1
|
Cantuti Gendre J, Le Marrec C, Chaillou S, Omhover-Fougy L, Landaud S, Dugat-Bony E. Exploring viral diversity in fermented vegetables through viral metagenomics. Food Microbiol 2025; 128:104733. [PMID: 39952771 DOI: 10.1016/j.fm.2025.104733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/17/2025]
Abstract
Fermented vegetables are traditionally produced using the endogenous microorganisms present in raw ingredients. While the diversity of bacteria and fungi in fermented vegetables has been relatively well studied, phage communities remain largely unexplored. In this study, we collected twelve samples of fermented cabbage, carrot, and turnip after fermentation and analyzed the microbial and viral communities using shotgun and viral metagenomic approaches. Assessment of the viral diversity also benefited from epifluorescence microscopy to estimate viral load. The viral metagenomics approach targeted dsDNA, ssDNA, and RNA viruses. The microbiome of fermented vegetables was dominated by lactic acid bacteria and varied according to the type of vegetable used as raw material. The analysis of metagenome-assembled-genomes allowed the detection of 22 prophages of which 8 were present as free particles and therefore detected in the metaviromes. The viral community, estimated to range from 5.28 to 7.57 log virus-like particles per gram of fermented vegetables depending on the sample, was mainly composed of dsDNA viruses, although ssDNA and non-bacterial RNA viruses, possibly originating from the phyllosphere, were also detected. The dsDNA viral community, primarily comprising bacteriophages, varied depending on the type of vegetable used for fermentation. The bacterial hosts predicted for these phages mainly belonged to Lactobacillaceae and Enterobacteriaceae families. These results highlighted the complex microbial and viral composition of fermented vegetables, which varied depending on the three types of vegetables used as raw material. Further research is needed to deepen our understanding of the impact of these viruses on the microbial ecology of fermented vegetables and on the quality of the final products.
Collapse
Affiliation(s)
- Julia Cantuti Gendre
- UMR 0782 SAYFOOD, Université Paris-Saclay, INRAE, AgroParisTech, 22 place de l'agronomie, 91120, Palaiseau, France
| | - Claire Le Marrec
- UMR 1366 OENOLOGIE, Université Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 210 Chemin de Leysotte, 33140, Villenave-d'Ornon, France
| | - Stéphane Chaillou
- UMR 1319 MICALIS INSTITUTE, Université Paris-Saclay, INRAE, AgroParisTech, Domaine de Vilvert, 78350, Jouy-en-Josas, France
| | | | - Sophie Landaud
- UMR 0782 SAYFOOD, Université Paris-Saclay, INRAE, AgroParisTech, 22 place de l'agronomie, 91120, Palaiseau, France
| | - Eric Dugat-Bony
- UMR 0782 SAYFOOD, Université Paris-Saclay, INRAE, AgroParisTech, 22 place de l'agronomie, 91120, Palaiseau, France.
| |
Collapse
|
2
|
Resende IF, Martins PMM, de Souza Melo D, Magnani M, Dias DR, Schwan RF. Development and characterization of microencapsulated Pichia kluyveri CCMA 0615 with probiotic properties and its application in fermented beverages. Int J Food Microbiol 2025; 427:110967. [PMID: 39520763 DOI: 10.1016/j.ijfoodmicro.2024.110967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The study aimed to develop innovative microencapsulated formulations of strains with probiotic attributes, Pichia kluyveri CCMA 0615 and Saccharomyces cerevisiae CCMA 0732. The yeasts (8 log CFU/mL) were microencapsulated by spray drying technique using whey powder (WP - 15 %, 20 %, and 30 %) and sodium alginate (ALG - 1 %). The microcapsules and cell viability were characterized during two months of storage (4 °C and 25 °C). The selected formulations were applied to functional beverage fermentation, and viability and survival in the simulated gastrointestinal tract (GIT) were performed. The viability of yeasts microencapsulated by the spray drying method was shown to be dependent on the strain and encapsulating matrix used, ranging from 84 to 99 %. P. kluyveri required refrigeration when storing microcapsules. In functional beverage fermentation, microencapsulated yeast maintained the same fermentative profile with carbohydrate consumption, production of lactic acid (0.30 to 1.10 g/L) and alcohol (0.2 to 1.61 g/L), and greater viability during storage. Finally, the microencapsulation of P. kluyveri with 15 % WP + 1 % ALG maintained high viability under GIT conditions, whether exposed independently (>84 %) or incorporated into a food matrix (>94 %). The study demonstrated that this innovative microencapsulation of probiotic yeasts increases their viability, improves biotechnological application, and facilitates efficient delivery of probiotics to the host.
Collapse
Affiliation(s)
| | | | | | - Marciane Magnani
- Federal University of Paraiba, 50851-900 Joao Pessoa, PB, Brazil
| | | | | |
Collapse
|
3
|
Wang YW, Huang YF, Guo YQ, Sun L, Jiang ZL, Zhu YT, Zeng RQ, Li Q, Xiao C, Zuo Y. Dissecting Interactions of Saccharomyces cerevisiae and Pichia kudriavzevii to Shape Kiwifruit Wine Flavor. Foods 2024; 13:4077. [PMID: 39767018 PMCID: PMC11675217 DOI: 10.3390/foods13244077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Mixed fermentation with Saccharomyces cerevisiae and Pichia kudriavzevii has been shown to enhance wine aroma, yet the underlying mechanisms remain unclear. Monoculture of S. cerevisiae, monoculture of P. kudriavzevii, and mixed culture of S. cerevisiae and P. kudriavzevii were conducted, and the study analyzed and compared the biomass, flavor profile, and transcriptome responses of the three groups. Both yeast species exhibited growth inhibition in mixed culture, especially P. kudriavzevii. Significant differences were observed in three organic acids and the foremost 20 volatile compounds. Mixed fermentation enhanced esters (e.g., ethyl butyrate, isoamyl acetate) and volatile acids (e.g., hexanoic acid), but decreased isobutanol, phenylethyl alcohol, and quinic acid. Transcriptomic analysis revealed 294 and 332 differentially expressed genes (DEGs) in S. cerevisiae and P. kudriavzevii, respectively. The Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation results indicated that DEGs in mixed fermentation were concentrated in carbohydrate metabolism and amino acid metabolism. Our integrated analysis suggested that genes such as TDH2, TDH3, and ENO2 were pivotal for ester biosynthesis. Moreover, ADH1, ADH2, HPA3, ALD6, and ARO8 were associated with quinic acid synthesis. Furthermore, ILV2, ILV5, ALD6, and others were central to the production of isobutanol and phenylethyl alcohol.
Collapse
Affiliation(s)
- Yi-Wen Wang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610101, China; (Y.-W.W.); (Z.-L.J.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Y.-F.H.); (Y.-Q.G.); (L.S.); (Y.-T.Z.); (R.-Q.Z.); (Q.L.)
| | - Yi-Fen Huang
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Y.-F.H.); (Y.-Q.G.); (L.S.); (Y.-T.Z.); (R.-Q.Z.); (Q.L.)
| | - Ya-Qi Guo
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Y.-F.H.); (Y.-Q.G.); (L.S.); (Y.-T.Z.); (R.-Q.Z.); (Q.L.)
| | - Li Sun
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Y.-F.H.); (Y.-Q.G.); (L.S.); (Y.-T.Z.); (R.-Q.Z.); (Q.L.)
| | - Zhi-Lin Jiang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610101, China; (Y.-W.W.); (Z.-L.J.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Y.-F.H.); (Y.-Q.G.); (L.S.); (Y.-T.Z.); (R.-Q.Z.); (Q.L.)
| | - Yuan-Ting Zhu
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Y.-F.H.); (Y.-Q.G.); (L.S.); (Y.-T.Z.); (R.-Q.Z.); (Q.L.)
| | - Rui-Qi Zeng
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Y.-F.H.); (Y.-Q.G.); (L.S.); (Y.-T.Z.); (R.-Q.Z.); (Q.L.)
| | - Qi Li
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Y.-F.H.); (Y.-Q.G.); (L.S.); (Y.-T.Z.); (R.-Q.Z.); (Q.L.)
| | - Chen Xiao
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Y.-F.H.); (Y.-Q.G.); (L.S.); (Y.-T.Z.); (R.-Q.Z.); (Q.L.)
| | - Yong Zuo
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610101, China; (Y.-W.W.); (Z.-L.J.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Y.-F.H.); (Y.-Q.G.); (L.S.); (Y.-T.Z.); (R.-Q.Z.); (Q.L.)
| |
Collapse
|
4
|
Huang PH, Lin YC, Lin YW, Zhang YW, Huang DW. The Potential of Co-Fermentation with Pichia kluyveri and Saccharomyces cerevisiae for the Production of Low-Alcohol Craft Beer. Foods 2024; 13:3794. [PMID: 39682866 DOI: 10.3390/foods13233794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
The potential health impacts of moderate alcohol consumption have long been debated. The COVID-19 pandemic has heightened public awareness of health concerns, creating a clear market opportunity for low-alcohol craft beer development. This study investigated the possibility of low-alcohol craft beer by co-fermentation with different ratios of Pichia kluyveri (P. kluyveri) and Saccharomyces cerevisiae (SC) according to the established quality indexes. Specifically, this study was conducted to identify the low-alcohol craft beer quality by fermentation kinetics, growth kinetics, apparent attenuation (AA), real attenuation (RA), residual sugar content, alcohol by volume (ABV), and volatile organic compounds. This study demonstrated that the co-fermentation of SC and P. kluyveri in a 1:10 ratio produced an ABV of 2.98% (v/v). In addition, high concentrations of isoamyl acetate and phenyl ethyl acetate revealed banana, rose, apple, and honey flavors, respectively. Overall, this study revealed that the fermentation of P. kluyveri and SC by co-fermentation and the fermentation process by adjusting the yeast composition developed a craft beer with low alcohol content and rich aroma while establishing the quality indicators.
Collapse
Affiliation(s)
- Ping-Hsiu Huang
- School of Food, Jiangsu Food and Pharmaceutical Science College, No.4, Meicheng Rd., Higher Education Park, Huai'an 223003, China
| | - Yung-Chi Lin
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, No.1, Nantai St., Yungkang Dist., Tainan 710301, Taiwan
| | - Yu-Wen Lin
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, No.70, Dazhi St., Zhongshan Dist., Taipei 104336, Taiwan
| | - You-Wei Zhang
- School of Food, Jiangsu Food and Pharmaceutical Science College, No.4, Meicheng Rd., Higher Education Park, Huai'an 223003, China
| | - Da-Wei Huang
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, No.1, Nantai St., Yungkang Dist., Tainan 710301, Taiwan
| |
Collapse
|
5
|
Brischetto C, Rossi V, Fedele G. The microbiome analysis of ripen grape berries supports the complex etiology of sour rot. Front Microbiol 2024; 15:1450443. [PMID: 39575185 PMCID: PMC11578972 DOI: 10.3389/fmicb.2024.1450443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024] Open
Abstract
Sour rot (SR) is a grapevine disease complex that is not completely understood in its etiology and epidemiology. Recently, SR has received special attention due to its increasing economic importance due to crop losses and reduced wine quality. In this study, the fungal and bacterial microbiota of healthy (i.e., without rot symptoms) and rotten (i.e., exhibiting visual and olfactory SR symptoms) ripe bunches were characterized across 47 epidemics (39 vineyards in six Italian grape-growing areas) over three years. The 16S rRNA gene, ITS high-throughput amplicon sequencing, and quantitative PCR were used to assess the relative abundance and dynamic changes of microorganisms associated with SR. The estimators of genera richness of fungal communities within samples indicated a significantly different diversity between healthy and rotten bunches. For bacterial communities, the healthy and rotten bunches significantly differed in the total number of species, but not in abundance distribution across species. The bunch status (i.e., healthy and rotten) was a significant source of diversity (p < 0.01) when the community composition between samples was evaluated, indicating that microbiome composition varied between healthy and rotten bunches. In particular, healthy and rotten bunches shared 43.1 and 54.8% of fungal and bacterial genera, respectively; 31.3% (fungal) and 26.2% (bacterial) genera were associated with rotten bunches only. The yeast genera Zygosaccharomyces, Zygoascus, Saccharomycopsis, Issatchenkia, and Pichia and the bacterial genera Orbus, Gluconobacter, Komagataeibacter, Gluconacetobacter, and Wolbachia were strongly associated with bunches showing SR symptoms based on a linear discriminant analysis. These microorganisms have been associated with Drosophila insects in literature. The relationships between the microflora associated with SR-affected bunches and the roles of Drosophila in SR development need further investigation, which may open perspectives for more effective disease control.
