39539254 PMCID: PMC11555527 DOI: 10.1021/acsptsci.4c00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/11/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors are an innovative class of antidiabetic drugs that provide cardiovascular benefits to both diabetic and nondiabetic patients, surpassing those of other antidiabetic drugs. Although the roles of mitochondria and endoplasmic reticulum (ER) in cardiovascular research are increasingly recognized as promising therapeutic targets, the exact molecular mechanisms by which SGLT2 inhibitors influence mitochondrial and ER homeostasis in the heart remain incompletely elucidated. This review comprehensively summarizes and discusses the impacts of SGLT2 inhibitors on mitochondrial dysfunction and ER stress in heart diseases including heart failure, ischemic heart disease/myocardial infarction, and arrhythmia from preclinical and clinical studies. Based on the existing evidence, the effects of SGLT2 inhibitors may potentially involve the restoration of mitochondrial biogenesis and alleviation of ER stress. Such consequences are achieved by enhancing adenosine triphosphate (ATP) production, preserving mitochondrial membrane potential, improving the activity of electron transport chain complexes, maintaining mitochondrial dynamics, mitigating oxidative stress and apoptosis, influencing cellular calcium and sodium handling, and targeting the unfolded protein response (UPR) through three signaling pathways including inositol requiring enzyme 1α (IRE1α), protein kinase R like endoplasmic reticulum kinase (PERK), and activating transcription factor 6 (ATF6). Therefore, SGLT2 inhibitors have emerged as a promising target for treating heart diseases due to their potential to improve mitochondrial functions and ER stress.
Collapse
Affiliation(s)
- Linh Thi
Truc Pham
- Biopharmaceutical
Sciences Program, Faculty of Pharmacy, Mahidol
University, Bangkok, 10400 Thailand
- Department
of Pharmacology, Faculty of Pharmacy, Mahidol
University, Bangkok, 10400 Thailand
| | - Supachoke Mangmool
- Department
of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang
Mai, 50200 Thailand
| | | |
Collapse
|
7
|
Nevoit G, Jarusevicius G, Potyazhenko M, Mintser O, Bumblyte IA, Vainoras A. Mitochondrial Dysfunction and Risk Factors for Noncommunicable Diseases: From Basic Concepts to Future Prospective. Diseases 2024; 12:277. [PMID: 39589951 PMCID: PMC11592525 DOI: 10.3390/diseases12110277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Noncommunicable diseases (NCDs) are a very important medical problem. The key role of mitochondrial dysfunction (MD) in the occurrence and progression of NCDs has been proven. However, the etiology and pathogenesis of MD itself in many NCDs has not yet been clarified, which makes it one of the most serious medical problems in the modern world, according to many scientists. METHODS An extensive research in the literature was implemented in order to elucidate the role of MD and NCDs' risk factors in the pathogenesis of NCDs. RESULTS The authors propose to take a broader look at the problem of the pathogenesis of NCDs. It is important to understand exactly how NCD risk factors lead to MD. The review is structured in such a way as to answer this question. Based on a systematic analysis of scientific data, a theoretical concept of modern views on the occurrence of MD under the influence of risk factors for the occurrence of NCDs is presented. This was done in order to update MD issues in clinical medicine. MD and NCDs progress throughout a patient's life. Based on this, the review raised the question of the existence of an NCDs continuum. CONCLUSIONS MD is a universal mechanism that causes organ dysfunction and comorbidity of NCDs. Prevention of MD involves diagnosing and eliminating the factors that cause it. Mitochondria are an important therapeutic target.
Collapse
Affiliation(s)
- Ganna Nevoit
- Laboratory of Population Studies, Cardiology Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Gediminas Jarusevicius
- Laboratory for Automatization of Cardiovascular Investigations, Cardiology Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - Maksim Potyazhenko
- Department of Internal Medicine and Emergency Medicine, Poltava State Medical University, 36011 Poltava, Ukraine;
| | - Ozar Mintser
- Department of Fundamental Disciplines and Informatics, Shupyk National Healthcare University of Ukraine, 04112 Kyiv, Ukraine;
| | - Inga Arune Bumblyte
- Department of Nephrology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - Alfonsas Vainoras
- Laboratory for Automatization of Cardiovascular Investigations, Cardiology Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| |
Collapse
|
8
|
Rakhe N, Bhatt LK. Valosin-containing protein: A potential therapeutic target for cardiovascular diseases. Ageing Res Rev 2024; 101:102511. [PMID: 39313037 DOI: 10.1016/j.arr.2024.102511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
Valosin-containing protein (VCP), also known as p97, plays a crucial role in various cellular processes, including protein degradation, endoplasmic reticulum-associated degradation, and cell cycle regulation. While extensive research has been focused on VCP's involvement in protein homeostasis and its implications in neurodegenerative diseases, emerging evidence suggests a potential link between VCP and cardiovascular health. VCP is a key regulator of mitochondrial function, and its overexpression or mutations lead to pathogenic diseases and cellular stress responses. The present review explores VCP's roles in numerous cardiovascular disorders including myocardial ischemia/reperfusion injury, cardiac hypertrophy, and heart failure. The review dwells on the roles of VCP in modifying mitochondrial activity, promoting S-nitrosylation, regulating mTOR signalling and demonstrating cardioprotective effects. Further research into VCP might lead to novel interventions for cardiovascular disease, particularly those involving ischemia/reperfusion injury and hypertrophy.
Collapse
Affiliation(s)
- Nameerah Rakhe
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
9
|
Mirosevic V, Svagusa T, Matic N, Maldini K, Siljeg M, Milicic D, Gasparovic H, Rudez I, Sepac A, Gojmerac L, Kulic A, Bakovic P, Sedlic F. Cardiotoxicity of Iron and Zinc and Their Association with the Mitochondrial Unfolded Protein Response in Humans. Int J Mol Sci 2024; 25:9648. [PMID: 39273594 PMCID: PMC11395499 DOI: 10.3390/ijms25179648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
This study was designed to examine the association between myocardial concentrations of the trace elements Cu, Fe, Mn, Mo, and Zn and the expression of mitochondrial unfolded protein response (UPRmt) elements and the age of patients who received heart transplantation or a left-ventricular assist device (ageHTx/LVAD). Inductively coupled plasma mass spectrometry was used to determine the concentration of Cu, Fe, Mn, Mo, and Zn in the myocardium of control subjects and patients undergoing heart transplantation or left-ventricular assist device (LVAD) implantation. We used ELISA to quantify the expression of UPRmt proteins and 4-Hydroxynonenal (4-HNE), which served as a marker of oxidative-stress-induced lipid peroxidation. Concentrations of Cu, Mn, Mo, and Zn were similar in the control and heart failure (HF) myocardium, while Fe showed a significant decrease in the HF group compared to the control. A higher cumulative concentration of Fe and Zn in the myocardium was associated with reduced ageHTx/LVAD, which was not observed for other combinations of trace elements or their individual effects. The trace elements Cu, Mn, and Zn showed positive correlations with several UPRmt proteins, while Fe had a negative correlation with UPRmt effector protease YME1L. None of the trace elements correlated with 4-HNE in the myocardium. The concentrations of the trace elements Mn and Zn were significantly higher in the myocardium of patients with dilated cardiomyopathy than in patients with ischemic cardiomyopathy. A higher cumulative concentration of Fe and Zn in the myocardium was associated with a younger age at which patients received heart transplantation or LVAD, potentially suggesting an acceleration of HF. A positive correlation between myocardial Cu, Mn, and Zn and the expression of UPRmt proteins and a negative correlation between myocardial Fe and YME1L expression suggest that these trace elements exerted their actions on the human heart by interacting with the UPRmt. An altered generation of oxidative stress was not an underlying mechanism of the observed changes.
Collapse
Affiliation(s)
- Vid Mirosevic
- Department of Pathophysiology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Tomo Svagusa
- Department of Cardiovascular Diseases, Dubrava University Hospital, 10000 Zagreb, Croatia
| | - Natalija Matic
- Department of Development and Water Management, Croatian Waters, 10000 Zagreb, Croatia
| | | | - Mario Siljeg
- Josip Juraj Stossmayer Water Institute, 10000 Zagreb, Croatia
| | - Davor Milicic
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Cardiovascular Diseases, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Hrvoje Gasparovic
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Cardiac Surgery, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Igor Rudez
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Cardiac and Transplant Surgery, Dubrava University Hospital, 10000 Zagreb, Croatia
| | - Ana Sepac
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Ljudevit Jurak Department of Pathology, Sestre Milosrdnice University Hospital Centre, 10000 Zagreb, Croatia
| | - Lucija Gojmerac
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ana Kulic
- Department of Oncology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Petra Bakovic
- Department of Pathophysiology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Filip Sedlic
- Department of Pathophysiology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
10
|
Rubio-Ruíz ME, Plata-Corona JC, Soria-Castro E, Díaz-Juárez JA, Sánchez-Aguilar M. Pleiotropic Effects of Peroxisome Proliferator-Activated Receptor Alpha and Gamma Agonists on Myocardial Damage: Molecular Mechanisms and Clinical Evidence-A Narrative Review. Cells 2024; 13:1488. [PMID: 39273057 PMCID: PMC11394383 DOI: 10.3390/cells13171488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Cardiovascular diseases remain the leading cause of death in the world, and that is why finding an effective and multi-functional treatment alternative to combat these diseases has become more important. Fibrates and thiazolidinediones, peroxisome proliferator-activated receptors alpha and gamma are the pharmacological therapies used to treat dyslipidemia and type 2 diabetes, respectively. New mechanisms of action of these drugs have been found, demonstrating their pleiotropic effects, which contribute to preserving the heart by reducing or even preventing myocardial damage. Here, we review the mechanisms underlying the cardioprotective effects of PPAR agonists and regulating morphological and physiological heart alterations (metabolic flexibility, mitochondrial damage, apoptosis, structural remodeling, and inflammation). Moreover, clinical evidence regarding the cardioprotective effect of PPAR agonists is also addressed.
