1
|
Kamal SN, Kryatova MS, Gale SA, Daffner KR, Silbersweig DA, McGinnis SM, Schildkrout B. Case Study 9: A 64-Year-Old Man With Rapidly Progressive Cognitive Impairment and Behavioral Changes. J Neuropsychiatry Clin Neurosci 2025; 37:170-178. [PMID: 39962977 DOI: 10.1176/appi.neuropsych.20240198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Affiliation(s)
- Syed N Kamal
- Harvard Medical School, Boston (all authors); Departments of Psychiatry (Kamal, Silbersweig, Schildkrout) and Neurology (Gale, Daffner, McGinnis), Center for Brain/Mind Medicine, Brigham and Women's Hospital, Boston; Department of Psychiatry, McLean Hospital, Belmont, Mass. (Kryatova)
| | - Maria S Kryatova
- Harvard Medical School, Boston (all authors); Departments of Psychiatry (Kamal, Silbersweig, Schildkrout) and Neurology (Gale, Daffner, McGinnis), Center for Brain/Mind Medicine, Brigham and Women's Hospital, Boston; Department of Psychiatry, McLean Hospital, Belmont, Mass. (Kryatova)
| | - Seth A Gale
- Harvard Medical School, Boston (all authors); Departments of Psychiatry (Kamal, Silbersweig, Schildkrout) and Neurology (Gale, Daffner, McGinnis), Center for Brain/Mind Medicine, Brigham and Women's Hospital, Boston; Department of Psychiatry, McLean Hospital, Belmont, Mass. (Kryatova)
| | - Kirk R Daffner
- Harvard Medical School, Boston (all authors); Departments of Psychiatry (Kamal, Silbersweig, Schildkrout) and Neurology (Gale, Daffner, McGinnis), Center for Brain/Mind Medicine, Brigham and Women's Hospital, Boston; Department of Psychiatry, McLean Hospital, Belmont, Mass. (Kryatova)
| | - David A Silbersweig
- Harvard Medical School, Boston (all authors); Departments of Psychiatry (Kamal, Silbersweig, Schildkrout) and Neurology (Gale, Daffner, McGinnis), Center for Brain/Mind Medicine, Brigham and Women's Hospital, Boston; Department of Psychiatry, McLean Hospital, Belmont, Mass. (Kryatova)
| | - Scott M McGinnis
- Harvard Medical School, Boston (all authors); Departments of Psychiatry (Kamal, Silbersweig, Schildkrout) and Neurology (Gale, Daffner, McGinnis), Center for Brain/Mind Medicine, Brigham and Women's Hospital, Boston; Department of Psychiatry, McLean Hospital, Belmont, Mass. (Kryatova)
| | - Barbara Schildkrout
- Harvard Medical School, Boston (all authors); Departments of Psychiatry (Kamal, Silbersweig, Schildkrout) and Neurology (Gale, Daffner, McGinnis), Center for Brain/Mind Medicine, Brigham and Women's Hospital, Boston; Department of Psychiatry, McLean Hospital, Belmont, Mass. (Kryatova)
| |
Collapse
|
2
|
Laubier J, Van De Wiele A, Barboiron A, Laloë D, Saint-Andrieux C, Castille J, Meloni E, Ernst S, Pellerin M, Floriot S, Daniel-Carlier N, Passet B, Merlet J, Verheyden H, Béringue V, Andréoletti O, Houston F, Vilotte JL, Bourret V, Moazami-Goudarzi K. Variation in the prion protein gene (PRNP) open reading frame sequence in French cervids. Vet Res 2024; 55:105. [PMID: 39227993 PMCID: PMC11373525 DOI: 10.1186/s13567-024-01362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/15/2024] [Indexed: 09/05/2024] Open
Abstract
The recent emergence of chronic wasting disease (CWD) in Europe has become a new public health risk for monitoring of wild and farmed cervids. This disease, due to prions, has proliferated in North America in a contagious manner. In several mammalian species, polymorphisms in the prion protein gene (PRNP) play a crucial role in the susceptibility to prions and their spread. To obtain a reliable picture of the distribution of PRNP polymorphisms in the two most common cervid species in France, we sequenced the open reading frame (ORF) of this gene in 2114 animals, 1116 roe deer (Capreolus capreolus) and 998 red deer (Cervus elaphus). Selection criteria such as historical origin, spatial distribution and sex ratio have been integrated to establish this sample collection. Except for one heterozygous animal with a non-synonymous mutation at codon 37 (G37A), all the 1116 French roe deer were monomorphic. Red deer showed greater variation with two non-synonymous substitutions (T98A; Q226E), three synonymous substitutions (codons 21, 78 and 136) and a new 24pb deletion (Δ69-77). We found significant regional variations between French regions in the frequency of the identified substitutions. After cloning of the PRNP ORF from animals presenting multiple non-synonymous polymorphisms, we identified six haplotypes and obtained a total of twelve genotypes. As in other European countries, we highlighted the apparent homogeneity of PRNP in the French roe deer and the existence of a greater diversity in the red deer. These results were in line with European phylogeographic studies on these two species.