Collapse
Affiliation(s)
- Chiara Brischetto
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Piacenza, Italy
- Research Center on Plant Health Modelling (PHeM), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Vittorio Rossi
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Piacenza, Italy
- Research Center on Plant Health Modelling (PHeM), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Giorgia Fedele
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Piacenza, Italy
- Research Center on Plant Health Modelling (PHeM), Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
6
|
Whiteley LE, Rieckh G, Diggle FL, Alaga ZM, Nachbaur EH, Nachbaur WT, Whiteley M. Use of commercial or indigenous yeast impacts the S. cerevisiae transcriptome during wine fermentation. Microbiol Spectr 2024; 12:e0119424. [PMID: 39287451 PMCID: PMC11537062 DOI: 10.1128/spectrum.01194-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Grapes have been cultivated for wine production for millennia. Wine production involves a complex biochemical process where sugars in grape must are converted into alcohol and other compounds by microbial fermentation, primarily by the yeast Saccharomyces cerevisiae. Commercially available S. cerevisiae strains are often used in winemaking, but indigenous (native) strains are gaining attention for their potential to contribute unique flavors. Recent advancements in high-throughput DNA sequencing have revolutionized our understanding of microbial communities during wine fermentation. Indeed, transcriptomic analysis of S. cerevisiae during wine fermentation has revealed a core gene expression program and provided insights into how this yeast adapts to fermentation conditions. Here, we assessed how the age of vines impacts the grape fungal microbiome and used transcriptomics to characterize microbial functions in grape must fermented with commercial and native S. cerevisiae. We discovered that ~130-year-old Zinfandel vines harbor higher fungal loads on their grapes compared to 20-year-old Zinfandel vines, but fungal diversity is similar. Additionally, a comparison of inoculated and uninoculated fermentations showed distinct fungal dynamics, with uninoculated fermentations harboring the yeasts Metschnikowia and Pichia. Transcriptomic analysis revealed significant differences in gene expression between fermentations inoculated and not inoculated with a commercial S. cerevisiae strain. Genes related to metabolism, stress response, and cell adhesion were differentially expressed, indicating varied functionality of S. cerevisiae in these fermentations. These findings provide insights into S. cerevisiae function during fermentation and highlight the potential for indigenous yeast to contribute to wine diversity. IMPORTANCE Understanding microbial functions during wine fermentation, particularly the role of Saccharomyces cerevisiae, is crucial for enhancing wine quality. While commercially available S. cerevisiae strains are commonly used, indigenous strains can offer unique flavors, potentially reflecting vineyard terroir. By leveraging high-throughput DNA sequencing and transcriptomic analysis, we explored the impact of vine age on the grape mycobiome and characterized microbial functions during grape fermentation. Our findings revealed that older vines harbor higher fungal loads, but fungal diversity remains similar across vine ages. Additionally, uninoculated fermentations exhibited diverse fungal dynamics, including the beneficial wine yeasts Metschnikowia and Pichia. Transcriptomic analysis uncovered significant differences in S. cerevisiae gene expression between inoculated and uninoculated fermentations, highlighting the potential of indigenous yeast to enhance wine diversity and inform winemaking practices.
Collapse
Affiliation(s)
- Lauren E. Whiteley
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children’s Cystic Fibrosis Center, Atlanta, Georgia, USA
| | - Georg Rieckh
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children’s Cystic Fibrosis Center, Atlanta, Georgia, USA
| | - Frances L. Diggle
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children’s Cystic Fibrosis Center, Atlanta, Georgia, USA
| | - Zach M. Alaga
- Alegría Vineyards and Acorn Winery, Healdsburg, California, USA
| | | | | | - Marvin Whiteley
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children’s Cystic Fibrosis Center, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Entringer TL, da Luz JMR, Veloso TGR, Pereira LL, Menezes KMS, Brioschi Júnior D, Kasuya MCM, da Silva MDCS. Genetic diversity of the fungal community that contributes to the sensory quality of coffee beverage after carbonic maceration and fermentation. 3 Biotech 2024; 14:272. [PMID: 39434956 PMCID: PMC11490598 DOI: 10.1007/s13205-024-04099-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/18/2024] [Indexed: 10/23/2024] Open
Abstract
Understanding the effects of microorganisms on coffee fermentation is crucial to ensure sensory quality and food security. The analysis of the dynamics of the microbial community during fermentation can contribute to a better understanding of the beneficial and harmful effects of microorganisms and help select starter cultures to improve coffee quality. Furthermore, the anaerobic environment produced by carbonic maceration of the coffee fruits inhibits aerobic respiratory processes and stimulates fermentative metabolism, modulating the microbial community during coffee fermentation. This study evaluated the effects of carbonic maceration in the fungal community dynamics during the fermentation of Coffea arabica fruits at 18, 28, and 38 °C for 24, 48, 72, 96, and 120 h. Fungal diversity was accompanied by high-throughput sequencing (NGS) of the Internal Transcribed Spacer (ITS) region. During the coffee fermentation, the fungal community changed over time, with the most significant changes occurring at 18 and 28 °C after 72 h. However, at 38 °C, there were greater variations in fungal composition and fungal diversity was highest after 120 h. The yeast Pichia cephalocereana was predominant in the fermentations. These results indicated that temperature and fermentation conditions influence the fungal community during coffee fermentation. Lower temperatures might favor a more stable microbial environment, while higher temperatures lead to more intense changes. Thus, our data from NGS can help in the identification, isolation, and metabolic characterization of fungi for the fermentation of coffee fruits.
Collapse
Affiliation(s)
- Thaynara Lorenzoni Entringer
- Departamento de Microbiologia, Laboratório de Associações Micorrízicas -LAMIC, Universidade Federal de Viçosa (UFV), Avenida PH Rolfs S/N, Viçosa, Minas Gerais-MG 36570-000 Brazil
| | - José Maria Rodrigues da Luz
- Departamento de Microbiologia, Laboratório de Associações Micorrízicas -LAMIC, Universidade Federal de Viçosa (UFV), Avenida PH Rolfs S/N, Viçosa, Minas Gerais-MG 36570-000 Brazil
| | - Tomás Gomes Reis Veloso
- Departamento de Microbiologia, Laboratório de Associações Micorrízicas -LAMIC, Universidade Federal de Viçosa (UFV), Avenida PH Rolfs S/N, Viçosa, Minas Gerais-MG 36570-000 Brazil
| | - Lucas Louzada Pereira
- Coffee Design Group, Federal Institute of Espírito Santo (IFES), Rua Elizabeth Minete Perim, S/N, Bairro São Rafael, Venda Nova do Imigrante, Espírito Santo-ES 29375-000 Brazil
| | - Karen Mirella Souza Menezes
- Departamento de Microbiologia, Laboratório de Associações Micorrízicas -LAMIC, Universidade Federal de Viçosa (UFV), Avenida PH Rolfs S/N, Viçosa, Minas Gerais-MG 36570-000 Brazil
| | | | - Maria Catarina Megumi Kasuya
- Departamento de Microbiologia, Laboratório de Associações Micorrízicas -LAMIC, Universidade Federal de Viçosa (UFV), Avenida PH Rolfs S/N, Viçosa, Minas Gerais-MG 36570-000 Brazil
| | - Marliane de Cássia Soares da Silva
- Departamento de Microbiologia, Laboratório de Associações Micorrízicas -LAMIC, Universidade Federal de Viçosa (UFV), Avenida PH Rolfs S/N, Viçosa, Minas Gerais-MG 36570-000 Brazil
| |
Collapse
|
8
|
Wijayawardene NN, Hyde KD, Mikhailov KV, Péter G, Aptroot A, Pires-Zottarelli CLA, Goto BT, Tokarev YS, Haelewaters D, Karunarathna SC, Kirk PM, de A. Santiago ALCM, Saxena RK, Schoutteten N, Wimalasena MK, Aleoshin VV, Al-Hatmi AMS, Ariyawansa KGSU, Assunção AR, Bamunuarachchige TC, Baral HO, Bhat DJ, Błaszkowski J, Boekhout T, Boonyuen N, Brysch-Herzberg M, Cao B, Cazabonne J, Chen XM, Coleine C, Dai DQ, Daniel HM, da Silva SBG, de Souza FA, Dolatabadi S, Dubey MK, Dutta AK, Ediriweera A, Egidi E, Elshahed MS, Fan X, Felix JRB, Galappaththi MCA, Groenewald M, Han LS, Huang B, Hurdeal VG, Ignatieva AN, Jerônimo GH, de Jesus AL, Kondratyuk S, Kumla J, Kukwa M, Li Q, Lima JLR, Liu XY, Lu W, Lumbsch HT, Madrid H, Magurno F, Marson G, McKenzie EHC, Menkis A, Mešić A, Nascimento ECR, Nassonova ES, Nie Y, Oliveira NVL, Ossowska EA, Pawłowska J, Peintner U, Pozdnyakov IR, Premarathne BM, Priyashantha AKH, Quandt CA, Queiroz MB, Rajeshkumar KC, Raza M, Roy N, Samarakoon MC, Santos AA, Santos LA, Schumm F, Selbmann L, Selçuk F, Simmons DR, Simakova AV, Smith MT, Sruthi OP, Suwannarach N, Tanaka K, Tibpromma S, Tomás EO, Ulukapı M, Van Vooren N, Wanasinghe DN, Weber E, Wu Q, Yang EF, Yoshioka R, et alWijayawardene NN, Hyde KD, Mikhailov KV, Péter G, Aptroot A, Pires-Zottarelli CLA, Goto BT, Tokarev YS, Haelewaters D, Karunarathna SC, Kirk PM, de A. Santiago ALCM, Saxena RK, Schoutteten N, Wimalasena MK, Aleoshin VV, Al-Hatmi AMS, Ariyawansa KGSU, Assunção AR, Bamunuarachchige TC, Baral HO, Bhat DJ, Błaszkowski J, Boekhout T, Boonyuen N, Brysch-Herzberg M, Cao B, Cazabonne J, Chen XM, Coleine C, Dai DQ, Daniel HM, da Silva SBG, de Souza FA, Dolatabadi S, Dubey MK, Dutta AK, Ediriweera A, Egidi E, Elshahed MS, Fan X, Felix JRB, Galappaththi MCA, Groenewald M, Han LS, Huang B, Hurdeal VG, Ignatieva AN, Jerônimo GH, de Jesus AL, Kondratyuk S, Kumla J, Kukwa M, Li Q, Lima JLR, Liu XY, Lu W, Lumbsch HT, Madrid H, Magurno F, Marson G, McKenzie EHC, Menkis A, Mešić A, Nascimento ECR, Nassonova ES, Nie Y, Oliveira NVL, Ossowska EA, Pawłowska J, Peintner U, Pozdnyakov IR, Premarathne BM, Priyashantha AKH, Quandt CA, Queiroz MB, Rajeshkumar KC, Raza M, Roy N, Samarakoon MC, Santos AA, Santos LA, Schumm F, Selbmann L, Selçuk F, Simmons DR, Simakova AV, Smith MT, Sruthi OP, Suwannarach N, Tanaka K, Tibpromma S, Tomás EO, Ulukapı M, Van Vooren N, Wanasinghe DN, Weber E, Wu Q, Yang EF, Yoshioka R, Youssef NH, Zandijk A, Zhang GQ, Zhang JY, Zhao H, Zhao R, Zverkov OA, Thines M, Karpov SA. Classes and phyla of the kingdom Fungi. FUNGAL DIVERS 2024; 128:1-165. [DOI: 10.1007/s13225-024-00540-z] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/03/2024] [Indexed: 01/05/2025]
Abstract
AbstractFungi are one of the most diverse groups of organisms with an estimated number of species in the range of 2–3 million. The higher-level ranking of fungi has been discussed in the framework of molecular phylogenetics since Hibbett et al., and the definition and the higher ranks (e.g., phyla) of the ‘true fungi’ have been revised in several subsequent publications. Rapid accumulation of novel genomic data and the advancements in phylogenetics now facilitate a robust and precise foundation for the higher-level classification within the kingdom. This study provides an updated classification of the kingdom Fungi, drawing upon a comprehensive phylogenomic analysis of Holomycota, with which we outline well-supported nodes of the fungal tree and explore more contentious groupings. We accept 19 phyla of Fungi, viz. Aphelidiomycota, Ascomycota, Basidiobolomycota, Basidiomycota, Blastocladiomycota, Calcarisporiellomycota, Chytridiomycota, Entomophthoromycota, Entorrhizomycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota, Sanchytriomycota, and Zoopagomycota. In the phylogenies, Caulochytriomycota resides in Chytridiomycota; thus, the former is regarded as a synonym of the latter, while Caulochytriomycetes is viewed as a class in Chytridiomycota. We provide a description of each phylum followed by its classes. A new subphylum, Sanchytriomycotina Karpov is introduced as the only subphylum in Sanchytriomycota. The subclass Pneumocystomycetidae Kirk et al. in Pneumocystomycetes, Ascomycota is invalid and thus validated. Placements of fossil fungi in phyla and classes are also discussed, providing examples.
Collapse
|
9
|
Bressani APP, Casimiro LKS, Martinez SJ, Dias DR, Schwan RF. Kombucha with yam: Comprehensive biochemical, microbiological, and sensory characteristics. Food Res Int 2024; 192:114762. [PMID: 39147483 DOI: 10.1016/j.foodres.2024.114762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/09/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024]
Abstract
Consumer demand for functional foods has increased, helping to popularize and increase the consumption of Kombucha. Other substrates have been used together with tea to improve the functional and sensory properties of the beverage. Thus, this study evaluated the comprehensive biochemical, microbiological, and sensory characteristics of kombuchas fermented with green tea (Camellia sinensis) and different concentrations of yam (0, 10, and 20 % w/v). Based on pre-tests to detect the best concentration of yam in the beverage (10, 20, 30, and 40 %) and fermentation time (5, 7, and 14 days),the concentrations of 10 and 20 % of yam and five days of fermentation were selected through pH, °Brix, and sensory analysis. During the kombucha fermentation, there was a decrease in °Brix and pH. Sucrose, glucose, fructose, citric, and succinic acids were related to the beginning of fermentation, and lactic and acetic acids were more related to the end of fermentation in the treatment containing 20 % yam. The fermentation time did not change the color of the kombucha. Fatty acids, phenols, terpenoids, and alcohols were the volatile groups with the most compounds identified. Only two yeast genera were identified (Brettanomyces bruxellensis and Pichia membranifaciens), and bacteria of the genera Acetobacter, Lactobacillus, Pantoea, Pseudomonas, Azospirillum, and Enterobacter. The beverage control showed less turbidity and more clear. The fruity descriptor was more perceived in treatments with yam. However, the perception of the apple descriptor decreases as the yam concentration increases. The yam's concentration alters the kombucha's microbiota and sensory characteristics, mainly appearance and acidity. Kombucha fermentation using yam extract is viable, and the product is sensorially accepted. However, technological improvements, such as yam flour, could be made mainly for appearance and taste attributes.