Collapse
Affiliation(s)
- María Esther Rubio-Ruíz
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
| | - Juan Carlos Plata-Corona
- Department of Interventional Cardiology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
| | - Elizabeth Soria-Castro
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
| | - Julieta Anabell Díaz-Juárez
- Department of Pharmacology “Dr. Rafael Méndez Martínez”, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
| | - María Sánchez-Aguilar
- Department of Pharmacology “Dr. Rafael Méndez Martínez”, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
| |
Collapse
|
11
|
Li H, Wan L, Liu M, Ma E, Huang L, Yang Y, Li Q, Fang Y, Li J, Han B, Zhang C, Sun L, Hou X, Li H, Sun M, Qian S, Duan X, Zhao R, Yang X, Chen Y, Wu S, Zhang X, Zhang Y, Cheng G, Chen G, Gao Q, Xu J, Hou L, Wei C, Zhong H. SARS-CoV-2 spike-induced syncytia are senescent and contribute to exacerbated heart failure. PLoS Pathog 2024; 20:e1012291. [PMID: 39102426 PMCID: PMC11326701 DOI: 10.1371/journal.ppat.1012291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 08/15/2024] [Accepted: 05/27/2024] [Indexed: 08/07/2024] Open
Abstract
SARS-CoV-2 spike protein (SARS-2-S) induced cell-cell fusion in uninfected cells may occur in long COVID-19 syndrome, as circulating SARS-2-S or extracellular vesicles containing SARS-2-S (S-EVs) were found to be prevalent in post-acute sequelae of COVID-19 (PASC) for up to 12 months after diagnosis. Although isolated recombinant SARS-2-S protein has been shown to increase the SASP in senescent ACE2-expressing cells, the direct linkage of SARS-2-S syncytia with senescence in the absence of virus infection and the degree to which SARS-2-S syncytia affect pathology in the setting of cardiac dysfunction are unknown. Here, we found that the senescent outcome of SARS-2-S induced syncytia exacerbated heart failure progression. We first demonstrated that syncytium formation in cells expressing SARS-2-S delivered by DNA plasmid or LNP-mRNA exhibits a senescence-like phenotype. Extracellular vesicles containing SARS-2-S (S-EVs) also confer a potent ability to form senescent syncytia without de novo synthesis of SARS-2-S. However, it is important to note that currently approved COVID-19 mRNA vaccines do not induce syncytium formation or cellular senescence. Mechanistically, SARS-2-S syncytia provoke the formation of functional MAVS aggregates, which regulate the senescence fate of SARS-2-S syncytia by TNFα. We further demonstrate that senescent SARS-2-S syncytia exhibit shrinked morphology, leading to the activation of WNK1 and impaired cardiac metabolism. In pre-existing heart failure mice, the WNK1 inhibitor WNK463, anti-syncytial drug niclosamide, and senolytic dasatinib protect the heart from exacerbated heart failure triggered by SARS-2-S. Our findings thus suggest a potential mechanism for COVID-19-mediated cardiac pathology and recommend the application of WNK1 inhibitor for therapy especially in individuals with post-acute sequelae of COVID-19.
Collapse
Affiliation(s)
- Huilong Li
- Beijing Institute of Biotechnology, Beijing, China
- College of Basic Medical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Luming Wan
- Beijing Institute of Biotechnology, Beijing, China
| | - Muyi Liu
- Beijing Institute of Biotechnology, Beijing, China
| | - Enhao Ma
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Linfei Huang
- Beijing Institute of Biotechnology, Beijing, China
| | - Yilong Yang
- Beijing Institute of Biotechnology, Beijing, China
| | - Qihong Li
- The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yi Fang
- The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jingfei Li
- Beijing Institute of Biotechnology, Beijing, China
| | - Bingqing Han
- Beijing Institute of Biotechnology, Beijing, China
| | - Chang Zhang
- Beijing Institute of Biotechnology, Beijing, China
| | - Lijuan Sun
- Beijing Yaogen Biotechnology Co.Ltd, Beijing, China
| | - Xufeng Hou
- Beijing Yaogen Biotechnology Co.Ltd, Beijing, China
| | - Haiyang Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Mingyu Sun
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Sichong Qian
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xuejing Duan
- Department of Pathology, Fuwai Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Ruzhou Zhao
- Beijing Institute of Biotechnology, Beijing, China
| | - Xiaopan Yang
- Beijing Institute of Biotechnology, Beijing, China
| | - Yi Chen
- Beijing Institute of Biotechnology, Beijing, China
| | - Shipo Wu
- Beijing Institute of Biotechnology, Beijing, China
| | - Xuhui Zhang
- Beijing Yaogen Biotechnology Co.Ltd, Beijing, China
| | | | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Gengye Chen
- People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Qi Gao
- Beijing Yaogen Biotechnology Co.Ltd, Beijing, China
| | - Junjie Xu
- Beijing Institute of Biotechnology, Beijing, China
| | - Lihua Hou
- Beijing Institute of Biotechnology, Beijing, China
- College of Basic Medical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Congwen Wei
- Beijing Institute of Biotechnology, Beijing, China
| | - Hui Zhong
- Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
12
|
Piotin A, Oulehri W, Charles AL, Tacquard C, Collange O, Mertes PM, Geny B. Oxidative Stress and Mitochondria Are Involved in Anaphylaxis and Mast Cell Degranulation: A Systematic Review. Antioxidants (Basel) 2024; 13:920. [PMID: 39199166 PMCID: PMC11352116 DOI: 10.3390/antiox13080920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Anaphylaxis, an allergic reaction caused by the massive release of active mediators, can lead to anaphylactic shock (AS), the most severe and potentially life-threatening form of anaphylactic reaction. Nevertheless, understanding of its pathophysiology to support new therapies still needs to be improved. We performed a systematic review, assessing the role and the complex cellular interplay of mitochondria and oxidative stress during anaphylaxis, mast cell metabolism and degranulation. After presenting the main characteristics of anaphylaxis, the oxidant/antioxidant balance and mitochondrial functions, we focused this review on the involvement of mitochondria and oxidative stress in anaphylaxis. Then, we discussed the role of oxidative stress and mitochondria following mast cell stimulation by allergens, leading to degranulation, in order to further elucidate mechanistic pathways. Finally, we considered potential therapeutic interventions implementing these findings for the treatment of anaphylaxis. Experimental studies evaluated mainly cardiomyocyte metabolism during AS. Cardiac dysfunction was associated with left ventricle mitochondrial impairment and lipid peroxidation. Studies evaluating in vitro mast cell degranulation, following Immunoglobulin E (IgE) or non-IgE stimulation, revealed that mitochondrial respiratory complex integrity and membrane potential are crucial for mast cell degranulation. Antigen stimulation raises reactive oxygen species (ROS) production from nicotinamide adenine dinucleotide phosphate (NADPH) oxidases and mitochondria, leading to mast cell degranulation. Moreover, mast cell activation involved mitochondrial morphological changes and mitochondrial translocation to the cell surface near exocytosis sites. Interestingly, antioxidant administration reduced degranulation by lowering ROS levels. Altogether, these results highlight the crucial role of oxidative stress and mitochondria during anaphylaxis and mast cell degranulation. New therapeutics against anaphylaxis should probably target oxidative stress and mitochondria, in order to decrease anaphylaxis-induced systemic and major organ deleterious effects.
Collapse
Affiliation(s)
- Anays Piotin
- Physiology and Functional Exploration Service, Strasbourg University Hospital, 67000 Strasbourg, France;
- Division of Asthma and Allergy, Chest Diseases Department, Strasbourg University Hospital, 67000 Strasbourg, France
- Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (W.O.); (A.-L.C.); (O.C.); (P.-M.M.)
| | - Walid Oulehri
- Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (W.O.); (A.-L.C.); (O.C.); (P.-M.M.)
- Department of Anesthesia and Intensive Care, Strasbourg University Hospital, 67000 Strasbourg, France;
| | - Anne-Laure Charles
- Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (W.O.); (A.-L.C.); (O.C.); (P.-M.M.)
| | - Charles Tacquard
- Department of Anesthesia and Intensive Care, Strasbourg University Hospital, 67000 Strasbourg, France;
- Établissement Français du Sang (EFS) Grand Est, French National Institute of Health and Medical Research), (INSERM) BPPS UMR_S1255, Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, 67000 Strasbourg, France
| | - Olivier Collange
- Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (W.O.); (A.-L.C.); (O.C.); (P.-M.M.)
- Department of Anesthesia and Intensive Care, Strasbourg University Hospital, 67000 Strasbourg, France;
| | - Paul-Michel Mertes
- Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (W.O.); (A.-L.C.); (O.C.); (P.-M.M.)
- Department of Anesthesia and Intensive Care, Strasbourg University Hospital, 67000 Strasbourg, France;
| | - Bernard Geny
- Physiology and Functional Exploration Service, Strasbourg University Hospital, 67000 Strasbourg, France;
- Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (W.O.); (A.-L.C.); (O.C.); (P.-M.M.)
| |
Collapse
|
13
|
Grishanova AY, Perepechaeva ML. Kynurenic Acid/AhR Signaling at the Junction of Inflammation and Cardiovascular Diseases. Int J Mol Sci 2024; 25:6933. [PMID: 39000041 PMCID: PMC11240928 DOI: 10.3390/ijms25136933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Persistent systemic chronic inflammatory conditions are linked with many pathologies, including cardiovascular diseases (CVDs), a leading cause of death across the globe. Among various risk factors, one of the new possible contributors to CVDs is the metabolism of essential amino acid tryptophan. Proinflammatory signals promote tryptophan metabolism via the kynurenine (KYN) pathway (KP), thereby resulting in the biosynthesis of several immunomodulatory metabolites whose biological effects are associated with the development of symptoms and progression of various inflammatory diseases. Some participants in the KP are agonists of aryl hydrocarbon receptor (AhR), a central player in a signaling pathway that, along with a regulatory influence on the metabolism of environmental xenobiotics, performs a key immunomodulatory function by triggering various cellular mechanisms with the participation of endogenous ligands to alleviate inflammation. An AhR ligand with moderate affinity is the central metabolite of the KP: KYN; one of the subsequent metabolites of KYN-kynurenic acid (KYNA)-is a more potent ligand of AhR. Understanding the role of AhR pathway-related metabolites of the KP that regulate inflammatory factors in cells of the cardiovascular system is interesting and important for achieving effective treatment of CVDs. The purpose of this review was to summarize the results of studies about the participation of the KP metabolite-KYNA-and of the AhR signaling pathway in the regulation of inflammation in pathological conditions of the heart and blood vessels and about the possible interaction of KYNA with AhR signaling in some CVDs.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630060, Russia;
| |
Collapse
|
14
|
Bonet F, Hernandez-Torres F, Ramos-Sánchez M, Quezada-Feijoo M, Bermúdez-García A, Daroca T, Alonso-Villa E, García-Padilla C, Mangas A, Toro R. Unraveling the Etiology of Dilated Cardiomyopathy through Differential miRNA-mRNA Interactome. Biomolecules 2024; 14:524. [PMID: 38785931 PMCID: PMC11117812 DOI: 10.3390/biom14050524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Dilated cardiomyopathy (DCM) encompasses various acquired or genetic diseases sharing a common phenotype. The understanding of pathogenetic mechanisms and the determination of the functional effects of each etiology may allow for tailoring different therapeutic strategies. MicroRNAs (miRNAs) have emerged as key regulators in cardiovascular diseases, including DCM. However, their specific roles in different DCM etiologies remain elusive. Here, we applied mRNA-seq and miRNA-seq to identify the gene and miRNA signature from myocardial biopsies from four patients with DCM caused by volume overload (VCM) and four with ischemic DCM (ICM). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were used for differentially expressed genes (DEGs). The miRNA-mRNA interactions were identified by Pearson correlation analysis and miRNA target-prediction programs. mRNA-seq and miRNA-seq were validated by qRT-PCR and miRNA-mRNA interactions were validated by luciferase assays. We found 112 mRNAs and five miRNAs dysregulated in VCM vs. ICM. DEGs were positively enriched for pathways related to the extracellular matrix (ECM), mitochondrial respiration, cardiac muscle contraction, and fatty acid metabolism in VCM vs. ICM and negatively enriched for immune-response-related pathways, JAK-STAT, and NF-kappa B signaling. We identified four pairs of negatively correlated miRNA-mRNA: miR-218-5p-DDX6, miR-218-5p-TTC39C, miR-218-5p-SEMA4A, and miR-494-3p-SGMS2. Our study revealed novel miRNA-mRNA interaction networks and signaling pathways for VCM and ICM, providing novel insights into the development of these DCM etiologies.