Collapse
Affiliation(s)
- Johann Laubier
- INRAE, AgroParisTech, GABI, University Paris-Saclay, Jouy-en-Josas, France
| | - Anne Van De Wiele
- Research and Scientific Support Department, French Biodiversity Agency (OFB), Vincennes, France
| | - Aurélie Barboiron
- Research and Scientific Support Department, French Biodiversity Agency (OFB), Vincennes, France
| | - Denis Laloë
- INRAE, AgroParisTech, GABI, University Paris-Saclay, Jouy-en-Josas, France
| | | | - Johan Castille
- INRAE, AgroParisTech, GABI, University Paris-Saclay, Jouy-en-Josas, France
| | - Emma Meloni
- Research and Scientific Support Department, French Biodiversity Agency (OFB), Vincennes, France
| | - Sonja Ernst
- Friedrich-Loeffler-Institut, Isle of Riems, Germany
| | - Maryline Pellerin
- Research and Scientific Support Department, French Biodiversity Agency (OFB), Vincennes, France
| | - Sandrine Floriot
- INRAE, AgroParisTech, GABI, University Paris-Saclay, Jouy-en-Josas, France
| | | | - Bruno Passet
- INRAE, AgroParisTech, GABI, University Paris-Saclay, Jouy-en-Josas, France
| | - Joël Merlet
- INRAE, CEFS, Toulouse University, Castanet Tolosan, France
| | | | - Vincent Béringue
- INRAE, UVSQ, VIM, University Paris-Saclay, Jouy-en-Josas, France
| | - Olivier Andréoletti
- UMR INRAE ENVT 1225, IHAP, École Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Fiona Houston
- Division of Immunology, The Roslin Institute, Royal Dick School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Jean-Luc Vilotte
- INRAE, AgroParisTech, GABI, University Paris-Saclay, Jouy-en-Josas, France
| | | | | |
Collapse
|
3
|
Kawahara M, Tanaka KI, Kato-Negishi M. Zinc, Copper, and Calcium: A Triangle in the Synapse for the Pathogenesis of Vascular-Type Senile Dementia. Biomolecules 2024; 14:773. [PMID: 39062487 PMCID: PMC11274390 DOI: 10.3390/biom14070773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Zinc (Zn) and copper (Cu) are essential for normal brain functions. In particular, Zn and Cu are released to synaptic clefts during neuronal excitation. Synaptic Zn and Cu regulate neuronal excitability, maintain calcium (Ca) homeostasis, and play central roles in memory formation. However, in pathological conditions such as transient global ischemia, excess Zn is secreted to synaptic clefts, which causes neuronal death and can eventually trigger the pathogenesis of a vascular type of senile dementia. We have previously investigated the characteristics of Zn-induced neurotoxicity and have demonstrated that low concentrations of Cu can exacerbate Zn neurotoxicity. Furthermore, during our pharmacological approaches to clarify the molecular pathways of Cu-enhanced Zn-induced neurotoxicity, we have revealed the involvement of Ca homeostasis disruption. In the present review, we discuss the roles of Zn and Cu in the synapse, as well as the crosstalk between Zn, Cu, and Ca, which our study along with other recent studies suggest may underlie the pathogenesis of vascular-type senile dementia.