Collapse
Affiliation(s)
| | | | | | - Disney Ribeiro Dias
- Food Science Department, Federal University of Lavras, CEP 37200-000, Lavras, MG, Brazil.
| | - Rosane Freitas Schwan
- Biology Department, Federal University of Lavras, CEP 37200-000, Lavras, MG, Brazil.
| |
Collapse
|
10
|
Li Y, Xu L, Sam FE, Li A, Hu K, Tao Y. Improving aromatic higher alcohol acetates in wines by co-fermentation of Pichia kluyveri and Saccharomyces cerevisiae: growth interaction and amino acid competition. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6875-6883. [PMID: 38690688 DOI: 10.1002/jsfa.13519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/01/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Higher alcohol acetates (HAAs) are potent aroma-active esters that impart desirable fruity and floral aromas. However, the conversion of higher alcohol precursors into HAAs is extremely low in winemaking. To investigate the underlying yeast-yeast interaction on targeted improvement of aromatic HAAs, we evaluated fermentation activity, cell viability, amino acid consumption and HAA production when Pichia kluyveri and Saccharomyces cerevisiae were inoculated concurrently or sequentially. RESULTS Pichia kluyveri PK-21 possessed the ability to survive and increased HAA level up to 5.2-fold in mixed fermentation. Such an increment may benefit from the efficient conversion of higher alcohol precursors into HAAs (>27-fold higher than S. cerevisiae). During mixed fermentation, the two yeasts exhibited crucial interactions regarding cell growth and amino acid competition. Saccharomyces cerevisiae dominated over the co-inoculated P. kluyveri by efficient uptake of amino acids and biomass production. However, this dominance decreased in sequential fermentation, where P. kluyveri growth increased due to the consumption of preferred amino acids prior to S. cerevisiae. Pearson correlation analysis indicated that phenylalanine and aspartic acid may act as positive amino acids in boosting P. kluyveri growth and HAA production. Laboratory-scale winemaking validated the fermentation performance of P. kluyveri in sequential inoculum, resulting in a balanced aroma profile with enhanced floral and tropical fruity characteristics in the final wines. CONCLUSION This study proposes a microbial, non-genetically engineered approach for targeted increase of HAA production in winemaking and the findings provide new insights into yeast-yeast interactions. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yueqi Li
- College of Enology, Northwest A&F University, Yangling, China
| | - Lingbin Xu
- College of Enology, Northwest A&F University, Yangling, China
| | | | - Aihua Li
- College of Food Science and Engineering, Yangling, China
| | - Kai Hu
- College of Enology, Northwest A&F University, Yangling, China
- Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, China
| | - Yongsheng Tao
- College of Enology, Northwest A&F University, Yangling, China
- Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, China
- Shaanxi Engineering Research Center for Viti-viniculture, Yangling, China
| |
Collapse
|
11
|
Deng Q, Xia S, Han X, You Y, Huang W, Zhan J. Enhancing the flavour quality of Laiyang pear wine by screening sorbitol-utilizing yeasts and co-fermentation strategies. Food Chem 2024; 449:139213. [PMID: 38631134 DOI: 10.1016/j.foodchem.2024.139213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 04/19/2024]
Abstract
This study took a novel approach to address the dual challenges of enhancing the ethanol content and aroma complexity in Laiyang pear wine. It focused on sorbitol as a pivotal element in the strategic selection of yeasts with specific sorbitol-utilization capabilities and their application in co-fermentation strategies. We selected two Saccharomyces cerevisiae strains (coded as Sc1, Sc2), two Metschnikowia pulcherrima (coded as Mp1, Mp2), and one Pichia terricola (coded as Tp) due to their efficacy as starter cultures. Notably, the Sc2 strain, alone or with Mp2, significantly increased the ethanol content (30% and 16%). Mixed Saccharomyces cerevisiae and Pichia terricola fermentation improved the ester profiles and beta-damascenone levels (maximum of 150%), while Metschnikowia pulcherrima addition enriched the phenethyl alcohol content (maximum of 330%), diversifying the aroma. This study investigated the efficacy of strategic yeast selection based on sorbitol utilization and co-fermentation methods in enhancing Laiyang pear wine quality and aroma.
Collapse
Affiliation(s)
- Qiaoyun Deng
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural Univ, Tsinghua East Road 17, Haidian District, Beijing 100083, China
| | - Shuang Xia
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural Univ, Tsinghua East Road 17, Haidian District, Beijing 100083, China
| | - Xiaoyu Han
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural Univ, Tsinghua East Road 17, Haidian District, Beijing 100083, China
| | - Yilin You
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural Univ, Tsinghua East Road 17, Haidian District, Beijing 100083, China
| | - Weidong Huang
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural Univ, Tsinghua East Road 17, Haidian District, Beijing 100083, China
| | - Jicheng Zhan
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural Univ, Tsinghua East Road 17, Haidian District, Beijing 100083, China.
| |
Collapse
|
12
|
Zeng C, Sun Y, Lin H, Li Z, Zhang Q, Cai T, Xiang W, Tang J, Yasurin P. D-Limonene Inhibits Pichia kluyveri Y-11519 in Sichuan Pickles by Disrupting Metabolism. Molecules 2024; 29:3561. [PMID: 39124965 PMCID: PMC11314558 DOI: 10.3390/molecules29153561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/13/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The Pichia kluyveri, a proliferation commonly found in Sichuan pickles (SCPs), can accelerate the growth and reproduction of spoilage bacteria, causing off-odor development and decay. Although D-limonene, a common natural preservative, effectively restricts P. kluyveri, its inhibitory mechanism remains unclear. This study aimed to elucidate this molecular mechanism by investigating the impact on basic P. kluyveri metabolism. The findings revealed that D-limonene inhibited P. kluyveri growth and disrupted the transcription of the genes responsible for encoding the enzymes involved in cell wall and membrane synthesis, oxidative phosphorylation, glycolysis, and the tricarboxylic acid (TCA) cycle pathway. The results indicated that these events disrupted crucial metabolism such as cell wall and membrane integrity, adenosine triphosphate (ATP) synthesis, and reactive oxygen species (ROS) balance. These insights provided a comprehensive understanding of the inhibitory effect of D-limonene on the growth and reproduction of P. kluyveri while highlighting its potential application in the SCP industry.
Collapse
Affiliation(s)
- Chaoyi Zeng
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Department of Food Biotechnology, Faculty of Biotechnology, Assumption University, Bangkok 10240, Thailand;
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Yue Sun
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Haoran Lin
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Ziyu Li
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Qing Zhang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Ting Cai
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Wenliang Xiang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Jie Tang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Department of Food Biotechnology, Faculty of Biotechnology, Assumption University, Bangkok 10240, Thailand;
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Patchanee Yasurin
- Department of Food Biotechnology, Faculty of Biotechnology, Assumption University, Bangkok 10240, Thailand;
| |
Collapse
|
13
|
Bhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, et alBhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, Mostert L, Osiewacz H, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips A, Phonemany M, Promputtha I, Rathnayaka A, Rodrigues A, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe S, Scholler M, Scott P, Shivas R, Silar P, Silva-Filho A, Souza-Motta C, Spies C, Stchigel A, Sterflinger K, Summerbell R, Svetasheva T, Takamatsu S, Theelen B, Theodoro R, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang X, Wartchow F, Welti S, Wijesinghe S, Wu F, Xu R, Yang Z, Yilmaz N, Yurkov A, Zhao L, Zhao R, Zhou N, Hyde K, Crous P. What are the 100 most cited fungal genera? Stud Mycol 2024; 108:1-411. [PMID: 39100921 PMCID: PMC11293126 DOI: 10.3114/sim.2024.108.01] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/17/2024] [Indexed: 08/06/2024] Open
Abstract
The global diversity of fungi has been estimated between 2 to 11 million species, of which only about 155 000 have been named. Most fungi are invisible to the unaided eye, but they represent a major component of biodiversity on our planet, and play essential ecological roles, supporting life as we know it. Although approximately 20 000 fungal genera are presently recognised, the ecology of most remains undetermined. Despite all this diversity, the mycological community actively researches some fungal genera more commonly than others. This poses an interesting question: why have some fungal genera impacted mycology and related fields more than others? To address this issue, we conducted a bibliometric analysis to identify the top 100 most cited fungal genera. A thorough database search of the Web of Science, Google Scholar, and PubMed was performed to establish which genera are most cited. The most cited 10 genera are Saccharomyces, Candida, Aspergillus, Fusarium, Penicillium, Trichoderma, Botrytis, Pichia, Cryptococcus and Alternaria. Case studies are presented for the 100 most cited genera with general background, notes on their ecology and economic significance and important research advances. This paper provides a historic overview of scientific research of these genera and the prospect for further research. Citation: Bhunjun CS, Chen YJ, Phukhamsakda C, Boekhout T, Groenewald JZ, McKenzie EHC, Francisco EC, Frisvad JC, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie CM, Bai FY, Błaszkowski J, Braun U, de Souza FA, de Queiroz MB, Dutta AK, Gonkhom D, Goto BT, Guarnaccia V, Hagen F, Houbraken J, Lachance MA, Li JJ, Luo KY, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe DN, Wang DQ, Wei DP, Zhao CL, Aiphuk W, Ajayi-Oyetunde O, Arantes TD, Araujo JC, Begerow D, Bakhshi M, Barbosa RN, Behrens FH, Bensch K, Bezerra JDP, Bilański P, Bradley CA, Bubner B, Burgess TI, Buyck B, Čadež N, Cai L, Calaça FJS, Campbell LJ, Chaverri P, Chen YY, Chethana KWT, Coetzee B, Costa MM, Chen Q, Custódio FA, Dai YC, Damm U, de Azevedo Santiago ALCM, De Miccolis Angelini RM, Dijksterhuis J, Dissanayake AJ, Doilom M, Dong W, Alvarez-Duarte E, Fischer M, Gajanayake AJ, Gené J, Gomdola D, Gomes AAM, Hausner G, He MQ, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena RS, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin CG, Liu JK, Liu XB, Loizides M, Luangharn T, Maharachchikumbura SSN, Makhathini Mkhwanazi GJ, Manawasinghe IS, Marin-Felix Y, McTaggart AR, Moreau PA, Morozova OV, Mostert L, Osiewacz HD, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips AJL, Phonemany M, Promputtha I, Rathnayaka AR, Rodrigues AM, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe SJ, Scholler M, Scott P, Shivas RG, Silar P, Souza-Motta CM, Silva-Filho AGS, Spies CFJ, Stchigel AM, Sterflinger K, Summerbell RC, Svetasheva TY, Takamatsu S, Theelen B, Theodoro RC, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang XW, Wartchow F, Welti S, Wijesinghe SN, Wu F, Xu R, Yang ZL, Yilmaz N, Yurkov A, Zhao L, Zhao RL, Zhou N, Hyde KD, Crous PW (2024). What are the 100 most cited fungal genera? Studies in Mycology 108: 1-411. doi: 10.3114/sim.2024.108.01.