Collapse
Affiliation(s)
- Fernando Bonet
- Medicine Department, School of Medicine, University of Cádiz (UCA), 11003 Cádiz, Spain; (F.B.); (E.A.-V.); (A.M.)
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
| | - Francisco Hernandez-Torres
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Mónica Ramos-Sánchez
- Cardiology Department, Central de la Cruz Roja Hospital, 28003 Madrid, Spain; (M.R.-S.); (M.Q.-F.)
- Medicine Department, School of Medicine, Alfonso X EL Sabio University, 28691 Madrid, Spain
| | - Maribel Quezada-Feijoo
- Cardiology Department, Central de la Cruz Roja Hospital, 28003 Madrid, Spain; (M.R.-S.); (M.Q.-F.)
- Medicine Department, School of Medicine, Alfonso X EL Sabio University, 28691 Madrid, Spain
| | - Aníbal Bermúdez-García
- Cardiovascular Surgery Department, Puerta del Mar University Hospital, 11009 Cádiz, Spain (T.D.)
| | - Tomás Daroca
- Cardiovascular Surgery Department, Puerta del Mar University Hospital, 11009 Cádiz, Spain (T.D.)
| | - Elena Alonso-Villa
- Medicine Department, School of Medicine, University of Cádiz (UCA), 11003 Cádiz, Spain; (F.B.); (E.A.-V.); (A.M.)
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
| | | | - Alipio Mangas
- Medicine Department, School of Medicine, University of Cádiz (UCA), 11003 Cádiz, Spain; (F.B.); (E.A.-V.); (A.M.)
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
- Internal Medicine Department, Puerta del Mar University Hospital, 11009 Cádiz, Spain
| | - Rocio Toro
- Medicine Department, School of Medicine, University of Cádiz (UCA), 11003 Cádiz, Spain; (F.B.); (E.A.-V.); (A.M.)
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
| |
Collapse
|
15
|
Zhang N, Zhou Z, Meng Y, Liao H, Mou S, Lin Z, Yan H, Chen S, Tang Q. HINT2 protects against pressure overload-induced cardiac remodelling through mitochondrial pathways. J Cell Mol Med 2024; 28:e18276. [PMID: 38546629 PMCID: PMC10977391 DOI: 10.1111/jcmm.18276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2025] Open
Abstract
Histidine triad nucleotide-binding protein 2 (HINT2) is an enzyme found in mitochondria that functions as a nucleotide hydrolase and transferase. Prior studies have demonstrated that HINT2 plays a crucial role in ischemic heart disease, but its importance in cardiac remodelling remains unknown. Therefore, the current study intends to determine the role of HINT2 in cardiac remodelling. HINT2 expression levels were found to be lower in failing hearts and hypertrophy cardiomyocytes. The mice that overexpressed HINT2 exhibited reduced myocyte hypertrophy and cardiac dysfunction in response to stress. In contrast, the deficiency of HINT2 in the heart of mice resulted in a worsening hypertrophic phenotype. Further analysis indicated that upregulated genes were predominantly associated with the oxidative phosphorylation and mitochondrial complex I pathways in HINT2-overexpressed mice after aortic banding (AB) treatment. This suggests that HINT2 increases the expression of NADH dehydrogenase (ubiquinone) flavoprotein (NDUF) genes. In cellular studies, rotenone was used to disrupt mitochondrial complex I, and the protective effect of HINT2 overexpression was nullified. Lastly, we predicted that thyroid hormone receptor beta might regulate HINT2 transcriptional activity. To conclusion, the current study showcased that HINT2 alleviates pressure overload-induced cardiac remodelling by influencing the activity and assembly of mitochondrial complex I. Thus, targeting HINT2 could be a novel therapeutic strategy for reducing cardiac remodelling.
Collapse
Affiliation(s)
- Nan Zhang
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanChina
| | - Zi‐Ying Zhou
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanChina
| | - Yan‐Yan Meng
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanChina
| | - Hai‐Han Liao
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanChina
| | - Shan‐Qi Mou
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanChina
| | - Zheng Lin
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanChina
| | - Han Yan
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanChina
| | - Si Chen
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanChina
| | - Qi‐Zhu Tang
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanChina
| |
Collapse
|
16
|
Zheng H, Xu Y, Liehn EA, Rusu M. Vitamin C as Scavenger of Reactive Oxygen Species during Healing after Myocardial Infarction. Int J Mol Sci 2024; 25:3114. [PMID: 38542087 PMCID: PMC10970003 DOI: 10.3390/ijms25063114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/31/2024] [Accepted: 02/10/2024] [Indexed: 06/26/2024] Open
Abstract
Currently, coronary artery bypass and reperfusion therapies are considered the gold standard in long-term treatments to restore heart function after acute myocardial infarction. As a drawback of these restoring strategies, reperfusion after an ischemic insult and sudden oxygen exposure lead to the exacerbated synthesis of additional reactive oxidative species and the persistence of increased oxidation levels. Attempts based on antioxidant treatment have failed to achieve an effective therapy for cardiovascular disease patients. The controversial use of vitamin C as an antioxidant in clinical practice is comprehensively systematized and discussed in this review. The dose-dependent adsorption and release kinetics mechanism of vitamin C is complex; however, this review may provide a holistic perspective on its potential as a preventive supplement and/or for combined precise and targeted therapeutics in cardiovascular management therapy.
Collapse
Affiliation(s)
- Huabo Zheng
- Department of Cardiology, Angiology and Intensive Care, University Hospital, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany;
- Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark;
| | - Yichen Xu
- Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark;
- Department of Histology and Embryology, Medicine and Life Sciences, Hainan Medical University, Haikou 571199, China
| | - Elisa A. Liehn
- Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark;
- National Institute of Pathology “Victor Babes”, Splaiul Independentei Nr. 99-101, 050096 Bucharest, Romania
| | - Mihaela Rusu
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany
| |
Collapse
|
17
|
Priyono AK, Miake J, Sawano T, Ichihara Y, Nagata K, Okamura A, Tomomori T, Takami A, Notsu T, Yamamoto K, Imamura T. Mitochondrial Responses to Sublethal Doxorubicin in H9c2 Cardiomyocytes: The Role of Phosphorylated CaMKII. Yonago Acta Med 2024; 67:41-51. [PMID: 38371275 PMCID: PMC10867231 DOI: 10.33160/yam.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 02/20/2024]
Abstract
Background Doxorubicin (Dox) is effective against different types of cancers, but it poses cardiotoxic side effects, frequently resulting in irreversible heart failure. However, the complexities surrounding this cardiotoxicity, especially at sublethal dosages, remain to be fully elucidated. We investigated early cellular disruptions in response to sublethal Dox, with a specific emphasis on the role of phosphorylated calcium/calmodulin-dependent protein kinase II (CaMKII) in initiating mitochondrial dysfunction. Methods This study utilized the H9c2 cardiomyocyte model to identify a sublethal concentration of Dox and investigate its impact on mitochondrial health using markers such as mitochondrial membrane potential (MMP), mitophagy initiation, and mitochondrial calcium dynamics. We examined the roles of and interactions between CaMKII, dynamin-related protein 1 (Drp1), and the mitochondrial calcium uniporter (MCU) in Dox-induced mitochondrial disruption using specific inhibitors, such as KN-93, Mdivi-1, and Ru360, respectively. Results Exposure to a sublethal dose of Dox reduced the MMP red-to-green fluorescence ratio in H9c2 cells by 40.6% compared with vehicle, and increased the proportion of cells undergoing mitophagy from negligible levels compared with vehicle to 62.2%. Mitochondrial calcium levels also increased by 8.7-fold compared with the vehicle group. Notably, the activation of CaMKII, particularly its phosphorylated form, was pivotal in driving these mitochondrial changes, as inhibition using KN-93 restored MMP and decreased mitophagy. However, inhibition of Drp1 and MCU functions had a limited impact on the observed mitochondrial disruptions. Conclusion Sublethal administration of Dox is closely linked to CaMKII activation through phosphorylation, emphasizing its pivotal role in early mitochondrial disruption. These findings present a promising direction for developing therapeutic strategies that may alleviate the cardiotoxic effects of Dox, potentially increasing its clinical efficacy.