Collapse
Affiliation(s)
- C.S. Bhunjun
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Y.J. Chen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - C. Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- The Yeasts Foundation, Amsterdam, the Netherlands
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - E.H.C. McKenzie
- Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand
| | - E.C. Francisco
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Laboratório Especial de Micologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - V. G. Hurdeal
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Luangsa-ard
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - G. Perrone
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Amendola 122/O, 70126 Bari, Italy
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - F.Y. Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - J. Błaszkowski
- Laboratory of Plant Protection, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Słowackiego 17, PL-71434 Szczecin, Poland
| | - U. Braun
- Martin Luther University, Institute of Biology, Department of Geobotany and Botanical Garden, Neuwerk 21, 06099 Halle (Saale), Germany
| | - F.A. de Souza
- Núcleo de Biologia Aplicada, Embrapa Milho e Sorgo, Empresa Brasileira de Pesquisa Agropecuária, Rodovia MG 424 km 45, 35701–970, Sete Lagoas, MG, Brazil
| | - M.B. de Queiroz
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - A.K. Dutta
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - D. Gonkhom
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B.T. Goto
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - V. Guarnaccia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - M.A. Lachance
- Department of Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - J.J. Li
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - K.Y. Luo
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - F. Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - S. Mongkolsamrit
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - V. Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - N. Roy
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - S. Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, P.R. China
| | - D.N. Wanasinghe
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - D.Q. Wang
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - D.P. Wei
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
| | - C.L. Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - W. Aiphuk
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - O. Ajayi-Oyetunde
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
| | - T.D. Arantes
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - J.C. Araujo
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
| | - D. Begerow
- Organismic Botany and Mycology, Institute of Plant Sciences and Microbiology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - M. Bakhshi
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - R.N. Barbosa
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - F.H. Behrens
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - J.D.P. Bezerra
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - P. Bilański
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - C.A. Bradley
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445, USA
| | - B. Bubner
- Johan Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Forstgenetik, Eberswalder Chaussee 3a, 15377 Waldsieversdorf, Germany
| | - T.I. Burgess
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
| | - B. Buyck
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 39, 75231, Paris cedex 05, France
| | - N. Čadež
- University of Ljubljana, Biotechnical Faculty, Food Science and Technology Department Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.J.S. Calaça
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
- Laboratório de Pesquisa em Ensino de Ciências (LabPEC), Centro de Pesquisas e Educação Científica, Universidade Estadual de Goiás, Campus Central (CEPEC/UEG), Anápolis, GO, 75132-903, Brazil
| | - L.J. Campbell
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - P. Chaverri
- Centro de Investigaciones en Productos Naturales (CIPRONA) and Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Department of Natural Sciences, Bowie State University, Bowie, Maryland, U.S.A
| | - Y.Y. Chen
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - K.W.T. Chethana
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B. Coetzee
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- School for Data Sciences and Computational Thinking, University of Stellenbosch, South Africa
| | - M.M. Costa
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.A. Custódio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Y.C. Dai
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - A.L.C.M.A. Santiago
- Post-graduate course in the Biology of Fungi, Department of Mycology, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, 50740-465, Recife, PE, Brazil
| | | | - J. Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - A.J. Dissanayake
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - M. Doilom
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - W. Dong
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - E. Álvarez-Duarte
- Mycology Unit, Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile, Chile
| | - M. Fischer
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - A.J. Gajanayake
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - D. Gomdola
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.A.M. Gomes
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | - G. Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 5N6
| | - M.Q. He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - L. Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - I. Iturrieta-González
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectology and Clinical Immunology, Center of Excellence in Translational Medicine-Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - F. Jami
- Plant Health and Protection, Agricultural Research Council, Pretoria, South Africa
| | - R. Jankowiak
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - R.S. Jayawardena
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - H. Kandemir
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - L. Kiss
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
- Centre for Research and Development, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - N. Kobmoo
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - T. Kowalski
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - L. Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - C.G. Lin
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - J.K. Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - X.B. Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, Szeged H-6726, Hungary
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | | | - T. Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - S.S.N. Maharachchikumbura
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - G.J. Makhathini Mkhwanazi
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - I.S. Manawasinghe
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - Y. Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - A.R. McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - P.A. Moreau
- Univ. Lille, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - O.V. Morozova
- Komarov Botanical Institute of the Russian Academy of Sciences, 2, Prof. Popov Str., 197376 Saint Petersburg, Russia
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - H.D. Osiewacz
- Faculty for Biosciences, Institute for Molecular Biosciences, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - D. Pem
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - R. Phookamsak
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - S. Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - A. Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - C. Poyntner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - A.J.L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - M. Phonemany
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - I. Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - A.R. Rathnayaka
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - G. Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - L. Rothmann
- Plant Pathology, Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - C. Salgado-Salazar
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), 10300 Baltimore Avenue, Beltsville MD, 20705, USA
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - S.J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS Université de Bordeaux, 1 rue Camille Saint Saëns, 33077 Bordeaux cedex, France
| | - M. Scholler
- Staatliches Museum für Naturkunde Karlsruhe, Erbprinzenstraße 13, 76133 Karlsruhe, Germany
| | - P. Scott
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
- Sustainability and Biosecurity, Department of Primary Industries and Regional Development, Perth WA 6000, Australia
| | - R.G. Shivas
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
| | - P. Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris Cité, 75205 Paris Cedex, France
| | - A.G.S. Silva-Filho
- IFungiLab, Departamento de Ciências e Matemática (DCM), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, BraziI
| | - C.M. Souza-Motta
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - C.F.J. Spies
- Agricultural Research Council - Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - A.M. Stchigel
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - K. Sterflinger
- Institute of Natural Sciences and Technology in the Arts (INTK), Academy of Fine Arts Vienna, Augasse 2–6, 1090, Vienna, Austria
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - T.Y. Svetasheva
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - S. Takamatsu
- Mie University, Graduate School, Department of Bioresources, 1577 Kurima-Machiya, Tsu 514-8507, Japan
| | - B. Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.C. Theodoro
- Laboratório de Micologia Médica, Instituto de Medicina Tropical do RN, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - N. Thongklang
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - R. Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain
| | - B. Turchetti
- Department of Agricultural, Food and Environmental Sciences and DBVPG Industrial Yeasts Collection, University of Perugia, Italy
| | - T. van den Brule
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- TIFN, P.O. Box 557, 6700 AN Wageningen, the Netherlands
| | - X.W. Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F. Wartchow
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Paraiba, João Pessoa, Brazil
| | - S. Welti
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - S.N. Wijesinghe
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - F. Wu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - R. Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
| | - Z.L. Yang
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - L. Zhao
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.L. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - N. Zhou
- Department of Biological Sciences and Biotechnology, Botswana University of Science and Technology, Private Bag, 16, Palapye, Botswana
| | - K.D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht
| |
Collapse
|
14
|
Englezos V, Di Gianvito P, Serafino G, Giacosa S, Cocolin L, Rantsiou K. Strain specific Starmerella bacillaris and Saccharomyces cerevisiae interactions in mixed fermentations. J Appl Microbiol 2024; 135:lxae085. [PMID: 38549426 DOI: 10.1093/jambio/lxae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/30/2024] [Accepted: 03/27/2024] [Indexed: 04/21/2024]
Abstract
AIMS Yeast interactions have a key role in the definition of the chemical profile of the wines. For this reason, winemakers are increasingly interested in mixed fermentations, employing Saccharomyces cerevisiae and non-Saccharomyces strains. However, the outcome of mixed fermentations is often contradictory because there is a great variability among strains within species. Previously, it was demonstrated that the loss of culturability of Starmerella bacillaris in mixed fermentations with S. cerevisiae was due to the physical contact between cells. Therefore, to further explore previous observations, the interaction mechanisms among different strains of Starm. bacillaris and S. cerevisiae during mixed fermentations were investigated. METHODS AND RESULTS Fermentations were conducted under conditions that allow physical contact between cells (flasks) but also using a double-compartment fermentation system in which cells of both species were kept separate. The role of competition for nutrients and antimicrobial compounds production on yeast-yeast interaction mechanisms was also investigated. Three Starm. bacillaris and three S. cerevisiae strains were used to investigate if interaction mechanisms are modulated in a strain-specific way. Both species populations were affected by physical contact, particularly Starm. bacillaris that lost its culturability during fermentation. In addition, loss of culturability of Starm. bacillaris strains was observed earlier in flasks than in the double-compartment system. The phenomena observed occurred in a strain couple-dependent way. Starm. bacillaris disappearance seemed to be independent of nutrient depletion or the presence of inhibitory compounds (which were not measured in this study). CONCLUSION Overall, the results of the present study reveal that cell-to-cell contact plays a role in the early death of non-Saccharomyces but the extent to which it is observed depends greatly on the Starm. bacillaris/S. cerevisiae strains tested.
Collapse
Affiliation(s)
- Vasileios Englezos
- Dipartimento di Scienze Agrarie, Università degli Studi di Torino, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Paola Di Gianvito
- Dipartimento di Scienze Agrarie, Università degli Studi di Torino, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Gabriele Serafino
- Dipartimento di Scienze Agrarie, Università degli Studi di Torino, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Simone Giacosa
- Dipartimento di Scienze Agrarie, Università degli Studi di Torino, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Luca Cocolin
- Dipartimento di Scienze Agrarie, Università degli Studi di Torino, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Kalliopi Rantsiou
- Dipartimento di Scienze Agrarie, Università degli Studi di Torino, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| |
Collapse
|
15
|
Hlangwani E, du Plessis HW, Dlamini BC. The effect of selected Non- Saccharomyces yeasts and cold-contact fermentation on the production of low-alcohol marula fruit beer. Heliyon 2024; 10:e24505. [PMID: 39669211 PMCID: PMC11636791 DOI: 10.1016/j.heliyon.2024.e24505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 12/14/2024] Open
Abstract
The last decade has seen increased consumer demand for zero and low-alcohol beverages. Cold-contact fermentation (CCF) in combination with non-Saccharomyces can be an effective method for producing low-alcohol fruit beverages with desirable qualities. Thus, the aim of this study was to develop a CCF process to produce low-alcohol marula fruit beer using selected non-Saccharomyces yeasts. The effect of temperature (°C), and time (h) on alcohol (% v/v), pH, total titratable acidity (LAE/mL) and specific gravity (SG) was evaluated using response surface methodology. Sterile marula fruit juice was inoculated with Metschnikowia pulcherrima, Pichia fermentans, or Pichia kluyveri respectively. Higher final SG values were observed for temperatures between 8 °C and 15 °C. Above 15 °C, the SG decreased with an increase in temperature and time. Fermentation at temperatures below 10 °C produced zero to low-alcohol marula fruit beer (0.00-0.20 % v/v) with an attenuation rate above 80 %. This was confirmed by the significance of quadratic models for SG (p ≤ 0.01), and alcohol (p = 0.00) for the three selected yeasts. Overall, P. kluyveri produced the lowest alcohol levels, followed by M. pulcherrima and P. fermentans, respectively. The study confirmed that cold-contact fermentation with non-Saccharomyces yeasts can be an effective biological method to produce low-alcohol marula fruit beer in line with the emerging consumer demand for low-alcohol beverages.
Collapse
Affiliation(s)
- Edwin Hlangwani
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P. O. Box 17011, Doornfontein Campus, Johannesburg, 2001, South Africa
| | - Heinrich W. du Plessis
- Post-Harvest and Agro-Processing Technologies, ARC Infruitec-Nietvoorbij (The Fruit, Vine and Wine Institute of the Agricultural Research Council), Private Bag X5026, Stellenbosch 7599, South Africa
| | - Bhekisisa C. Dlamini
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P. O. Box 17011, Doornfontein Campus, Johannesburg, 2001, South Africa
| |
Collapse
|
16
|
Yoon SH, Lee S, Lee SY, Moon B. Effect of precursors and stress factors on yeast isolated from fermented maesil extract and their biogenic amine formation. Food Sci Biotechnol 2024; 33:211-218. [PMID: 38186610 PMCID: PMC10766930 DOI: 10.1007/s10068-023-01328-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/24/2023] [Accepted: 04/26/2023] [Indexed: 01/09/2024] Open
Abstract
Biogenic amines are produced during fermentation and can act as harmful substances. Strains related to the fermentation of maesil extract were identified and Clavispora lusitaniae and Pichia kluyveri were selected to investigate the relationship between biogenic amines and precursors, NaCl or ethanol. Biogenic amines were analyzed by high-performance liquid chromatography. Among precursors added, arginine was most effective for the biogenic amines formation. After 24 h incubation, the content of total biogenic amines increased from 37.60 to 51.75 mL/L for C. lusitaniae and from 2.60 to 33.30 mL/L for P. kluyveri in arginine-added medium. The number of yeast decreased in both NaCl- and ethanol-YM broth added with arginine, but there was no correlation between the number of yeast and biogenic amines. These results suggested that the formation of biogenic amines by yeast was affected by various factors and their interactions rather than a single factor, such as decarboxylase activity and stress factor. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01328-8.
Collapse
Affiliation(s)
- So Hee Yoon
- Department of Food and Nutrition, Chung-Ang University, 72-1, Nae-Ri, Daedeok-Myeon, Anseong-Si, Gyeonggi-Do 17546 Republic of Korea
| | - Sanghyeon Lee
- Department of Food and Nutrition, Chung-Ang University, 72-1, Nae-Ri, Daedeok-Myeon, Anseong-Si, Gyeonggi-Do 17546 Republic of Korea
| | - Sun-Young Lee
- Department of Food and Nutrition, Chung-Ang University, 72-1, Nae-Ri, Daedeok-Myeon, Anseong-Si, Gyeonggi-Do 17546 Republic of Korea
| | - BoKyung Moon
- Department of Food and Nutrition, Chung-Ang University, 72-1, Nae-Ri, Daedeok-Myeon, Anseong-Si, Gyeonggi-Do 17546 Republic of Korea
| |
Collapse
|
17
|
Ruiz-de-Villa C, Poblet M, Bordons A, Reguant C, Rozès N. Comparative study of inoculation strategies of Torulaspora delbrueckii and Saccharomyces cerevisiae on the performance of alcoholic and malolactic fermentations in an optimized synthetic grape must. Int J Food Microbiol 2023; 404:110367. [PMID: 37597274 DOI: 10.1016/j.ijfoodmicro.2023.110367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/25/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023]
Abstract
Progress in oenological biotechnology now makes it possible to control alcoholic (AF) and malolactic (MLF) fermentation processes for the production of wines. Key factors in controlling these processes and enhancing wine quality include the use of selected strains of non-Saccharomyces species, Saccharomyces cerevisiae, and Oenococcus oeni, as well as the method of inoculation (co-inoculation or sequential) and the timing of inoculation. In the present work, we investigated the effects of different inoculation strategies of two Torulaspora delbrueckii (Td-V and Td-P) strains followed by S. cerevisiae. Times (two, four, and six days) and types (co-inoculation and sequential) of inoculation were evaluated on the AF of a synthetic grape must. Furthermore, this synthetic medium was optimized by adding linoleic acid and β-sitosterol to simulate the natural grape must and facilitate reproducible results in potential assays. Subsequently, the wines obtained were inoculated with two strains of Oenococcus oeni to carry out MLF. Parameters after AF were analysed to observe the impact of wine composition on the MLF performance. The results showed that the optimization of the must through the addition of linoleic acid and β-sitosterol significantly enhanced MLF performance. This suggests that these lipids can positively impact the metabolism of O. oeni, leading to improved MLF efficiency. Furthermore, we observed that a 4-day contact period with T. delbrueckii leads to the most efficient MLF process and contributed to the modification of certain AF metabolites, such as the reduction of ethanol and acetic acid, as well as an increase in available nitrogen. The combination of Td-P with Oo-VP41 for 4 or 6 days during MLF showed that it could be the optimal option in terms of efficiency. By evaluating different T. delbrueckii inoculation strategies, optimizing the synthetic medium and studying the effects on wine composition, we aimed to gain insights into the relationship between AF conditions and subsequent MLF performance. Through this study, we aim to provide valuable insights for winemakers and researchers in the field of wine production and will contribute to a better understanding of the complex interactions between these species in the fermentation process.