Collapse
Affiliation(s)
- Agung Kurniawan Priyono
- Division of Pharmacology, Department of Pathophysiological and Therapeutic Sciences, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Junichiro Miake
- Division of Pharmacology, Department of Pathophysiological and Therapeutic Sciences, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Tatsuya Sawano
- Division of Pharmacology, Department of Pathophysiological and Therapeutic Sciences, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Yoshinori Ichihara
- Division of Pharmacology, Department of Pathophysiological and Therapeutic Sciences, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Keiko Nagata
- Division of Pharmacology, Department of Pathophysiological and Therapeutic Sciences, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Akihiro Okamura
- Division of Cardiovascular Medicine and Endocrinology and Metabolism, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Takuya Tomomori
- Division of Cardiovascular Medicine and Endocrinology and Metabolism, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Aiko Takami
- Division of Cardiovascular Medicine and Endocrinology and Metabolism, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Tomomi Notsu
- Division of Regenerative Medicine and Therapeutics, Department of Genomic Medicine and Regenerative Therapy, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Kazuhiro Yamamoto
- Division of Cardiovascular Medicine and Endocrinology and Metabolism, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Takeshi Imamura
- Division of Pharmacology, Department of Pathophysiological and Therapeutic Sciences, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| |
Collapse
|
18
|
Aghebat-Bekheir S, Abdollahi M. Discovering the most impactful treatments for aluminum phosphide cardiotoxicity gleaned from systematic review of animal studies. Hum Exp Toxicol 2024; 43:9603271241290922. [PMID: 39378909 DOI: 10.1177/09603271241290922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
INTRODUCTION Aluminum phosphide (AlP) is a chemical compound that can cause death in some countries. AlP inhibits the functioning of cytochrome C oxidase in the mitochondria of cardiomyocytes, leading to toxicity. Oxidative stress and ROS production, as well as inflammatory signaling, mediate the mechanisms of AlP-related toxicity in the poisoned patient. Unfortunately, there are no approved medicines available to treat AlP poisoning yet. To address this issue, researchers have explored various interventions to reduce the toxicity associated with AlP tablets. METHODS We systematically searched relevant databases for English articles published between 2013 and 2024. RESULTS The evaluated treatments included correcting oxidative stress parameters, enhancing exogenous antioxidant capacity, modifying electrocardiographic abnormalities, and improving heart contraction strength. Our evaluation indicated that compounds like Triiodothyronine, Vasopressin and milrinone, Iron sucrose, Acetyl-l-carnitine, Melatonin, Fresh red blood cell transfusion, Minocycline, Moringa oleifera extract, Dihydroxyacetone, Selegiline, Nanocurcumin, Levosimendan, Exenatide, Taurine, Cannabidiol and Edaravone are effective in lessening AlP-induced cardiotoxicity. CONCLUSION Based on the present study's findings and the evaluation of clinical studies, dihydroxyacetone, fresh red blood cell infusion, Oil-based disinfection, and gastric lavage have the most potential to save patients' lives and treat acute aluminum phosphide. However, there is a need for more research in this regard.
Collapse
Affiliation(s)
- Saeed Aghebat-Bekheir
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Li Y, Berliocchi L, Li Z, Rasmussen LJ. Interactions between mitochondrial dysfunction and other hallmarks of aging: Paving a path toward interventions that promote healthy old age. Aging Cell 2024; 23:e13942. [PMID: 37497653 PMCID: PMC10776122 DOI: 10.1111/acel.13942] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023] Open
Abstract
Current research on human aging has largely been guided by the milestone paper "hallmarks of aging," which were first proposed in the seminal 2013 paper by Lopez-Otin et al. Most studies have focused on one aging hallmark at a time, asking whether the underlying molecular perturbations are sufficient to drive the aging process and its associated phenotypes. More recently, researchers have begun to investigate whether aging phenotypes are driven by concurrent perturbations in molecular pathways linked to not one but to multiple hallmarks of aging and whether they present different patterns in organs and systems over time. Indeed, preliminary results suggest that more complex interactions between aging hallmarks must be considered and addressed, if we are to develop interventions that successfully promote healthy aging and/or delay aging-associated dysfunction and diseases. Here, we summarize some of the latest work and views on the interplay between hallmarks of aging, with a specific focus on mitochondrial dysfunction. Indeed, this represents a significant example of the complex crosstalk between hallmarks of aging and of the effects that an intervention targeted to a specific hallmark may have on the others. A better knowledge of these interconnections, of their cause-effect relationships, of their spatial and temporal sequence, will be very beneficial for the whole aging research field and for the identification of effective interventions in promoting healthy old age.
Collapse
Affiliation(s)
- Yuan Li
- Department of Cellular and Molecular Medicine, Center for Healthy AgingUniversity of CopenhagenCopenhagenDenmark
| | - Laura Berliocchi
- Department of Cellular and Molecular Medicine, Center for Healthy AgingUniversity of CopenhagenCopenhagenDenmark
- Department of Health SciencesUniversity Magna Græcia of CatanzaroCatanzaroItaly
| | - Zhiquan Li
- Department of Cellular and Molecular Medicine, Center for Healthy AgingUniversity of CopenhagenCopenhagenDenmark
| | - Lene Juel Rasmussen
- Department of Cellular and Molecular Medicine, Center for Healthy AgingUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
20
|
Stepaniuk N, Stepaniuk A, Hudz N, Havryliuk I. The impact of mitochondrial dysfunction on the pathogenesis of atherosclerosis. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2024; 77:153-159. [PMID: 38431820 DOI: 10.36740/wlek202401119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
OBJECTIVE Aim: To determine the role of mitochondrial dysfunction in the pathogenesis of atherosclerosis based on the analysis of research data and statistics from the MEDLINE, Scopus and Web of Science Core Collection electronic databases for 2007-2023. PATIENTS AND METHODS Materials and Methods: A comprehensive review of literature sources from the MEDLINE, Scopus and Web of Science Core Collection electronic databases was conducted to critically analyse the data and determine the role of mitochondrial dysfunction in the pathogenesis of atherosclerosis. CONCLUSION Conclusions: In this review, we have summarized the latest literature data on the association between mitochondrial dysfunction and the development of atherosclerosis. Mitochondria have been recognized as a novel therapeutic target in the development of atherosclerosis. However, the presence of current gaps in therapeutic strategies for mitochondrial dysfunction control still hinders clinical success in the prevention and treatment of atherosclerosis. Both antioxidants and gene therapy are appealing approaches to treating atherosclerosis. Nevertheless, further research is needed to determine the proper therapeutic strategy to reduce the impact of mitochondrial dysfunction on the progression of atherosclerosis.
Collapse
Affiliation(s)
| | - Alla Stepaniuk
- VINNYTSIA NATIONAL PYROHOV MEMORIAL MEDICAL UNIVERSITY, VINNYTSIA, UKRAINE
| | - Nataliia Hudz
- DANYLO HALYTSKY LVIV NATIONAL MEDICAL UNIVERSITY, LVIV, UKRAINE; UNIVERSITY OF OPOLE, OPOLE, POLAND
| | - Iryna Havryliuk
- DANYLO HALYTSKY LVIV NATIONAL MEDICAL UNIVERSITY, LVIV, UKRAINE
| |
Collapse
|
21
|
Carvalho RA. The glycolytic pathway to heart failure. GLYCOLYSIS 2024:235-266. [DOI: 10.1016/b978-0-323-91704-9.00010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
22
|
Sule RO, Phinney BS, Salemi MR, Gomes AV. Mitochondrial and Proteasome Dysfunction Occurs in the Hearts of Mice Treated with Triazine Herbicide Prometryn. Int J Mol Sci 2023; 24:15266. [PMID: 37894945 PMCID: PMC10607192 DOI: 10.3390/ijms242015266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Prometryn is a methylthio-s-triazine herbicide used to control the growth of annual broadleaf and grass weeds in many cultivated plants. Significant traces of prometryn are documented in the environment, mainly in waters, soil, and plants used for human and domestic consumption. Previous studies have shown that triazine herbicides have carcinogenic potential in humans. However, there is limited information about the effects of prometryn on the cardiac system in the literature, or the mechanisms and signaling pathways underlying any potential cytotoxic effects are not known. It is important to understand the possible effects of exogenous compounds such as prometryn on the heart. To determine the mechanisms and signaling pathways affected by prometryn (185 mg/kg every 48 h for seven days), we performed proteomic profiling of male mice heart with quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) using ten-plex tandem mass tag (TMT) labeling. The data suggest that several major pathways, including energy metabolism, protein degradation, fatty acid metabolism, calcium signaling, and antioxidant defense system were altered in the hearts of prometryn-treated mice. Proteasome and immunoproteasome activity assays and expression levels showed proteasome dysfunction in the hearts of prometryn-treated mice. The results suggest that prometryn induced changes in mitochondrial function and various signaling pathways within the heart, particularly affecting stress-related responses.
Collapse
Affiliation(s)
- Rasheed O. Sule
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, One Shields Ave., Davis, CA 95616, USA
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Brett S. Phinney
- Proteomics Core Facility, University of California, Davis, Davis, CA 95616, USA; (B.S.P.); (M.R.S.)
| | - Michelle R. Salemi
- Proteomics Core Facility, University of California, Davis, Davis, CA 95616, USA; (B.S.P.); (M.R.S.)
| | - Aldrin V. Gomes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, One Shields Ave., Davis, CA 95616, USA
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
23
|
Cui Z, Gu L, Liu T, Liu Y, Yu B, Kou J, Li F, Yang K. Ginsenoside Rd attenuates myocardial ischemia injury through improving mitochondrial biogenesis via WNT5A/Ca 2+ pathways. Eur J Pharmacol 2023; 957:176044. [PMID: 37660968 DOI: 10.1016/j.ejphar.2023.176044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Ginsenoside Rd, one of the main active components in ginseng, exerts various biological activities. However, its effectiveness on myocardial ischemia injury and its potential mechanism need further clarification. The model of isoproterenol (ISO)-induced myocardial ischemia injury (MI) mice and cobalt chloride (CoCl2)-induced cardiomyocytes injury were performed. Ginsenoside Rd significantly alleviated MI injury, as evidenced by ameliorated cardiac pathological features and improved cardiac function. Simultaneously, ginsenoside Rd notably mitigated CoCl2-induced cell injury, decreased the lactate dehydrogenase (LDH) release and reactive oxygen species (ROS) generation in vitro. Additionally, ginsenoside Rd increased nicotinamide adenine dinucleotide (NADH) and mitochondrial membrane potential (MMP). Moreover, we found that ginsenoside Rd could increase the mitochondrial DNA (mtDNA) and promote the expression of Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC1α), nuclear factor erythroid 2 related factor-1 (NRF1), nuclear factor erythroid 2 related factor-2 (NRF2) and activating mitochondrial transcription factor A (TFAM), which suggested that ginsenoside Rd might accelerate mitochondrial biogenesis function to ameliorate MI injury. Importantly, ginsenoside Rd treatment significantly inhibited the WNT5A/calcium (Ca2+) signaling pathway, decreased the expression of WNT5A, Frizzled2, phosphorylated calmodulin kinase II/calmodulin kinase II (p-CaMKII/CaMKII) and the calcium overload. Meanwhile, WNT5A siRNA was further conducted to elucidate the effect of ginsenoside Rd on CoCl2-induced cardiomyocyte injury. And we found that WNT5A siRNA partially weakened the protective effects of ginsenoside Rd on mitochondrial function and mitochondrial biogenesis, suggesting that ginsenoside Rd might suppress myocardial ischemia injury through WNT5A. Overall, this study demonstrated that ginsenoside Rd could alleviate myocardial ischemia injury through improving mitochondrial biogenesis via WNT5A/Ca2+ pathways, which provided a rationale for future clinical applications and potential drugs for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Zekun Cui
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Lifei Gu
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| | - Tao Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Yining Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Fang Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Kun Yang
- Department of Endocrinology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
24
|
Pereira SP, Diniz MS, Tavares LC, Cunha-Oliveira T, Li C, Cox LA, Nijland MJ, Nathanielsz PW, Oliveira PJ. Characterizing Early Cardiac Metabolic Programming via 30% Maternal Nutrient Reduction during Fetal Development in a Non-Human Primate Model. Int J Mol Sci 2023; 24:15192. [PMID: 37894873 PMCID: PMC10607248 DOI: 10.3390/ijms242015192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Intra-uterine growth restriction (IUGR) is a common cause of fetal/neonatal morbidity and mortality and is associated with increased offspring predisposition for cardiovascular disease (CVD) development. Mitochondria are essential organelles in maintaining cardiac function, and thus, fetal cardiac mitochondria could be responsive to the IUGR environment. In this study, we investigated whether in utero fetal cardiac mitochondrial programming can be detectable in an early stage of IUGR pregnancy. Using a well-established nonhuman IUGR primate model, we induced IUGR by reducing by 30% the maternal diet (MNR), both in males (MNR-M) and in female (MNR-F) fetuses. Fetal cardiac left ventricle (LV) tissue and blood were collected at 90 days of gestation (0.5 gestation, 0.5 G). Blood biochemical parameters were determined and heart LV mitochondrial biology assessed. MNR fetus biochemical blood parameters confirm an early fetal response to MNR. In addition, we show that in utero cardiac mitochondrial MNR adaptations are already detectable at this early stage, in a sex-divergent way. MNR induced alterations in the cardiac gene expression of oxidative phosphorylation (OXPHOS) subunits (mostly for complex-I, III, and ATP synthase), along with increased protein content for complex-I, -III, and -IV subunits only for MNR-M in comparison with male controls, highlight the fetal cardiac sex-divergent response to MNR. At this fetal stage, no major alterations were detected in mitochondrial DNA copy number nor markers for oxidative stress. This study shows that in 90-day nonhuman primate fetuses, a 30% decrease in maternal nutrition generated early in utero adaptations in fetal blood biochemical parameters and sex-specific alterations in cardiac left ventricle gene and protein expression profiles, affecting predominantly OXPHOS subunits. Since the OXPHOS system is determinant for energy production in mitochondria, our findings suggest that these early IUGR-induced mitochondrial adaptations play a role in offspring's mitochondrial dysfunction and can increase predisposition to CVD in a sex-specific way.