Collapse
Affiliation(s)
- Candela Ruiz-de-Villa
- Grup de Biotecnologia Microbiana dels Aliments, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo s/n, 43007 Tarragona, Catalonia, Spain
| | - Montse Poblet
- Grup de Biotecnologia Microbiana dels Aliments, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo s/n, 43007 Tarragona, Catalonia, Spain
| | - Albert Bordons
- Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo s/n, 43007 Tarragona, Catalonia, Spain
| | - Cristina Reguant
- Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo s/n, 43007 Tarragona, Catalonia, Spain
| | - Nicolas Rozès
- Grup de Biotecnologia Microbiana dels Aliments, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo s/n, 43007 Tarragona, Catalonia, Spain.
| |
Collapse
|
18
|
McCullough KS, Yang Y, Lindsay MA, Culley N, Deed RC. Sequential inoculation of flocculent Torulaspora delbrueckii with Saccharomyces cerevisiae increases color density of Pinot Noir wines. Yeast 2023; 40:493-505. [PMID: 37649428 DOI: 10.1002/yea.3896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/02/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Pinot noir grapes require careful management in the winery to prevent loss of color density and promote aging stability. Winemaking with flocculent yeast has been shown to increase color density, which is desirable to consumers. This research explored interspecies sequential inoculation and co-flocculation of commercial yeast on Pinot noir wine color. Sedimentation rates of six non-Saccharomyces species and two Saccharomyces cerevisiae strains were assayed individually and in combination. The most flocculent pairings, Torulaspora delbrueckii BIODIVA with S. cerevisiae RC212 or VL3, were used to ferment 20 L Pinot noir must. Sequential fermentations produced wines with greater color density at 420 + 520 nm, confirmed by sensory panel. Total and monomeric anthocyanin concentrations were decreased in sequentially fermented wines, despite being the main source of red wine color. BIODIVA adsorbed more anthocyanins than S. cerevisiae, indicating a greater number of cell wall mannoproteins in flocculent yeast, that could then result in a later release of anthocyanins and enhance copigment formation in red wines.
Collapse
Affiliation(s)
- Katasha S McCullough
- School of Chemical Sciences, The University of Auckland/Waipapa Taumata Rau, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland/Waipapa Taumata Rau, Auckland, New Zealand
| | - Yi Yang
- School of Chemical Sciences, The University of Auckland/Waipapa Taumata Rau, Auckland, New Zealand
| | - Melodie A Lindsay
- School of Chemical Sciences, The University of Auckland/Waipapa Taumata Rau, Auckland, New Zealand
| | - Neill Culley
- School of Chemical Sciences, The University of Auckland/Waipapa Taumata Rau, Auckland, New Zealand
| | - Rebecca C Deed
- School of Chemical Sciences, The University of Auckland/Waipapa Taumata Rau, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland/Waipapa Taumata Rau, Auckland, New Zealand
| |
Collapse
|
19
|
Lorenzini M, Cappello MS, Green A, Zapparoli G. Effects of film-forming Pichia and Candida yeasts on cider and wine as post-fermentation contaminants. Lett Appl Microbiol 2023; 76:ovad099. [PMID: 37656878 DOI: 10.1093/lambio/ovad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/10/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Film-forming yeasts are potential sources of defects in alcoholic beverages. The aim of this study is to assess the growth capacity of Pichia and Candida film-forming yeasts in cider and wine and the effects on their chemical composition. Cider, partially and fully fermented wine were inoculated with strains of C. californica, P. fermentans, P. kluyveri, P. kudriavzevii, P. manshurica, and P. membranifaciens to simulate a post-fermentative contamination. The former three species grew only in cider. Pichia manshurica and P. kudriavzevii displayed high viability in wine up to 13.18% (v v-1) ethanol. Significant changes in odour-active molecules from different chemical groups were observed in cider and wine in the inoculated samples, compared to the non-inoculated ones. Cider is more susceptible to contamination by all of the species tested, due to its low alcohol content, while P. membranifaciens, P. manshurica, and P. kudriavzevii are additionally potential spoilage agents of wine. This study highlights the risk of cider and wine contamination by film-forming yeasts. Their impact on aroma profiles depends on their ability to grow and their metabolism. This study contributes to an understanding of the possible physiological and metabolic mechanisms responsible for film formation and chemical changes in alcoholic beverages.
Collapse
Affiliation(s)
| | - Maria Stella Cappello
- CNR, Institute of Science of Food Production (ISPA), Prov.le Lecce-Monteroni, 73100 Lecce, Italy
| | - Anthony Green
- Department of Veterinary Medicine, University of Bari Aldo Moro, Strada Provinciale per Casamassima, Km. 3 - 70010 Valenzano (BA), Italy
| | - Giacomo Zapparoli
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
20
|
Sales AL, Cunha SC, Morgado J, Cruz A, Santos TF, Ferreira IM, Fernandes JO, Miguel MAL, Farah A. Volatile, Microbial, and Sensory Profiles and Consumer Acceptance of Coffee Cascara Kombuchas. Foods 2023; 12:2710. [PMID: 37509803 PMCID: PMC10379779 DOI: 10.3390/foods12142710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/01/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Given the substantial world coffee production, tons of coffee fruit cascara rich in bioactive compounds are discarded annually. Using this by-product to produce potentially healthy and acceptable foods is a sustainable practice that aggregates value to coffee production and may help improve people's lives. This study aimed to elaborate kombuchas from coffee cascara tea, evaluate their microbial profile, and monitor the changes in the volatile profile during fermentation, together with sensory attributes and acceptance by consumers from Rio de Janeiro (n = 113). Arabica coffee cascaras from Brazil and Nicaragua were used to make infusions, to which black tea kombucha, a Symbiotic Culture of Bacteria and Yeasts (SCOBY), and sucrose were added. Fermentation of plain black tea kombucha was also monitored for comparison. The volatile profile was analyzed after 0, 3, 6, and 9 days of fermentation via headspace solid phase microextraction GC-MS. A total of 81 compounds were identified considering all beverages, 59 in coffee cascara kombuchas and 59 in the black tea kombucha, with 37 common compounds for both. An increase mainly in acids and esters occurred during fermentation. Despite the similarity to black tea kombucha, some aldehydes, esters, alcohols, and ketones in coffee cascara kombucha were not identified in black tea kombucha. Potential impact compounds in CC were linalool, decanal, nonanal, octanal, dodecanal, ethanol, 2-ethylhexanol, ethyl acetate, ethyl butyrate, ethyl acetate, β-damascenone, γ-nonalactone, linalool oxide, phenylethyl alcohol, geranyl acetone, phenylacetaldehyde, isoamyl alcohol, acetic acid, octanoic acid, isovaleric acid, ethyl isobutyrate, ethyl hexanoate, and limonene. The mean acceptance scores for cascara kombuchas varied between 5.7 ± 0.53 and 7.4 ± 0.53 on a nine-point hedonic scale, with coffee cascara from three-day Nicaragua kombucha showing the highest score, associated with sweetness and berry, honey, woody, and herbal aromas and flavors. The present results indicate that coffee cascara is a promising by-product for elaboration of fermented beverages, exhibiting exotic and singular fingerprinting that can be explored for applications in the food industry.
Collapse
Affiliation(s)
- Amanda Luísa Sales
- Núcleo de Pesquisa em Café Prof. Luiz Carlos Trugo (NUPECAFÉ), Laboratório de Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil; (A.L.S.); (J.M.); (T.F.S.)
- Laboratório de Microbiologia de Alimentos, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. I, Rio de Janeiro 21941-902, Brazil
| | - Sara C. Cunha
- LAQV-REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4099-030 Porto, Portugal; (S.C.C.); (J.O.F.)
| | - Jéssika Morgado
- Núcleo de Pesquisa em Café Prof. Luiz Carlos Trugo (NUPECAFÉ), Laboratório de Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil; (A.L.S.); (J.M.); (T.F.S.)
| | - Adriano Cruz
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Rio de Janeiro 20260-100, Brazil;
| | - Thiago F. Santos
- Núcleo de Pesquisa em Café Prof. Luiz Carlos Trugo (NUPECAFÉ), Laboratório de Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil; (A.L.S.); (J.M.); (T.F.S.)
| | - Isabel M.P.L.V.O. Ferreira
- LAQV-REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4099-030 Porto, Portugal; (S.C.C.); (J.O.F.)
| | - José O. Fernandes
- LAQV-REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4099-030 Porto, Portugal; (S.C.C.); (J.O.F.)
| | - Marco Antonio L. Miguel
- Laboratório de Microbiologia de Alimentos, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. I, Rio de Janeiro 21941-902, Brazil
| | - Adriana Farah
- Núcleo de Pesquisa em Café Prof. Luiz Carlos Trugo (NUPECAFÉ), Laboratório de Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil; (A.L.S.); (J.M.); (T.F.S.)
| |
Collapse
|
21
|
Lin CL, Petersen MA, Gottlieb A. Increasing Higher Alcohols and Acetates in Low-Alcohol Beer by Proteases. Molecules 2023; 28:molecules28114419. [PMID: 37298894 DOI: 10.3390/molecules28114419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
The market of non-alcoholic and low-alcohol beer has grown continuously thanks to the advocacy for healthy and responsible drinking. Non-alcoholic and low-alcohol products usually possess less higher alcohols and acetates and more aldehyde off-flavors due to the manufacturing processes. The employment of non-conventional yeasts partially mitigates this problem. In this study, we used proteases to optimize the wort amino acid profile for better aroma production during yeast fermentation. The design of experiments was applied to increase the leucine molar fraction, aiming to boost 3-methylbutan-1-ol and 3-methylbutyl acetate (banana-like aromas). This led to an increase from 7% to 11% leucine in wort after protease treatment. The aroma output in the subsequent fermentation, however, was yeast-dependent. An 87% increase of 3-methylbutan-1-ol and a 64% increase of 3-methylbutyl acetate were observed when Saccharomycodes ludwigii was used. When Pichia kluyveri was employed, higher alcohols and esters from valine and isoleucine were increased: 58% more of 2-methylpropyl acetate, 67% more of 2-methylbutan-1-ol, and 24% more of 2-methylbutyl acetate were observed. Conversely, 3-methylbutan-1-ol decreased by 58% and 3-methylbutyl acetate largely remained the same. Apart from these, the amounts of aldehyde intermediates were increased to a varying extent. The impact of such increases in aromas and off-flavors on the perception of low-alcohol beer remains to be evaluated by sensory analysis in future studies.
Collapse
Affiliation(s)
- Claire Lin Lin
- Brewing AR 345, Novozymes A/S, Biologiensvej 2, 2800 Kongens Lyngby, Denmark
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Mikael Agerlin Petersen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Andrea Gottlieb
- Brewing AR 345, Novozymes A/S, Biologiensvej 2, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
22
|
Fazio NA, Russo N, Foti P, Pino A, Caggia C, Randazzo CL. Inside Current Winemaking Challenges: Exploiting the Potential of Conventional and Unconventional Yeasts. Microorganisms 2023; 11:1338. [PMID: 37317312 DOI: 10.3390/microorganisms11051338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023] Open
Abstract
Wine represents a complex matrix in which microbial interactions can strongly impact the quality of the final product. Numerous studies have focused on optimizing microbial approaches for addressing new challenges to enhance quality, typicity, and food safety. However, few studies have investigated yeasts of different genera as resources for obtaining wines with new, specific traits. Currently, based on the continuous changes in consumer demand, yeast selection within conventional Saccharomyces cerevisiae and unconventional non-Saccharomyces yeasts represents a suitable opportunity. Wine fermentation driven by indigenous yeasts, in the various stages, has achieved promising results in producing wines with desired characteristics, such as a reduced content of ethanol, SO2, and toxins, as well as an increased aromatic complexity. Therefore, the increasing interest in organic, biodynamic, natural, or clean wine represents a new challenge for the wine sector. This review aims at exploring the main features of different oenological yeasts to obtain wines reflecting the needs of current consumers in a sustainability context, providing an overview, and pointing out the role of microorganisms as valuable sources and biological approaches to explore potential and future research opportunities.
Collapse
Affiliation(s)
- Nunzio A Fazio
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia, 100, 95123 Catania, Italy
| | - Nunziatina Russo
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia, 100, 95123 Catania, Italy
- ProBioEtna Srl, Spin off University of Catania, Via S. Sofia 100, 95123 Catania, Italy
| | - Paola Foti
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia, 100, 95123 Catania, Italy
| | - Alessandra Pino
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia, 100, 95123 Catania, Italy
- ProBioEtna Srl, Spin off University of Catania, Via S. Sofia 100, 95123 Catania, Italy
| | - Cinzia Caggia
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia, 100, 95123 Catania, Italy
- ProBioEtna Srl, Spin off University of Catania, Via S. Sofia 100, 95123 Catania, Italy
| | - Cinzia L Randazzo
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia, 100, 95123 Catania, Italy
- ProBioEtna Srl, Spin off University of Catania, Via S. Sofia 100, 95123 Catania, Italy
| |
Collapse
|
23
|
Maicas S, Mateo JJ. The Life of Saccharomyces and Non- Saccharomyces Yeasts in Drinking Wine. Microorganisms 2023; 11:1178. [PMID: 37317152 PMCID: PMC10224428 DOI: 10.3390/microorganisms11051178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 06/16/2023] Open
Abstract
Drinking wine is a processed beverage that offers high nutritional and health benefits. It is produced from grape must, which undergoes fermentation by yeasts (and sometimes lactic acid bacteria) to create a product that is highly appreciated by consumers worldwide. However, if only one type of yeast, specifically Saccharomyces cerevisiae, was used in the fermentation process, the resulting wine would lack aroma and flavor and may be rejected by consumers. To produce wine with a desirable taste and aroma, non-Saccharomyces yeasts are necessary. These yeasts contribute volatile aromatic compounds that significantly impact the wine's final taste. They promote the release of primary aromatic compounds through a sequential hydrolysis mechanism involving several glycosidases unique to these yeasts. This review will discuss the unique characteristics of these yeasts (Schizosaccharomyces pombe, Pichia kluyveri, Torulaspora delbrueckii, Wickerhamomyces anomalus, Metschnikowia pulcherrima, Hanseniaspora vineae, Lachancea thermotolerans, Candida stellata, and others) and their impact on wine fermentations and co-fermentations. Their existence and the metabolites they produce enhance the complexity of wine flavor, resulting in a more enjoyable drinking experience.
Collapse
Affiliation(s)
- Sergi Maicas
- Departament de Microbiologia i Ecologia, Facultat de Ciències Biològiques, Universitat de València, 46100 Burjassot, Spain
| | | |
Collapse
|
24
|
Vicente J, Navascués E, Benito S, Marquina D, Santos A. Microsatellite typing of Lachancea thermotolerans for wine fermentation monitoring. Int J Food Microbiol 2023; 394:110186. [PMID: 36963240 DOI: 10.1016/j.ijfoodmicro.2023.110186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/20/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023]
Abstract
Climate change is causing a lack of acidity during winemaking and oenologists use several solutions to cope with such a problem. Lachancea thermotolerans, which has the potential to tolerate the harsh physicochemical conditions of wine, has emerged as a promising alternative for pH management during winemaking and, currently, it is the most valuable yeast used for acidity control in wine. In this work a manageable method for L. thermotolerans genotyping based on a multiplexed microsatellite amplification in 6 different loci was developed. The proposed method was used to distinguish between 103 collection strains obtained from different geographical and isolation sources, and then challenged against a 429 L. thermotolerans isolates from several wineries and harvests. The procedure was also tested for fermentation monitoring and strain implantation. This approach was conceived to simplify the methodology available for L. thermotolerans genotyping, making it easy for applying in wine-related laboratories. This method can be applied to distinguish between L. thermotolerans strains in selection programs and to follow implantation of inoculated strains during winemaking with optimal results.
Collapse
Affiliation(s)
- Javier Vicente
- Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Eva Navascués
- Pago de Carraovejas, S.L.U., 47300 Peñafiel, Valladolid, Spain; Department of Chemistry and Food Technology, Polytechnic University of Madrid, 28040 Madrid, Spain
| | - Santiago Benito
- Department of Chemistry and Food Technology, Polytechnic University of Madrid, 28040 Madrid, Spain
| | - Domingo Marquina
- Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Antonio Santos
- Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
25
|
Lai YT, Hou CY, Lin SP, Lo YC, Chen CH, Hsieh CW, Lin HW, Cheng KC. Sequential culture with aroma-producing yeast strains to improve the quality of Kyoho wine. J Food Sci 2023; 88:1114-1127. [PMID: 36660881 DOI: 10.1111/1750-3841.16468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/12/2022] [Accepted: 12/29/2022] [Indexed: 01/21/2023]
Abstract
Despite many non-Saccharomyces yeasts being considered spoilage microorganisms, they can increase aroma and flavor diversity in alcoholic beverages. The purpose of this study was to investigate nontraditional inoculation strategies using aroma-producing yeast strains for Kyoho wine fermentation, followed by an instrumental analysis and sensory evaluation. The winemaking process was carried out using Saccharomyces cerevisiae Gr112, Hanseniaspora uvarum Pi235, and Pichia kluyveri Pe114. Multiple inoculation strategies were explored. In instrumental analysis results, mixed culture could promote the formation of esters (5.9-folds) and glycerol (1.3-folds) and reduce the content of ethanol (-0.5% [v/v]) in wine. The sensory analysis results suggested that the three yeast strains sequential inoculation treatment was associated with the aroma attributes "floral," "red fruity," and "tropical fruity." Co-cultivation contributed to an increase in complexity and aromatic intensity, with the three-strain inoculation treatment presenting a more distinctive appearance. PRACTICAL APPLICATION: The inoculation of S. cerevisiae improved the accumulation of volatile acids and esters by inhibiting the growth of non-Saccharomyces yeast strains. Inoculation of H. uvarum and P. kluyveri would effectively solve the defect of excessive content of higher alcohols in wines produced by S. cerevisiae. The suitable inoculation strategy between non-Saccharomyces yeasts could improve the overall quality of Kyoho wine whose starter might be widely used in fermentation industry.
Collapse
Affiliation(s)
- Yen-Tso Lai
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Shin-Ping Lin
- School of Food Safety, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chen Lo
- Institute of Food Science Technology, National Taiwan University, Taipei, Taiwan
| | - Chien-Hao Chen
- Department of Food and Beverage Management, National Kaohsiung University of Hospitality and Tourism, Taipei, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Hui-Wen Lin
- Department of Optometry, Asia University, Taichung, Taiwan
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.,Institute of Food Science Technology, National Taiwan University, Taipei, Taiwan.,Department of Optometry, Asia University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
26
|
Castrillo D, Blanco P, Vélez S. Can Satellite Remote Sensing Assist in the Characterization of Yeasts Related to Biogeographical Origin? SENSORS (BASEL, SWITZERLAND) 2023; 23:2059. [PMID: 36850656 PMCID: PMC9962804 DOI: 10.3390/s23042059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Biogeography is a key concept associated with microbial terroir, which is responsible for the differentiation and uniqueness of wines. One of the factors influencing this microbial terroir is the vegetation, which in turn is influenced by climate, soil, and cultural practices. Remote sensing instruments can provide useful information about vegetation. This study analyses the relationship between NDVI, calculated using Sentinel-2 and Landsat-8 satellite images of different veraison dates, and microbial data obtained in 2015 from 14 commercial (organic and conventional) vineyards belonging to four Designations of Origin (DOs) from Galicia (northwest Spain). Microbial populations in grapes and musts were identified using PCR techniques and confirmed by sequencing. Statistical analyses were made using PCA, CCA, TB-PLS, and correlation analyses. This study confirms that the NDVI is positively correlated with the diversity of yeasts, both in grapes' surface and must samples. Moreover, the results of this study show: (i) Sentinel-2 images, as well as Landsat-8 images, can establish differences in NDVI related to yeast terroir in grapes and musts, as it is the most relevant DO factor, (ii) Sentinel-2 NDVI and yeast biogeography are moderately to strongly correlated, (iii) Sentinel-2 achieved a better delimitation of the DOs than Landsat-8 and can establish more accurate differences in NDVI-yeast terroir correlations, and (iv) a higher NDVI was associated with the yeast biogeographical patterns of the DOs with higher species richness (S) consisting of weakly fermenting yeasts (Hanseniaspora uvarum, Pichia spp., Starmerella bacillaris, and Zygosaccharomyces spp). However, NDVI values did not correlate well with biogeographic patterns of yeasts previously studied at frequency level (proportion or percentage of each species) in each particular DO. This study suggests that satellite imagery has the potential to be a valuable tool for wine quality management and a decision-making instrument for DO regulators and winegrowers.
Collapse
Affiliation(s)
- David Castrillo
- Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Ponte San Clodio s/n, 32428 Leiro-Ourense, Spain
| | - Pilar Blanco
- Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Ponte San Clodio s/n, 32428 Leiro-Ourense, Spain
| | - Sergio Vélez
- Information Technology Group, Wageningen University & Research, 6708 Wageningen, The Netherlands
| |
Collapse
|
27
|
Impact of Non-Saccharomyces Yeast Fermentation in Madeira Wine Chemical Composition. Processes (Basel) 2023. [DOI: 10.3390/pr11020482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Madeira wine is produced via spontaneous alcoholic fermentation arrested by ethanol addition. The increasing demand of the wine market has led to the need to standardize the winemaking process. This study focuses on identifying the microbiota of indigenous yeasts present during Madeira wine fermentation and then evaluates the impact of selected indigenous non-Saccharomyces as pure starter culture (Hanseniaspora uvarum, Starmerella bacillaris, Pichia terricola, Pichia fermentans, and Pichia kluyveri) in the chemical and phenolic characterization of Madeira wine production. Results showed that the polyphenol content of the wines was influenced by yeast species, with higher levels found in wines produced by Pichia spp. (ranging from 356.85 to 367.68 mg GAE/L in total polyphenols and 50.52 to 51.50 mg/L in total individual polyphenols through HPLC methods). Antioxidant potential was higher in wines produced with Hanseniaspora uvarum (133.60 mg Trolox/L) and Starmerella bacillaris (137.61 mg Trolox/L). Additionally, Starmerella bacillaris stands out due to its sugar consumption during fermentation (the totality of fructose and 43% of glucose) and 15.80 g/L of total organic acids compared to 9.23 g/L (on average) for the other yeasts. This knowledge can be advantageous to standardizing the winemaking process and increasing the bioactive compounds, resulting in the production of high-quality wines.
Collapse
|
28
|
Agarbati A, Ciani M, Esin S, Agnolucci M, Marcheggiani F, Tiano L, Comitini F. Comparative Zymocidial Effect of Three Different Killer Toxins against Brettanomyces bruxellensis Spoilage Yeasts. Int J Mol Sci 2023; 24:ijms24021309. [PMID: 36674823 PMCID: PMC9866123 DOI: 10.3390/ijms24021309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Three killer toxins that were previously investigated, one excreted by Kluyveromyces wickerhamii and two by different strains of Wickerhamomyces anomalus, were produced at the pilot scale, lyophilized and characterized, and the formulates were assessed for their zymocidial effect against Brettanomyces bruxellensis spoilage yeast. A comparative analysis allowed the evaluation of the minimum inhibitory concentration (MIC) against a sensitive strain. Fungicidal and fungistatic concentrations were used to evaluate the cytocidal effect using a cytofluorimetric approach that confirmed the lethal effect of all lyophilized formulates against B. bruxellensis spoilage yeasts. Moreover, the potential killer toxins' cytotoxicity against human intestinal cells (Caco-2) were evaluated to exclude any possible negative effect on the consumers. Finally, the effective lethal effect of all three lyophilized killer toxins toward B. bruxellensis sensitive strain were tested. The results indicated that all of them acted without dangerous effects on the human epithelial cells, opening the way for their possible commercial application. In particular, D15 showed the lowest MIC and the highest activity, was evaluated also in wine, revealing a strong reduction of Brettamonyces yeast growth and, at the same time, a control of ethyl phenols production.
Collapse
Affiliation(s)
- Alice Agarbati
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Maurizio Ciani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
- Correspondence: (M.C.); (F.C.)
| | - Semih Esin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 37, 56123 Pisa, Italy
| | - Monica Agnolucci
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Francesca Comitini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
- Correspondence: (M.C.); (F.C.)
| |
Collapse
|
29
|
Vergara SC, Leiva MJ, Mestre MV, Vazquez F, Nally MC, Maturano YP. Non-saccharomyces yeast probiotics: revealing relevance and potential. FEMS Yeast Res 2023; 23:foad041. [PMID: 37777839 DOI: 10.1093/femsyr/foad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/22/2023] [Accepted: 09/29/2023] [Indexed: 10/02/2023] Open
Abstract
Non-Saccharomyces yeasts are unicellular eukaryotes that play important roles in diverse ecological niches. In recent decades, their physiological and morphological properties have been reevaluated and reassessed, demonstrating the enormous potential they possess in various fields of application. Non-Saccharomyces yeasts have gained relevance as probiotics, and in vitro and in vivo assays are very promising and offer a research niche with novel applications within the functional food and nutraceutical industry. Several beneficial effects have been described, such as antimicrobial and antioxidant activities and gastrointestinal modulation and regulation functions. In addition, several positive effects of bioactive compounds or production of specific enzymes have been reported on physical, mental and neurodegenerative diseases as well as on the organoleptic properties of the final product. Other points to highlight are the multiomics as a tool to enhance characteristics of interest within the industry; as well as microencapsulation offer a wide field of study that opens the niche of food matrices as carriers of probiotics; in turn, non-Saccharomyces yeasts offer an interesting alternative as microencapsulating cells of various compounds of interest.