Collapse
Affiliation(s)
- Susana P. Pereira
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (T.C.-O.); (P.J.O.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Pregnancy and Newborn Research, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
| | - Mariana S. Diniz
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (T.C.-O.); (P.J.O.)
- PDBEB—Ph.D. Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Ludgero C. Tavares
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (T.C.-O.); (P.J.O.)
- CIVG—Vasco da Gama Research Center, University School Vasco da Gama—EUVG, 3020-210 Coimbra, Portugal
| | - Teresa Cunha-Oliveira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (T.C.-O.); (P.J.O.)
| | - Cun Li
- Texas Pregnancy & Life-Course Health Research Center, Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA;
| | - Laura A. Cox
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA; (L.A.C.); (P.W.N.)
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Mark J. Nijland
- Center for Pregnancy and Newborn Research, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
| | - Peter W. Nathanielsz
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA; (L.A.C.); (P.W.N.)
| | - Paulo J. Oliveira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (T.C.-O.); (P.J.O.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
25
|
Di Credico A, Gaggi G, Bucci I, Ghinassi B, Di Baldassarre A. The Effects of Combined Exposure to Bisphenols and Perfluoroalkyls on Human Perinatal Stem Cells and the Potential Implications for Health Outcomes. Int J Mol Sci 2023; 24:15018. [PMID: 37834465 PMCID: PMC10573528 DOI: 10.3390/ijms241915018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
The present study investigates the impact of two endocrine disruptors, namely Bisphenols (BPs) and Perfluoroalkyls (PFs), on human stem cells. These chemicals leach from plastic, and when ingested through contaminated food and water, they interfere with endogenous hormone signaling, causing various diseases. While the ability of BPs and PFs to cross the placental barrier and accumulate in fetal serum has been documented, the exact consequences for human development require further elucidation. The present research work explored the effects of combined exposure to BPs (BPA or BPS) and PFs (PFOS and PFOA) on human placenta (fetal membrane mesenchymal stromal cells, hFM-MSCs) and amniotic fluid (hAFSCs)-derived stem cells. The effects of the xenobiotics were assessed by analyzing cell proliferation, mitochondrial functionality, and the expression of genes involved in pluripotency and epigenetic regulation, which are crucial for early human development. Our findings demonstrate that antenatal exposure to BPs and/or PFs may alter the biological characteristics of perinatal stem cells and fetal epigenome, with potential implications for health outcomes at birth and in adulthood. Further research is necessary to comprehend the full extent of these effects and their long-term consequences.
Collapse
Affiliation(s)
- Andrea Di Credico
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), 66100 Chieti, Italy; (A.D.C.); (I.B.); (B.G.); (A.D.B.)
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- UdA TechLab Center (UdATech), 66100 Chieti, Italy
| | - Giulia Gaggi
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), 66100 Chieti, Italy; (A.D.C.); (I.B.); (B.G.); (A.D.B.)
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- UdA TechLab Center (UdATech), 66100 Chieti, Italy
| | - Ines Bucci
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), 66100 Chieti, Italy; (A.D.C.); (I.B.); (B.G.); (A.D.B.)
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Barbara Ghinassi
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), 66100 Chieti, Italy; (A.D.C.); (I.B.); (B.G.); (A.D.B.)
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- UdA TechLab Center (UdATech), 66100 Chieti, Italy
| | - Angela Di Baldassarre
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), 66100 Chieti, Italy; (A.D.C.); (I.B.); (B.G.); (A.D.B.)
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- UdA TechLab Center (UdATech), 66100 Chieti, Italy
| |
Collapse
|
26
|
Prabhu SS, Nair AS, Nirmala SV. Multifaceted roles of mitochondrial dysfunction in diseases: from powerhouses to saboteurs. Arch Pharm Res 2023; 46:723-743. [PMID: 37751031 DOI: 10.1007/s12272-023-01465-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023]
Abstract
The fact that mitochondria play a crucial part in energy generation has led to the nickname "powerhouses" of the cell being applied to them. They also play a significant role in many other cellular functions, including calcium signalling, apoptosis, and the creation of vital biomolecules. As a result, cellular function and health as a whole can be significantly impacted by mitochondrial malfunction. Indeed, malignancies frequently have increased levels of mitochondrial biogenesis and quality control. Adverse selection exists for harmful mitochondrial genome mutations, even though certain malignancies include modifications in the nuclear-encoded tricarboxylic acid cycle enzymes that generate carcinogenic metabolites. Since rare human cancers with mutated mitochondrial genomes are often benign, removing mitochondrial DNA reduces carcinogenesis. Therefore, targeting mitochondria offers therapeutic options since they serve several functions and are crucial to developing malignant tumors. Here, we discuss the various steps involved in the mechanism of cancer for which mitochondria plays a significant role, as well as the role of mitochondria in diseases other than cancer. It is crucial to understand mitochondrial malfunction to target these organelles for therapeutic reasons. This highlights the significance of investigating mitochondrial dysfunction in cancer and other disease research.
Collapse
Affiliation(s)
- Surapriya Surendranath Prabhu
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Aathira Sujathan Nair
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Saiprabha Vijayakumar Nirmala
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India.
| |
Collapse
|
27
|
Li Q, Zhang S, Yang G, Wang X, Liu F, Li Y, Chen Y, Zhou T, Xie D, Liu Y, Zhang L. Energy metabolism: A critical target of cardiovascular injury. Biomed Pharmacother 2023; 165:115271. [PMID: 37544284 DOI: 10.1016/j.biopha.2023.115271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023] Open
Abstract
Cardiovascular diseases are the main killers threatening human health. Many studies have shown that abnormal energy metabolism plays a key role in the occurrence and development of acute and chronic cardiovascular diseases. Regulating cardiac energy metabolism is a frontier topic in the treatment of cardiovascular diseases. However, we are not very clear about the choice of different substrates, the specific mechanism of energy metabolism participating in the course of cardiovascular disease, and how to develop appropriate drugs to regulate energy metabolism to treat cardiovascular disease. Therefore, this paper reviews how energy metabolism participates in cardiovascular pathophysiological processes and potential drugs aimed at interfering energy metabolism.It is expected to provide good suggestions for promoting the clinical prevention and treatment of cardiovascular diseases from the perspective of energy metabolism.
Collapse
Affiliation(s)
- Qiyang Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shangzu Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Gengqiang Yang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xin Wang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Fuxian Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yangyang Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yan Chen
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Ting Zhou
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Dingxiong Xie
- Gansu Institute of Cardiovascular Diseases, LanZhou, China.
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China; Key Laboratory of Dunhuang Medicine and Transformation Ministry of Education, China.
| | - Liying Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China; Gansu Institute of Cardiovascular Diseases, LanZhou, China.
| |
Collapse
|
28
|
Gaggi G, Di Credico A, Barbagallo F, Ballerini P, Ghinassi B, Di Baldassarre A. Antenatal Exposure to Plastic Pollutants: Study of the Bisphenols and Perfluoroalkyls Effects on Human Stem Cell Models. EXPOSURE AND HEALTH 2023. [DOI: 10.1007/s12403-023-00586-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/07/2023] [Accepted: 07/05/2023] [Indexed: 09/02/2023]
Abstract
AbstractEndocrine disruptors (EDs), such as Bisphenols (BPs) and Perfluoroalkyls (PFs), are a class of plastic pollutants widely used in industrial applications. Human exposure to these molecules usually occurs through ingestion of contaminated food and water. Once entered the human body they can interfere with endogenous hormone signaling, leading to a wide spectrum of diseases. It has been reported that BPs and PFs can cross the placental barrier accumulating in the fetal serum, but the detrimental consequences for human development remain to be clarified. Here we analyze the effects of different doses of bisphenol A and S (BPA, BPS) perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) on proliferation and mitochondrial health on different types of stem cells: through an integrated approach that combines data from pluripotent stem cells (hiPSCs) with that from the “environment” in which the embryo develops (fetal annexes-derived perinatal stem cells) we verified the potential developmental toxicity of the in utero EDs exposure. Data obtained showed that overall, BPs, and PFs tended to increase the proliferation rate of perinatal stem cells; a similar response was observed in hiPSCs exposed to very low doses of BPs and PFs, while at higher concentrations these chemicals were toxic; in addition, both the BPs and the PFs exerted a mitotoxic effects hiPSCs at all the concentration studied. All these data suggest that antenatal exposure to BPs and PFs, also at very low concentrations, may modify the biological characteristics of stem cells present in both the developing fetus and the fetal annexes, thus perturbing normal human development.