Collapse
Affiliation(s)
- Silvia Cristina Vergara
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| | - María José Leiva
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| | - María Victoria Mestre
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| | - Fabio Vazquez
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
| | - María Cristina Nally
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| | - Yolanda Paola Maturano
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| |
Collapse
|
30
|
Shrivastava A, Pal M, Sharma RK. Pichia as Yeast Cell Factory for Production of Industrially Important Bio-Products: Current Trends, Challenges, and Future Prospects. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2023. [DOI: 10.1016/j.jobab.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
31
|
Croatian white grape variety Maraština: First taste of its indigenous mycobiota. Food Res Int 2022; 162:111917. [DOI: 10.1016/j.foodres.2022.111917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/09/2022] [Accepted: 09/07/2022] [Indexed: 11/20/2022]
|
32
|
Liu L, Zhao PT, Hu CY, Tian D, Deng H, Meng YH. Screening low-methanol and high-aroma produced yeasts for cider fermentation by transcriptive characterization. Front Microbiol 2022; 13:1042613. [PMID: 36439849 PMCID: PMC9691974 DOI: 10.3389/fmicb.2022.1042613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/27/2022] [Indexed: 11/12/2022] Open
Abstract
The commercial active dry yeast strains used for cider production in China are far behind the requirements of the cider industry development in recent decades. In this study, eight yeasts, including Saccharomyces cerevisiae, Schizosaccharomyces pombe, Pichia bruneiensis, and Pichia kudriavzevii, were screened and assessed by growth performance, methanol production, aroma analysis, and their transcriptive characterization. Saccharomyces cerevisiae strains WFC-SC-071 and WFC-SC-072 were identified as promising alternatives for cider production. Strains WFC-SC-071 and WFC-SC-072 showed an excellent growth capacity characterized by 91.6 and 88.8% sugar utilization, respectively. Methanol production by both strains was below 200 mg/L. Key aroma compounds imparting cider appreciably characteristic aroma increased in cider fermented by strains WFC-SC-071 and WFC-SC-072. RT-qPCR analysis suggested that most genes associated with growth capacity, carbohydrate uptake, and aroma production were upregulated in WFC-SC-071 and WFC-SC-072. Overall, two Saccharomyces cerevisiae strains are the optimal starters for cider production to enable the diversification of cider, satisfy the differences in consumer demand, and promote cider industry development.
Collapse
Affiliation(s)
- Liang Liu
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xian, China
| | - Peng Tao Zhao
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xian, China
| | - Ching Yuan Hu
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xian, China
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, Honolulu, HI, United States
| | - Dan Tian
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xian, China
| | - Hong Deng
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xian, China
- *Correspondence: Hong Deng,
| | - Yong Hong Meng
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xian, China
- Yong Hong Meng,
| |
Collapse
|
33
|
Vicente J, Ruiz J, Tomasi S, de Celis M, Ruiz-de-Villa C, Gombau J, Rozès N, Zamora F, Santos A, Marquina D, Belda I. Impact of rare yeasts in Saccharomyces cerevisiae wine fermentation performance: Population prevalence and growth phenotype of Cyberlindnera fabianii, Kazachstania unispora, and Naganishia globosa. Food Microbiol 2022; 110:104189. [DOI: 10.1016/j.fm.2022.104189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
|
34
|
Brewing and probiotic potential activity of wild yeasts Hanseniaspora uvarum PIT001, Pichia kluyveri LAR001 and Candida intermedia ORQ001. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04139-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Zhao H, Li Y, Liu L, Zheng M, Feng Z, Hu K, Tao Y. Effects of inoculation timing and mixed fermentation with Pichia fermentans on Oenococcus oeni viability, fermentation duration and aroma production during wine malolactic fermentation. Food Res Int 2022; 159:111604. [DOI: 10.1016/j.foodres.2022.111604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022]
|
36
|
Methner Y, Weber N, Kunz O, Zarnkow M, Rychlik M, Hutzler M, Jacob F. Investigations into metabolic properties and selected nutritional metabolic byproducts of different non-Saccharomyces yeast strains when producing nonalcoholic beer. FEMS Yeast Res 2022; 22:6675809. [PMID: 36007922 PMCID: PMC9629496 DOI: 10.1093/femsyr/foac042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/29/2022] [Accepted: 08/22/2022] [Indexed: 01/07/2023] Open
Abstract
Nonalcoholic beers are becoming increasingly popular, in part due to consumers' awareness of a healthier lifestyle. Additionally, consumers are demanding diversification in the product range, which can be offered by producing nonalcoholic beers using non-Saccharomyces yeasts for fermentation to create a wide variety of flavors. So far, little is known about the nutritionally relevant byproducts that these yeasts release during wort fermentation and whether these yeasts can be considered safe for food fermentations. To gain insights into this, the B vitamins of four different nonalcoholic beers fermented with the yeast species Saccharomycodes ludwigii, Cyberlindnera saturnus (two strains), and Kluyveromyces marxianus were analyzed. Furthermore, a total of 16 beers fermented with different non-Saccharomyces yeast strains were analyzed for biogenic amines. Additionally, stress tolerance tests were performed at 37°C and in synthetic human gastric juice in vitro. B vitamins were found in the four nonalcoholic beers in nutritionally relevant amounts so they could serve as a supplement for a balanced diet. Biogenic amines remained below the limit of determination in all 16 beers, and thus likely had no influence, while the stress tolerance tests gave a first indication that seven yeast strains could possibly tolerate the human gastric juice milieu.
Collapse
Affiliation(s)
- Yvonne Methner
- Research Center Weihenstephan for Brewing and Food Quality, Technical University of Munich, Alte Akademie 3, 85354 Freising, Germany
| | - Nadine Weber
- Chair of Analytical Food Chemistry, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
| | - Oliver Kunz
- Research Center Weihenstephan for Brewing and Food Quality, Technical University of Munich, Alte Akademie 3, 85354 Freising, Germany
| | - Martin Zarnkow
- Research Center Weihenstephan for Brewing and Food Quality, Technical University of Munich, Alte Akademie 3, 85354 Freising, Germany
| | - Michael Rychlik
- Chair of Analytical Food Chemistry, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany,Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, 306 Carmody Road, St Lucia QLD 4072, Australia
| | - Mathias Hutzler
- Corresponding author: Research Center Weihenstephan for Brewing and Food Quality, Technical University of Munich, Alte Akademie 3, 85354 Freising, Germany. Tel: +49 8161 71-3100; Fax: +49 8161 71-4181; E-mail:
| | - Fritz Jacob
- Research Center Weihenstephan for Brewing and Food Quality, Technical University of Munich, Alte Akademie 3, 85354 Freising, Germany
| |
Collapse
|
37
|
|
38
|
Xu X, Miao Y, Wang H, Ye P, Li T, Li C, Zhao R, Wang B, Shi X. A Snapshot of Microbial Succession and Volatile Compound Dynamics in Flat Peach Wine During Spontaneous Fermentation. Front Microbiol 2022; 13:919047. [PMID: 35847119 PMCID: PMC9277550 DOI: 10.3389/fmicb.2022.919047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Flat peaches possess characteristic flavors and are rich in nutrients. The fermentation of flat peaches to produce wine through complex biochemical reactions is an effective method to overcome their seasonal defects. Spontaneously fermented flat peach wine has plentiful and strong flavors, but the microbiota of fermentation are still unknown. In this study, the microbial succession and volatile compound dynamics of spontaneous fermentation in Xinjiang flat peach wine were investigated using high-throughput sequencing (HTS) and headspace solid phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) technology, respectively, to better understand the microbiota involved. Multivariate data analysis was used to predict the relationship between microorganisms and volatile chemicals. The results showed that Kazachstania, Pichia, Aspergillus, Fructobacillus, Leuconostoc, and Lactobacillus were the dominant genera during the spontaneous fermentation of flat peach wine. Furthermore, ethyl hexanoate, 3-hexen-1-yl acetate, ethyl caprate, ethyl caprylate, phenethyl acetate, ethanol, γ-decalactone, decanal, 1-hexanoic acid, and octanoic acid endued flat peach wine with a strong fruity and fatty aroma. The core functional microbiota (primarily consisting of 11 bacterial and 14 fungal taxa) was strongly associated with the production of 27 volatile compounds in the spontaneously fermented flat peach wine, according to multivariate data analysis. Some alcohols and esters were positively linked with the presence of Kazachstania and Pichia. Meanwhile, the presence of Fructobacillus, Leuconostoc, Lactobacillus, and Weissella was significantly correlated with 2-non-anol, ethanol, 3-methyl-1-butanol, octyl formate, isoamyl lactate, and ethyl lactate. This snapshot of microbial succession and volatile compound dynamics provides insights into the microorganisms involved in flat peach wine fermentation and could guide the production of flat peach wine with desirable characteristics.
Collapse
|
39
|
Vicente J, Baran Y, Navascués E, Santos A, Calderón F, Marquina D, Rauhut D, Benito S. Biological management of acidity in wine industry: A review. Int J Food Microbiol 2022; 375:109726. [DOI: 10.1016/j.ijfoodmicro.2022.109726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
|
40
|
Zhang Z, Gao Y, Zhao W, Wei Z, Liu X, Zhang H. Analysis of fungal dynamic changes in the natural fermentation broth of 'Hongyang' kiwifruit. PeerJ 2022; 10:e13286. [PMID: 35462763 PMCID: PMC9029446 DOI: 10.7717/peerj.13286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/28/2022] [Indexed: 01/13/2023] Open
Abstract
'Hongyang' kiwifruit (Actinidia chinensis Planch.) is an ideal kiwifruit wine variety. At present, there is no research on the dynamic changes of yeast during the natural fermentation of kiwifruit wine. In this study, a high-throughput was employed to analyze the fungal population composition and diversity in the samples cultured in yeast extract peptone dextrose (YPD) medium and enriched in the natural fermentation process of 'Hongyang' kiwifruit at four time points, day one (D1T), day three (D3T), day five (D5T), and day fifteen (D15T). Five hundred and eighty-two operational taxonomic units (OTUs) were obtained from 131 genera and 178 species samples. The diversity analysis results showed that in the early natural fermentation stage, the dominant species was Aureobasidium pullulans, and as natural fermentation proceeded, the genus Pichia became the dominant species. Pichia kluyveri was an important species at the later stages of natural fermentation. An analysis of the metabolic pathways shows that P. kluyveri plays an aromatic-producing role in the natural fermentation of 'Hongyang' kiwifruit. These results could provide a theoretical basis for the studies of kiwifruit fungal diversity and fungal changes during fermentation. The findings could fix a major deficiency in the production of kiwifruit fruit wine, which lacks a specific flavor-producing yeast species or strain.
Collapse
Affiliation(s)
- Zhiming Zhang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan, China
| | - Yuhong Gao
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan, China
| | - Wenjuan Zhao
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Glassland Administration, Southwest Forestry University, Kunming, Yunnan, China
| | - Zhuo Wei
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Glassland Administration, Southwest Forestry University, Kunming, Yunnan, China
| | - Xiaozhen Liu
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Glassland Administration, Southwest Forestry University, Kunming, Yunnan, China
| | - Hanyao Zhang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan, China
| |
Collapse
|
41
|
Wei R, Wang L, Ding Y, Zhang L, Gao F, Chen N, Song Y, Li H, Wang H. Natural and sustainable wine: a review. Crit Rev Food Sci Nutr 2022; 63:8249-8260. [PMID: 35333679 DOI: 10.1080/10408398.2022.2055528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
With the awakening of consumers' awareness of sustainable development issues and demand for terroir wines, natural wines provide opportunities for the future development of the wine industry. Microbiomes are integral to viticulture and winemaking, where various microorganisms can exert positive and negative effects on grape health and wine quality. Communities of microorganisms associated with the vineyard play an important role in soil productivity as well as disease resistance developed by the vine. Wine is a fermented natural product, and the vineyard serves as a key point of entry for quality-modulating microbiota, particularly in wine fermentations that are conducted without the addition of exogenous yeasts. Thus, the sources and persistence of wine-relevant microbiota in vineyards critically impact its quality. In this review, we first examined that mimicking natural ecological cultivation to improve microbial diversity can enhance vineyard ecological services and reduce external inputs; then we examined that grape berries naturally possess all the elements of winemaking, including the nutrients for microbial growth, driving forces for the microbiota succession, and the enzymatic system for biochemical reactions; finally, we examined food safety, stability, specific interventions, and sustainability of natural wine industry-scale practices.