Collapse
|
29
|
Misra SK, Rosenholm JM, Pathak K. Functionalized and Nonfunctionalized Nanosystems for Mitochondrial Drug Delivery with Metallic Nanoparticles. Molecules 2023; 28:4701. [PMID: 37375256 DOI: 10.3390/molecules28124701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Background: The application of metallic nanoparticles as a novel therapeutic tool has significant potential to facilitate the treatment and diagnosis of mitochondria-based disorders. Recently, subcellular mitochondria have been trialed to cure pathologies that depend on their dysfunction. Nanoparticles made from metals and their oxides (including gold, iron, silver, platinum, zinc oxide, and titanium dioxide) have unique modi operandi that can competently rectify mitochondrial disorders. Materials: This review presents insight into the recent research reports on exposure to a myriad of metallic nanoparticles that can alter the dynamic ultrastructure of mitochondria (via altering metabolic homeostasis), as well as pause ATP production, and trigger oxidative stress. The facts and figures have been compiled from more than a hundred PubMed, Web of Science, and Scopus indexed articles that describe the essential functions of mitochondria for the management of human diseases. Result: Nanoengineered metals and their oxide nanoparticles are targeted at the mitochondrial architecture that partakes in the management of a myriad of health issues, including different cancers. These nanosystems not only act as antioxidants but are also fabricated for the delivery of chemotherapeutic agents. However, the biocompatibility, safety, and efficacy of using metal nanoparticles is contested among researchers, which will be discussed further in this review.
Collapse
Affiliation(s)
- Shashi Kiran Misra
- School of Pharmaceutical Sciences, CSJM University Kanpur, Kanpur 208024, India
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity (3rd Floor), Tykistökatu, 6A, 20520 Turku, Finland
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai, Etawah 206130, India
| |
Collapse
|
30
|
The Drp1-Mediated Mitochondrial Fission Protein Interactome as an Emerging Core Player in Mitochondrial Dynamics and Cardiovascular Disease Therapy. Int J Mol Sci 2023; 24:ijms24065785. [PMID: 36982862 PMCID: PMC10057413 DOI: 10.3390/ijms24065785] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
Mitochondria, the membrane-bound cell organelles that supply most of the energy needed for cell function, are highly regulated, dynamic organelles bearing the ability to alter both form and functionality rapidly to maintain normal physiological events and challenge stress to the cell. This amazingly vibrant movement and distribution of mitochondria within cells is controlled by the highly coordinated interplay between mitochondrial dynamic processes and fission and fusion events, as well as mitochondrial quality-control processes, mainly mitochondrial autophagy (also known as mitophagy). Fusion connects and unites neighboring depolarized mitochondria to derive a healthy and distinct mitochondrion. In contrast, fission segregates damaged mitochondria from intact and healthy counterparts and is followed by selective clearance of the damaged mitochondria via mitochondrial specific autophagy, i.e., mitophagy. Hence, the mitochondrial processes encompass all coordinated events of fusion, fission, mitophagy, and biogenesis for sustaining mitochondrial homeostasis. Accumulated evidence strongly suggests that mitochondrial impairment has already emerged as a core player in the pathogenesis, progression, and development of various human diseases, including cardiovascular ailments, the leading causes of death globally, which take an estimated 17.9 million lives each year. The crucial factor governing the fission process is the recruitment of dynamin-related protein 1 (Drp1), a GTPase that regulates mitochondrial fission, from the cytosol to the outer mitochondrial membrane in a guanosine triphosphate (GTP)-dependent manner, where it is oligomerized and self-assembles into spiral structures. In this review, we first aim to describe the structural elements, functionality, and regulatory mechanisms of the key mitochondrial fission protein, Drp1, and other mitochondrial fission adaptor proteins, including mitochondrial fission 1 (Fis1), mitochondrial fission factor (Mff), mitochondrial dynamics 49 (Mid49), and mitochondrial dynamics 51 (Mid51). The core area of the review focuses on the recent advances in understanding the role of the Drp1-mediated mitochondrial fission adaptor protein interactome to unravel the missing links of mitochondrial fission events. Lastly, we discuss the promising mitochondria-targeted therapeutic approaches that involve fission, as well as current evidence on Drp1-mediated fission protein interactions and their critical roles in the pathogeneses of cardiovascular diseases (CVDs).
Collapse
|
31
|
Wan S, Cui Z, Wu L, Zhang F, Liu T, Hu J, Tian J, Yu B, Liu F, Kou J, Li F. Ginsenoside Rd promotes omentin secretion in adipose through TBK1-AMPK to improve mitochondrial biogenesis via WNT5A/Ca 2+ pathways in heart failure. Redox Biol 2023; 60:102610. [PMID: 36652744 PMCID: PMC9860421 DOI: 10.1016/j.redox.2023.102610] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Ginsenoside Rd is an active ingredient in Panax ginseng CA Mey and can be absorbed into the adipose tissue. Adipokines play an important role in the treatment of cardiovascular diseases. However, the potential benefit of Rd on heart failure (HF) and the underlying mechanism associated with the crosstalk between adipocytes and cardiomyocytes remains to be illustrated. Here, the results identified that Rd improved cardiac function and inhibited cardiac pathological changes in transverse aortic constriction (TAC), coronary ligation (CAL) and isoproterenol (ISO)-induced HF mice. And Rd promoted the release of omentin from the adipose tissue and up-regulated omentin expression in lipopolysaccharide (LPS)-induced 3T3-L1 adipocytes. Further, Rd could increase TBK1 and AMPK phosphorylation in adipocytes. And also, the TBK1-AMPK signaling pathway regulated the expression of omentin in LPS-induced adipocytes. Moreover, the omentin mRNA expression was significantly decreased by TBK1 knockdown in LPS-induced 3T3-L1 adipocytes. Additionally, molecular docking and SPR analysis confirmed that Rd had a certain binding ability with TBK1, and co-treatment with TBK1 inhibitors or TBK1 knockdown partially abolished the effect of Rd on increasing the omentin expression and the ratio of p-AMPK to AMPK in adipocytes. Moreover, we found that circulating omentin level diminished in the HF patients compared with healthy subjects. Meanwhile, the adipose tissue-specific overexpression of omentin improved cardiac function, reduced myocardial infarct size and ameliorated cardiac pathological features in CAL-induced HF mice. Consistently, exogenous omentin reduced mtROS levels and restored ΔψM to improve oxygen and glucose deprivation (OGD)-induced cardiomyocytes injury. Further, omentin inhibited the WNT5A/Ca2+ signaling pathway and promoted mitochondrial biogenesis function to ameliorate myocardial ischemia injury. However, WNT5A knockdown inhibited the impairment of mitochondrial biogenesis and partially counteracted the cardioprotective effect of omentin in vitro. Therefore, this study indicated that Rd promoted omentin secretion from adipocytes through the TBK1-AMPK pathway to improve mitochondrial biogenesis function via WNT5A/Ca2+ signaling pathway to ameliorate myocardial ischemia injury, which provided a new therapeutic mechanism and potential drugs for the treatment of HF.
Collapse
Affiliation(s)
- Shiyao Wan
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - ZeKun Cui
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Lingling Wu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Fan Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Tao Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jingui Hu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiangwei Tian
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Fuming Liu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Fang Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
32
|
Tkaczyszyn M, Górniak KM, Lis WH, Ponikowski P, Jankowska EA. Iron Deficiency and Deranged Myocardial Energetics in Heart Failure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:17000. [PMID: 36554881 PMCID: PMC9778731 DOI: 10.3390/ijerph192417000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Among different pathomechanisms involved in the development of heart failure, adverse metabolic myocardial remodeling closely related to ineffective energy production, constitutes the fundamental feature of the disease and translates into further progression of both cardiac dysfunction and maladaptations occurring within other organs. Being the component of key enzymatic machineries, iron plays a vital role in energy generation and utilization, hence the interest in whether, by correcting systemic and/or cellular deficiency of this micronutrient, we can influence the energetic efficiency of tissues, including the heart. In this review we summarize current knowledge on disturbed energy metabolism in failing hearts as well as we analyze experimental evidence linking iron deficiency with deranged myocardial energetics.
Collapse
Affiliation(s)
- Michał Tkaczyszyn
- Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, 50-566 Wroclaw, Poland
| | | | - Weronika Hanna Lis
- Institute of Heart Diseases, University Hospital, 50-566 Wroclaw, Poland
| | - Piotr Ponikowski
- Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, 50-566 Wroclaw, Poland
| | - Ewa Anita Jankowska
- Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, 50-566 Wroclaw, Poland
| |
Collapse
|
33
|
Kalyuzhin VV, Teplyakov AT, Bespalova ID, Kalyuzhina EV, Terentyeva NN, Grakova EV, Kopeva KV, Usov VY, Garganeeva NP, Pavlenko OA, Gorelova YV, Teteneva AV. Promising directions in the treatment of chronic heart failure: improving old or developing new ones? BULLETIN OF SIBERIAN MEDICINE 2022. [DOI: 10.20538/1682-0363-2022-3-181-197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Unprecedented advances of recent decades in clinical pharmacology, cardiac surgery, arrhythmology, and cardiac pacing have significantly improved the prognosis in patients with chronic heart failure (CHF). However, unfortunately, heart failure continues to be associated with high mortality. The solution to this problem consists in simultaneous comprehensive use in clinical practice of all relevant capabilities of continuously improving methods of heart failure treatment proven to be effective in randomized controlled trials (especially when confirmed by the results of studies in real clinical practice), on the one hand, and in development and implementation of innovative approaches to CHF treatment, on the other hand. This is especially relevant for CHF patients with mildly reduced and preserved left ventricular ejection fraction, as poor evidence base for the possibility of improving the prognosis in such patients cannot justify inaction and leaving them without hope of a clinical improvement in their condition. The lecture consistently covers the general principles of CHF treatment and a set of measures aimed at inotropic stimulation and unloading (neurohormonal, volumetric, hemodynamic, and immune) of the heart and outlines some promising areas of disease-modifying therapy.