Collapse
Affiliation(s)
- Ruteng Wei
- College of Enology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Lin Wang
- College of Enology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Yinting Ding
- College of Enology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Liang Zhang
- College of Enology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Feifei Gao
- College of Enology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Ning Chen
- College of Enology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Yinghui Song
- Penglai Vine and Wine Industry Development Service Center, Yantai, Shandong, PR China
| | - Hua Li
- College of Enology, Northwest A&F University, Yangling, Shaanxi, PR China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Shaanxi, PR China
- China Wine Industry Technology Institute, Zhongguancun innovation Center, Yinchuan, Ningxia, PR China
| | - Hua Wang
- College of Enology, Northwest A&F University, Yangling, Shaanxi, PR China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Shaanxi, PR China
- China Wine Industry Technology Institute, Zhongguancun innovation Center, Yinchuan, Ningxia, PR China
| |
Collapse
|
42
|
Carbonero-Pacheco J, Moreno-García J, Moreno J, García-Martínez T, Mauricio JC. Revealing the Yeast Diversity of the Flor Biofilm Microbiota in Sherry Wines Through Internal Transcribed Spacer-Metabarcoding and Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry. Front Microbiol 2022; 12:825756. [PMID: 35222316 PMCID: PMC8864117 DOI: 10.3389/fmicb.2021.825756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/22/2021] [Indexed: 01/04/2023] Open
Abstract
Flor yeast velum is a biofilm formed by certain yeast strains that distinguishes biologically aged wines such as Sherry wine from southern Spain from others. Although Saccharomyces cerevisiae is the most common species, 5.8 S-internal transcribed spacer (ITS) restriction fragment length polymorphism analyses have revealed the existence of non-Saccharomyces species. In order to uncover the flor microbiota diversity at a species level, we used ITS (internal transcribed spacer 1)-metabarcoding and matrix-assisted laser desorption/Ionization time of flight mass spectrometry techniques. Further, to enhance identification effectiveness, we performed an additional incubation stage in 1:1 wine:yeast extract peptone dextrose (YPD) before identification. Six species were identified: S. cerevisiae, Pichia manshurica, Pichia membranifaciens, Wickerhamomyces anomalus, Candida guillermondii, and Trichosporon asahii, two of which were discovered for the first time (C. guillermondii and Trichosporon ashaii) in Sherry wines. We analyzed wines where non-Saccharomyces yeasts were present or absent to see any potential link between the microbiota and the chemical profile. Only 2 significant volatile chemicals (out of 13 quantified), ethanol and ethyl lactate, and 2 enological parameters (out of 6 quantified), such as pH and titratable acidity, were found to differ in long-aged wines. Although results show a low impact where the non-Saccharomyces yeasts are present, these yeasts isolated from harsh environments (high ethanol and low nutrient availability) could have a potential industrial interest in fields such as food microbiology and biofuel production.
Collapse
Affiliation(s)
- Juan Carbonero-Pacheco
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Córdoba, Córdoba, Spain
| | - Jaime Moreno-García
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Córdoba, Córdoba, Spain
| | - Juan Moreno
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Córdoba, Córdoba, Spain
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Córdoba, Córdoba, Spain
| | - Juan Carlos Mauricio
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Córdoba, Córdoba, Spain
| |
Collapse
|
43
|
Scansani S, van Wyk N, Nader KB, Beisert B, Brezina S, Fritsch S, Semmler H, Pasch L, Pretorius IS, von Wallbrunn C, Schnell S, Rauhut D. The film-forming Pichia spp. in a winemaker's toolbox: A simple isolation procedure and their performance in a mixed-culture fermentation of Vitis vinifera L. cv. Gewürztraminer must. Int J Food Microbiol 2022; 365:109549. [DOI: 10.1016/j.ijfoodmicro.2022.109549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/17/2021] [Accepted: 01/13/2022] [Indexed: 01/21/2023]
|
44
|
Isolation and identification of aroma-producing non-Saccharomyces yeast strains and the enological characteristic comparison in wine making. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Evaluation of Autochthonous Non-Saccharomyces Yeasts by Sequential Fermentation for Wine Differentiation in Galicia (NW Spain). FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Non-Saccharomyces yeasts constitute a useful tool in winemaking because they secrete hydrolytic enzymes and produce metabolites that enhance wine quality; in addition, their ability to reduce alcohol content and/or to increase acidity can help to mitigate the effects of climatic change on wines. The purpose of this study was to evaluate the oenological traits of non-Saccharomyces yeast strains autochthonous from Galicia (NW Spain). To do that, we carried out sequential fermentation using 13 different species from the yeast collection of Estación de Viticultura e Enoloxía de Galicia (Evega) and Saccharomyces cerevisiae EC1118. The fermentation kinetics and yeast implantation were monitored using conventional methods and genetic techniques, respectively. The basic chemical parameters of wine were determined using the OIV official methodology, and the fermentative aroma compounds were determined by GC–FID. The results evidenced the limited fermentative power of these yeasts and the differences in their survival after the addition of S. cerevisiae to complete fermentation. Some strains reduced the alcohol and/or increased the total acidity of the wine. The positive effect on sensory wine properties as well as the production of desirable volatile compounds were confirmed for Metschnikowia spp. (Mf278 and Mp176), Lachancea thermotolerans Lt93, and Pichia kluyveri Pkl88. These strains could be used for wine diversification in Galicia.
Collapse
|
46
|
Commercially Available Non-Saccharomyces Yeasts for Winemaking: Current Market, Advantages over Saccharomyces, Biocompatibility, and Safety. FERMENTATION 2021. [DOI: 10.3390/fermentation7030171] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
About 42 commercial products based on non-Saccharomyces yeasts are estimated as available on the market, being mostly pure cultures (79%), with a predominance of Torulaspora delbrueckii, Lachancea thermotolerans, and Metschnikowia pulcherrima. The others are multi-starter consortia that include non-Saccharomyces/Saccharomyces mixtures or only non-Saccharomyces species. Several commercial yeasts have shown adequate biocompatibility with S. cerevisiae in mixed fermentations, allowing an increased contribution of metabolites of oenological interest, such as glycerol, esters, higher alcohols, acids, thiols, and terpenes, among others, in addition to a lower production of acetic acid, volatile phenols, biogenic amines, or urea. Multi-starter inoculations are also reviewed here, which show adequate biocompatibility and synergy between species. In certain cases, the aromatic profile of wines based on grape varieties considered neutral is improved. In addition, several yeasts show the capacity as biocontrollers against contaminating microorganisms. The studies conducted to date demonstrate the potential of these yeasts to improve the properties of wine as an alternative and complement to the traditional S. cerevisiae.
Collapse
|
47
|
Liu Y, Lu Y, Liu SQ. The potential of spent coffee grounds hydrolysates fermented with Torulaspora delbrueckii and Pichia kluyveri for developing an alcoholic beverage: The yeasts growth and chemical compounds modulation by yeast extracts. Curr Res Food Sci 2021; 4:489-498. [PMID: 34382007 PMCID: PMC8332367 DOI: 10.1016/j.crfs.2021.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 10/26/2022] Open
Abstract
This study evaluated the effects of yeast extracts (YE) addition (0 % and 0.25 %, w/v) on the no-volatile and volatile compounds of spent coffee grounds (SCG) hydrolysates fermented with single-cultures of two non-Saccharomyces wine yeasts, Torulaspora delbrueckii and Pichia kluyveri. The added YE improved the growth of both T. delbrueckii and P. kluyveri, especially P. kluyveri, resulting in higher ethanol production (1.98 % vs 1.47 %, v/v) by the latter yeast. In addition, the added YE did not impact on most of the alkaloids production regardless of yeast type, while significantly decreasing the contents of chlorogenic, and caffeic acids in SCG hydrolysates fermented with P. kluyveri. Furthermore, more odor-active compounds such as acetate esters and 2-phenylethyl alcohol were produced when YE was added, and P. kluyveri generated significantly higher amounts of esters compared to that of T. delbrueckii. Moreover, YE addition showed a more noticeable effect on the fermentation performance of P. kluyveri relative to that of T. delbrueckii. These findings indicated the potential of SCG hydrolysates fermented with evaluated non-Saccharomyces yeasts and may expand the applications on utilizing SCG to develop new value-added alcoholic products.
Collapse
Affiliation(s)
- Yunjiao Liu
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, 117542, Singapore
| | - Yuyun Lu
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, 117542, Singapore
| | - Shao Quan Liu
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, 117542, Singapore.,National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Jiangsu, 215123, China
| |
Collapse
|
48
|
Ge Q, Guo C, Zhang J, Yan Y, Zhao D, Li C, Sun X, Ma T, Yue T, Yuan Y. Effects of Simultaneous Co-Fermentation of Five Indigenous Non- Saccharomyces Strains with S. cerevisiae on Vidal Icewine Aroma Quality. Foods 2021; 10:foods10071452. [PMID: 34206678 PMCID: PMC8307878 DOI: 10.3390/foods10071452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 01/09/2023] Open
Abstract
In this study, Vidal grape must was fermented using commercial Saccharomyces cerevisiae F33 in pure culture as a control and in mixed culture with five indigenous non-Saccharomyces yeast strains (Hanseniaspora uvarum QTX22, Saccharomycopsis crataegensis YC30, Pichia kluyveri HSP14, Metschnikowia pulcherrima YC12, and Rhodosporidiobolus lusitaniae QTX15) through simultaneous fermentation in a 1:1 ratio. Simultaneous fermentation inhibited the growth of S. cerevisiae F33 and delayed the time to reach the maximum biomass. Compared with pure fermentation, the contents of polyphenols, acetic esters, ethyl esters, other esters, and terpenes were increased by R. lusitaniae QTX15, S. crataegensis YC30, and P. kluyveri HSP14 through simultaneous fermentation. S. crataegensis YC30 produced the highest total aroma activity and the most abundant aroma substances of all the wine samples. The odor activity values of 1 C13-norisoprenoid, 3 terpenes, 6 acetic esters, and 10 ethyl esters improved significantly, and three lactones (δ-decalactone, γ-nonalactone, and γ-decalactone) related to coconut and creamy flavor were only found in this wine. Moreover, this sample showed obvious “floral” and “fruity” note odor due to having the highest amount of ethyl ester aromatic substances and cinnamene, linalool, citronellol, β-damascenone, isoamyl ethanoate, benzylcarbinyl acetate, isobutyl acetate, etc. We suggest that simultaneous fermentation of S. crataegensis YC30 with S. cerevisiae might represent a novel strategy for the future production of Vidal icewine.
Collapse
Affiliation(s)
- Qian Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Q.G.); (C.G.); (X.S.); (T.M.); (T.Y.)
- Institute of Quality Standard and Testing Technology for Agro-Products of Ningxia, Yinchuan 750002, China; (J.Z.); (Y.Y.); (D.Z.); (C.L.)
- National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling 712100, China
| | - Chunfeng Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Q.G.); (C.G.); (X.S.); (T.M.); (T.Y.)
- National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling 712100, China
| | - Jing Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products of Ningxia, Yinchuan 750002, China; (J.Z.); (Y.Y.); (D.Z.); (C.L.)
| | - Yue Yan
- Institute of Quality Standard and Testing Technology for Agro-Products of Ningxia, Yinchuan 750002, China; (J.Z.); (Y.Y.); (D.Z.); (C.L.)
| | - Danqing Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products of Ningxia, Yinchuan 750002, China; (J.Z.); (Y.Y.); (D.Z.); (C.L.)
| | - Caihong Li
- Institute of Quality Standard and Testing Technology for Agro-Products of Ningxia, Yinchuan 750002, China; (J.Z.); (Y.Y.); (D.Z.); (C.L.)
| | - Xiangyu Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Q.G.); (C.G.); (X.S.); (T.M.); (T.Y.)
| | - Tingting Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Q.G.); (C.G.); (X.S.); (T.M.); (T.Y.)
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Q.G.); (C.G.); (X.S.); (T.M.); (T.Y.)
- National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling 712100, China
- College of Food Science and Technology, Northwest University, Xi’an 710069, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Q.G.); (C.G.); (X.S.); (T.M.); (T.Y.)
- National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling 712100, China
- College of Food Science and Technology, Northwest University, Xi’an 710069, China
- Correspondence: ; Tel./Fax: +86-029-87092261
| |
Collapse
|
49
|
Huang R, Zhang F, Yan X, Qin Y, Jiang J, Liu Y, Song Y. Characterization of the β-Glucosidase activity in indigenous yeast isolated from wine regions in China. J Food Sci 2021; 86:2327-2345. [PMID: 33929752 DOI: 10.1111/1750-3841.15741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/15/2021] [Accepted: 03/28/2021] [Indexed: 11/25/2022]
Abstract
β-glucosidase is a pivotal enzyme that hydrolyzes bound volatile aromatic compounds. However, the activity of β-glucosidase in winemaking and the mechanism by which it affects the flavor and taste of wines have not been fully investigated. In this study, we profiled the characteristics of β-glucosidase derived from wine-related yeasts isolated from different wine-making regions in China, and analyzed the enzyme activity from different parts of the cells under aerobic and anaerobic conditions. A total of 56 strains of wine-related yeasts producing β-glucosidases were screened using the YNB-C medium (YNB 6.7 g L-1 , cellobiose 5 g L-1 , pH 5.0). We found that strain Clavispora lusitaniae C117 produced the highest enzyme activity (152.39 µmol pNP ml-1 h-1 ). In most strains, β-glucosidase were located in whole cells (periplasmic space) and permeabilized cells (intracellular). The non-Saccharomyces species had the highest enzymatic activity in a strain-dependent manner. Under aerobic conditions, C. lusitaniae C117, Hanseniaspora guilliermondii A27-3-4, Metschnikowia pulcherrima F-1-6, and Pichia anomala C84 had the highest β-glucosidase activity. We further investigated the β-glucosidase activity during the wine fermentation and the effects of sugar, pH, temperature, and ethanol on the enzyme activities of P. anomala C84 and commercial Saccharomyces yeast strains RC212 and VL1. The presence of fructose, glucose, and sucrose strongly inhibited enzyme activity. Similarly, low pH and low temperature inhibited the activity of β-glucosidase, whereas ethanol promoted enzyme activity. Our findings provide a theoretical basis on understanding the different yeast characteristics of β-glucosidase and their potential application for further improving wine aroma complexity.
Collapse
Affiliation(s)
- Rong Huang
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Fangfang Zhang
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xingmin Yan
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yi Qin
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiao Jiang
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanlin Liu
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China.,Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Shaanxi, China
| | - Yuyang Song
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China.,Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Shaanxi, China
| |
Collapse
|