Collapse
Affiliation(s)
| | - A. T. Teplyakov
- Cardiology Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | | | | | | | - E. V. Grakova
- Cardiology Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | - K. V. Kopeva
- Cardiology Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | - V. Yu. Usov
- Cardiology Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | | | | | | | | |
Collapse
|
34
|
Lazou A, Ramachandra CJ. Protecting the Mitochondria in Cardiac Disease. Int J Mol Sci 2022; 23:ijms23158115. [PMID: 35897690 PMCID: PMC9331751 DOI: 10.3390/ijms23158115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Affiliation(s)
- Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
- Correspondence: (A.L.); (C.J.R.)
| | - Chrishan J. Ramachandra
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
- Cardiovascular & Metabolic Disorders Programme, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
- Correspondence: (A.L.); (C.J.R.)
| |
Collapse
|
35
|
Ala M, Eftekhar SP. The Footprint of Kynurenine Pathway in Cardiovascular Diseases. Int J Tryptophan Res 2022; 15:11786469221096643. [PMID: 35784899 PMCID: PMC9248048 DOI: 10.1177/11786469221096643] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/28/2022] [Indexed: 12/30/2022] Open
Abstract
Kynurenine pathway is the main route of tryptophan metabolism and produces several metabolites with various biologic properties. It has been uncovered that several cardiovascular diseases are associated with the overactivation of kynurenine pathway and kynurenine and its metabolites have diagnostic and prognostic value in cardiovascular diseases. Furthermore, it was found that several kynurenine metabolites can differently affect cardiovascular health. For instance, preclinical studies have shown that kynurenine, xanthurenic acid and cis-WOOH decrease blood pressure; kynurenine and 3-hydroxyanthranilic acid prevent atherosclerosis; kynurenic acid supplementation and kynurenine 3-monooxygenase (KMO) inhibition improve the outcome of stroke. Indoleamine 2,3-dioxygenase (IDO) overactivity and increased kynurenine levels improve cardiac and vascular transplantation outcomes, whereas exacerbating the outcome of myocardial ischemia, post-ischemic myocardial remodeling, and abdominal aorta aneurysm. IDO inhibition and KMO inhibition are also protective against viral myocarditis. In addition, dysregulation of kynurenine pathway is observed in several conditions such as senescence, depression, diabetes, chronic kidney disease (CKD), cirrhosis, and cancer closely connected to cardiovascular dysfunction. It is worth defining the exact effect of each metabolite of kynurenine pathway on cardiovascular health. This narrative review is the first review that separately discusses the involvement of kynurenine pathway in different cardiovascular diseases and dissects the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Seyed Parsa Eftekhar
- Student Research Committee, Health Research Center, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
36
|
Gallo G, Migliarino S, Cotugno M, Stanzione R, Burocchi S, Bianchi F, Marchitti S, Autore C, Volpe M, Rubattu S. Impact of a NDUFC2 Variant on the Occurrence of Acute Coronary Syndromes. Front Cardiovasc Med 2022; 9:921244. [PMID: 35711349 PMCID: PMC9197441 DOI: 10.3389/fcvm.2022.921244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background Among several potential mechanisms, mitochondrial dysfunction has been proposed to be involved in the pathogenesis of coronary artery disease (CAD). A mitochondrial complex I deficiency severely impairs cardiovascular health and contributes to CAD development. Previous evidence highlighted a key role of NDUFC2, a subunit of complex I, deficiency in the increased occurrence of renal and cerebrovascular damage in an animal model of hypertension, and of juvenile ischemic stroke occurrence in humans. Furthermore, a significant decrease of NDUFC2 mRNA was detected in peripheral blood mononuclear cells from patients experiencing acute coronary syndrome (ACS). The T allele at NDUFC2/rs23117379 variant is known to associate with reduced gene expression and mitochondrial dysfunction. Objective In the present study we tested the impact of the T/C NDUFC2/rs23117379 variant on occurrence of ACS in a prospective cohort of CAD patients (n = 260). Results Hypertension, smoking habit, diabetes and hypercholesterolemia were present in a large proportion of patients. Non-ST-elevation myocardial infarction (NSTEMI) represented the most frequent type of ACS (44%, n = 115), followed by ST-elevation myocardial infarction (STEMI) (34%, n = 88) and unstable angina (22%, n = 57). The alleles/genotypes distribution for T/C at NDUFC2/rs23117379 revealed that the TT genotype was associated with a trend toward the development of ACS at an earlier age (TT 61 ± 12, CT 65 ± 12 and CC 66 ± 11 years; p = 0.051 after adjustment for gender, hypertension, smoking habit, diabetes and hypercholesterolemia) and with a significant predictive role for ACS recurrence (hazard ratio [HR]1.671; 95% confidence interval [CI], 1.138–2.472; p = 0.009). Conclusions Our findings are consistent with a deleterious effect of NDUFC2 deficiency on acute coronary events predisposition and further support a role of the NDUFC2/rs23117379 variant as a genetic cardiovascular risk factor.
Collapse
Affiliation(s)
- Giovanna Gallo
- Cardiology Unit, Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Serena Migliarino
- Division of Cardiology, Department of Medical and Surgical Science, Magna Graecia University, Catanzaro, Italy
| | | | | | - Simone Burocchi
- Cardiology Unit, Belcolle Hospital, ASL Viterbo, Viterbo, Italy
| | | | | | - Camillo Autore
- Cardiology Unit, Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Massimo Volpe
- Cardiology Unit, Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Speranza Rubattu
- Cardiology Unit, Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli (IS), Italy
- *Correspondence: Speranza Rubattu
| |
Collapse
|
37
|
Oulehri W, Collange O, Tacquard C, Bellou A, Graff J, Charles AL, Geny B, Mertes PM. Impaired Myocardial Mitochondrial Function in an Experimental Model of Anaphylactic Shock. BIOLOGY 2022; 11:730. [PMID: 35625458 PMCID: PMC9139016 DOI: 10.3390/biology11050730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/30/2022] [Accepted: 05/06/2022] [Indexed: 12/07/2022]
Abstract
Anaphylactic shock (AS) is associated with a profound vasodilation and cardiac dysfunction. The cellular mechanisms underlying AS-related cardiac dysfunction are unknown. We hypothesized that myocardial mitochondrial dysfunction may be associated with AS cardiac dysfunction. In controls and sensitized Brown Norway rats, shock was induced by ovalbumin i.v bolus, and abdominal aortic blood flow (ABF), systemic mean arterial pressure (MAP), and lactatemia were measured for 15 min. Myocardial mitochondrial function was assessed with the evaluation of mitochondrial respiration, oxidative stress production by reactive oxygen species (ROS), reactive nitrogen species (RNS), and the measurement of superoxide dismutases (SODs) activity. Oxidative damage was assessed by lipid peroxidation. The mitochondrial ultrastructure was assessed using transmission electronic microscopy. AS was associated with a dramatic drop in ABF and MAP combined with a severe hyperlactatemia 15 min after shock induction. CI-linked substrate state (197 ± 21 vs. 144 ± 21 pmol/s/mg, p < 0.05), OXPHOS activity by complexes I and II (411 ± 47 vs. 246 ± 33 pmol/s/mg, p < 0.05), and OXPHOS activity through complex II (316 ± 40 vs. 203 ± 28 pmol/s/mg, p < 0.05) were significantly impaired. ROS and RNS production was not significantly increased, but SODs activity was significantly higher in the AS group (11.15 ± 1.02 vs. 15.50 ± 1.40 U/mL/mg protein, p = 0.02). Finally, cardiac lipid peroxidation was significantly increased in the AS group (8.50 ± 0.67 vs. 12.17 ± 1.44 µM/mg protein, p < 0.05). No obvious changes were observed in the mitochondrial ultrastructure between CON and AS groups. Our experimental model of AS results in rapid and deleterious hemodynamic effects and was associated with a myocardial mitochondrial dysfunction with oxidative damage and without mitochondrial ultrastructural injury.
Collapse
Affiliation(s)
- Walid Oulehri
- Pôle Anesthésie, Réanimation Chirurgicale, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France; (W.O.); (O.C.); (C.T.)
- Faculté de Médecine de Strasbourg, UR 3072 Institut de Physiologie, FMTS (Fédération de Médecine Translationnelle de Strasbourg), Université de Strasbourg, 67091 Strasbourg, France; (A.-L.C.); (B.G.)
| | - Olivier Collange
- Pôle Anesthésie, Réanimation Chirurgicale, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France; (W.O.); (O.C.); (C.T.)
- Faculté de Médecine de Strasbourg, UR 3072 Institut de Physiologie, FMTS (Fédération de Médecine Translationnelle de Strasbourg), Université de Strasbourg, 67091 Strasbourg, France; (A.-L.C.); (B.G.)
| | - Charles Tacquard
- Pôle Anesthésie, Réanimation Chirurgicale, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France; (W.O.); (O.C.); (C.T.)
- Faculté de Médecine de Strasbourg, UR 3072 Institut de Physiologie, FMTS (Fédération de Médecine Translationnelle de Strasbourg), Université de Strasbourg, 67091 Strasbourg, France; (A.-L.C.); (B.G.)
| | - Abdelouahab Bellou
- Institute of Sciences in Emergency Medicine, Academy of Medical Sciences, Guangdong General People Hospital, Guangzhou 510060, China;
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Global Healthcare Network & Research Innovation Institute LLC, Brookline, MA 02446, USA
| | - Julien Graff
- Faculté de Médecine de Strasbourg, Institut d’Histologie, Service Central de Microscopie Électronique, FMTS (Fédération de Médecine Translationnelle de Strasbourg), Université de Strasbourg, 67091 Strasbourg, France;
| | - Anne-Laure Charles
- Faculté de Médecine de Strasbourg, UR 3072 Institut de Physiologie, FMTS (Fédération de Médecine Translationnelle de Strasbourg), Université de Strasbourg, 67091 Strasbourg, France; (A.-L.C.); (B.G.)
- Service de Physiologie et d’Explorations Fonctionnelles, Pôle de Pathologie Thoracique, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France
| | - Bernard Geny
- Faculté de Médecine de Strasbourg, UR 3072 Institut de Physiologie, FMTS (Fédération de Médecine Translationnelle de Strasbourg), Université de Strasbourg, 67091 Strasbourg, France; (A.-L.C.); (B.G.)
- Service de Physiologie et d’Explorations Fonctionnelles, Pôle de Pathologie Thoracique, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France
| | - Paul-Michel Mertes
- Pôle Anesthésie, Réanimation Chirurgicale, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France; (W.O.); (O.C.); (C.T.)
- Faculté de Médecine de Strasbourg, UR 3072 Institut de Physiologie, FMTS (Fédération de Médecine Translationnelle de Strasbourg), Université de Strasbourg, 67091 Strasbourg, France; (A.-L.C.); (B.G.)
| |
Collapse
|
38
|
RNA-Seq Profiling to Investigate the Mechanism of Qishen Granules on Regulating Mitochondrial Energy Metabolism of Heart Failure in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2021:5779307. [PMID: 35003305 PMCID: PMC8741342 DOI: 10.1155/2021/5779307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023]
Abstract
Background. Qishen granules (QSG) are a frequently prescribed formula with cardioprotective properties prescribed to HF for many years. RNA-seq profiling revealed that regulation on cardiac mitochondrial energy metabolism is the main therapeutic effect. However, the underlying mechanism is still unknown. In this study, we explored the effects of QSG on regulating mitochondrial energy metabolism and oxidative stress through the PGC-1α/NRF1/TFAM signaling pathway. RNA-seq technology revealed that QSG significantly changed the differential gene expression of mitochondrial dysfunction in myocardial ischemic tissue. The mechanism was verified through the left anterior descending artery- (LAD-) induced HF rat model and oxygen glucose deprivation/recovery- (OGD/R-) established H9C2 induction model both in vivo and in vitro. Echocardiography and HE staining showed that QSG could effectively improve the cardiac function of rats with myocardial infarction in functionality and structure. Furthermore, transcriptomics revealed QSG could significantly regulate mitochondrial dysfunction-related proteins at the transcriptome level. The results of electron microscopy and immunofluorescence proved that the mitochondrial morphology, mitochondrial membrane structural integrity, and myocardial oxidative stress damage can be effectively improved after QSG treatment. Mechanism studies showed that QSG increased the expression level of mitochondrial biogenesis factor PGC-1α/NRF1/TFAM protein and regulated the balance of mitochondrial fusion/fission protein expression. QSG could regulate mitochondrial dysfunction in ischemia heart tissue to protect cardiac function and structure in HF rats. The likely mechanism is the adjustment of PGC-1α/NRF1/TFAM pathway to alleviate oxidative stress in myocardial cells. Therefore, PGC-1α may be a potential therapeutic target for improving mitochondrial dysfunction in HF.
Collapse
|
39
|
Videla LA, Marimán A, Ramos B, José Silva M, Del Campo A. Standpoints in mitochondrial dysfunction: Underlying mechanisms in search of therapeutic strategies. Mitochondrion 2022; 63:9-22. [PMID: 34990812 DOI: 10.1016/j.mito.2021.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023]
Abstract
Mitochondrial dysfunction has been defined as a reduced efficiency of mitochondria to produce ATP given by a loss of mitochondrial membrane potential, alterations in the electron transport chain (ETC) function, with increase in reactive oxygen species (ROS) generation and decrease in oxygen consumption. During the last decades, mitochondrial dysfunction has been the focus of many researchers as a convergent point for the pathophysiology of several diseases. Numerous investigations have demonstrated that mitochondrial dysfunction is detrimental to cells, tissues and organisms, nevertheless, dysfunctional mitochondria can signal in a particular way in response to stress, a characteristic that may be useful to search for new therapeutic strategies with a common feature. The aim of this review addresses mitochondrial dysfunction and stress signaling as a promising target for future drug development.
Collapse
Affiliation(s)
- Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile.
| | - Andrea Marimán
- Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
| | - Bastián Ramos
- Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
| | - María José Silva
- Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
| | - Andrea Del Campo
- Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile.
| |
Collapse
|
40
|
Krueger KJ, Rahman FK, Shen Q, Vacek J, Hiebert JB, Pierce JD. Mitochondrial bioenergetics and D-ribose in HFpEF: a brief narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1504. [PMID: 34805366 PMCID: PMC8573443 DOI: 10.21037/atm-21-2291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/15/2021] [Indexed: 11/24/2022]
Abstract
Objective In this review article, we briefly describe the status of treatment options for HFpEF and the role of mitochondrial dysfunction in the pathogenesis of HFpEF as an alternative therapeutic target. We also examine the mechanisms of D-ribose in cellular energy production and discuss the potential disadvantages and benefits of supplemental use of D-ribose in patients with HFpEF. Background Heart failure is a major cardiovascular disease that impacts over 6 million Americans and is one of the leading causes for morbidity and mortality. Patients with heart failure often experience shortness of breath and fatigue along with impaired physical capacity, all leading to poor quality of life. As a subtype of heart failure, heart failure with preserved ejection fraction (HFpEF) is characterized with impaired diastolic function. Currently, there are no effective treatments specifically for HFpEF, thus clinicians and researchers are searching for therapies to improve cardiac function. Emerging evidence indicate that mitochondrial dysfunction and impaired cardiac bioenergetics are among the underlying mechanisms for HFpEF. There is increased interest in investigating the use of supplements such as D-ribose to enhance mitochondrial function and improve production of adenosine triphosphate (ATP). Methods For this narrative review, more than 100 relevant scientific articles were considered from various databases (e.g., PubMed, Web of Science, CINAHL, and Google Scholar) using the keywords “Heart Failure”, “HFpEF”, “D-ribose”, “ATP”, “Mitochondria”, Bioenergetics”, and “Cellular Respiration”. Conclusions It is essential to find potential targeted therapeutic treatments for HFpEF. Since there is evidence that the HFpEF is related to impaired myocardial bioenergetics, enhancing mitochondrial function could augment cardiac function. Using a supplement such as D-ribose could improve mitochondrial function by increasing ATP and enhancing cardiac performance for patients with HFpEF. There is a recently completed clinical trial with HFpEF patients that indicates D-ribose increases ATP production and improves cardiac ejection fraction.
Collapse
Affiliation(s)
- Kathryn J Krueger
- School of Nursing, University of Kansas Medical Center, Kansas City, KS, USA
| | - Faith K Rahman
- School of Nursing, University of Kansas Medical Center, Kansas City, KS, USA
| | - Qiuhua Shen
- School of Nursing, University of Kansas Medical Center, Kansas City, KS, USA
| | - James Vacek
- The University of Kansas Health System, Kansas City, KS, USA
| | - John B Hiebert
- School of Nursing, University of Kansas Medical Center, Kansas City, KS, USA
| | - Janet D Pierce
- School of Nursing, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
41
|
Moos WH, Faller DV, Glavas IP, Harpp DN, Kamperi N, Kanara I, Kodukula K, Mavrakis AN, Pernokas J, Pernokas M, Pinkert CA, Powers WR, Steliou K, Tamvakopoulos C, Vavvas DG, Zamboni RJ, Sampani K. Pathogenic mitochondrial dysfunction and metabolic abnormalities. Biochem Pharmacol 2021; 193:114809. [PMID: 34673016 DOI: 10.1016/j.bcp.2021.114809] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023]
Abstract
Herein we trace links between biochemical pathways, pathogenesis, and metabolic diseases to set the stage for new therapeutic advances. Cellular and acellular microorganisms including bacteria and viruses are primary pathogenic drivers that cause disease. Missing from this statement are subcellular compartments, importantly mitochondria, which can be pathogenic by themselves, also serving as key metabolic disease intermediaries. The breakdown of food molecules provides chemical energy to power cellular processes, with mitochondria as powerhouses and ATP as the principal energy carrying molecule. Most animal cell ATP is produced by mitochondrial synthase; its central role in metabolism has been known for >80 years. Metabolic disorders involving many organ systems are prevalent in all age groups. Progressive pathogenic mitochondrial dysfunction is a hallmark of genetic mitochondrial diseases, the most common phenotypic expression of inherited metabolic disorders. Confluent genetic, metabolic, and mitochondrial axes surface in diabetes, heart failure, neurodegenerative disease, and even in the ongoing coronavirus pandemic.
Collapse
Affiliation(s)
- Walter H Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA.
| | - Douglas V Faller
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Cancer Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Ioannis P Glavas
- Department of Ophthalmology, New York University School of Medicine, New York, NY, USA
| | - David N Harpp
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | - Natalia Kamperi
- Center for Clinical, Experimental Surgery and Translational Research Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | | | | | - Anastasios N Mavrakis
- Department of Medicine, Tufts University School of Medicine, St. Elizabeth's Medical Center, Boston, MA, USA
| | - Julie Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Mark Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Carl A Pinkert
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Whitney R Powers
- Department of Health Sciences, Boston University, Boston, MA, USA; Department of Anatomy, Boston University School of Medicine, Boston, MA, USA
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA; PhenoMatriX, Inc., Natick, MA, USA
| | - Constantin Tamvakopoulos
- Center for Clinical, Experimental Surgery and Translational Research Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Demetrios G Vavvas
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Robert J Zamboni
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | - Konstantina Sampani
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
42
|
Luan Y, Luan Y, Feng Q, Chen X, Ren KD, Yang Y. Emerging Role of Mitophagy in the Heart: Therapeutic Potentials to Modulate Mitophagy in Cardiac Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3259963. [PMID: 34603595 PMCID: PMC8483925 DOI: 10.1155/2021/3259963] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022]
Abstract
The normal function of the mitochondria is crucial for most tissues especially for those that demand a high energy supply. Emerging evidence has pointed out that healthy mitochondrial function is closely associated with normal heart function. When these processes fail to repair the damaged mitochondria, cells initiate a removal process referred to as mitophagy to clear away defective mitochondria. In cardiomyocytes, mitophagy is closely associated with metabolic activity, cell differentiation, apoptosis, and other physiological processes involved in major phenotypic alterations. Mitophagy alterations may contribute to detrimental or beneficial effects in a multitude of cardiac diseases, indicating potential clinical insights after a close understanding of the mechanisms. Here, we discuss the current opinions of mitophagy in the progression of cardiac diseases, such as ischemic heart disease, diabetic cardiomyopathy, cardiac hypertrophy, heart failure, and arrhythmia, and focus on the key molecules and related pathways involved in the regulation of mitophagy. We also discuss recently reported approaches targeting mitophagy in the therapy of cardiac diseases.
Collapse
Affiliation(s)
- Yi Luan
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ying Luan
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qi Feng
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
| | - Xing Chen
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Kai-Di Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Yang Yang
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
43
|
Mitochondrial Dysfunction Contributes to Aging-Related Atrial Fibrillation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5530293. [PMID: 34007402 PMCID: PMC8102104 DOI: 10.1155/2021/5530293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/04/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022]
Abstract
The incidence of atrial fibrillation (AF) increases with age, and telomere length gradually shortens with age. However, whether telomere length is related to AF is still inconclusive, and the exact mechanism by which aging causes the increased incidence of AF is still unclear. We hypothesize that telomere length is correlated with aging-related AF and that mitochondrial dysfunction plays a role in this. This research recruited 96 elderly male patients with AF who were admitted to the Second Medical Center of Chinese PLA General Hospital from April to October 2018. After matching by age and gender, 96 non-AF elderly male patients who were admitted to the hospital for physical examination during the same period were selected as controls. Anthropometric, clinical, and laboratory analyses were performed on all subjects. The mitochondrial membrane potential (MMP) of peripheral blood leukocytes was detected as the indicator of mitochondrial function. Compared with the control group, the leukocyte telomere length (LTL) was significantly shorter (P < 0.001), and the level of PGC-1α in serum was significantly lower in AF patients. Additionally, in subjects without any other diseases, the AF patients had lower MMP when compared with the control. Multivariate logistic regression confirmed that LTL (OR 0.365; 95% CI 0.235-0.568; P < 0.001) and serum PGC-1α (OR 0.993; 95% CI 0.988-0.997; P = 0.002) were inversely associated with the presence of AF. In addition, ROC analysis indicated the potential diagnostic value of LTL and serum PGC-1α with AUC values of 0.734 and 0.633, respectively. This research concludes that LTL and serum PGC-1α are inversely correlated with the occurrence of aging-related AF and that mitochondrial dysfunction plays a role in this.
Collapse
|