Collapse
Affiliation(s)
- Masahiro Kawahara
- Department of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi 202-8585, Tokyo, Japan
| | | | | |
Collapse
|
4
|
Zhong G, Wang X, Li J, Xie Z, Wu Q, Chen J, Wang Y, Chen Z, Cao X, Li T, Liu J, Wang Q. Insights Into the Role of Copper in Neurodegenerative Diseases and the Therapeutic Potential of Natural Compounds. Curr Neuropharmacol 2024; 22:1650-1671. [PMID: 38037913 PMCID: PMC11284712 DOI: 10.2174/1570159x22666231103085859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 12/02/2023] Open
Abstract
Neurodegenerative diseases encompass a collection of neurological disorders originating from the progressive degeneration of neurons, resulting in the dysfunction of neurons. Unfortunately, effective therapeutic interventions for these diseases are presently lacking. Copper (Cu), a crucial trace element within the human body, assumes a pivotal role in various biological metabolic processes, including energy metabolism, antioxidant defense, and neurotransmission. These processes are vital for the sustenance, growth, and development of organisms. Mounting evidence suggests that disrupted copper homeostasis contributes to numerous age-related neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), Wilson's disease (WD), Menkes disease (MD), prion diseases, and multiple sclerosis (MS). This comprehensive review investigates the connection between the imbalance of copper homeostasis and neurodegenerative diseases, summarizing pertinent drugs and therapies that ameliorate neuropathological changes, motor deficits, and cognitive impairments in these conditions through the modulation of copper metabolism. These interventions include Metal-Protein Attenuating Compounds (MPACs), copper chelators, copper supplements, and zinc salts. Moreover, this review highlights the potential of active compounds derived from natural plant medicines to enhance neurodegenerative disease outcomes by regulating copper homeostasis. Among these compounds, polyphenols are particularly abundant. Consequently, this review holds significant implications for the future development of innovative drugs targeting the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyue Wang
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiaqi Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhouyuan Xie
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiqing Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaxin Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yiyun Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziying Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyue Cao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tianyao Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinman Liu
- Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Fan YG, Wu TY, Zhao LX, Jia RJ, Ren H, Hou WJ, Wang ZY. From zinc homeostasis to disease progression: Unveiling the neurodegenerative puzzle. Pharmacol Res 2024; 199:107039. [PMID: 38123108 DOI: 10.1016/j.phrs.2023.107039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/16/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Zinc is a crucial trace element in the human body, playing a role in various physiological processes such as oxidative stress, neurotransmission, protein synthesis, and DNA repair. The zinc transporters (ZnTs) family members are responsible for exporting intracellular zinc, while Zrt- and Irt-like proteins (ZIPs) are involved in importing extracellular zinc. These processes are essential for maintaining cellular zinc homeostasis. Imbalances in zinc metabolism have been linked to the development of neurodegenerative diseases. Disruptions in zinc levels can impact the survival and activity of neurons, thereby contributing to the progression of neurodegenerative diseases through mechanisms like cell apoptosis regulation, protein phase separation, ferroptosis, oxidative stress, and neuroinflammation. Therefore, conducting a systematic review of the regulatory network of zinc and investigating the relationship between zinc dysmetabolism and neurodegenerative diseases can enhance our understanding of the pathogenesis of these diseases. Additionally, it may offer new insights and approaches for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yong-Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| | - Ting-Yao Wu
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Ling-Xiao Zhao
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Rong-Jun Jia
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Hang Ren
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Wen-Jia Hou
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Zhan-You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| |
Collapse
|
6
|
Hara H, Miyata H, Chida J, Sakaguchi S. Strain-dependent role of copper in prion disease through binding to histidine residues in the N-terminal domain of prion protein. J Neurochem 2023; 167:394-409. [PMID: 37777338 DOI: 10.1111/jnc.15971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 10/02/2023]
Abstract
The cellular prion protein, PrPC , is a copper-binding protein abundantly expressed in the brain, particularly by neurons, and its conformational conversion into the amyloidogenic isoform, PrPSc , plays a key pathogenic role in prion diseases. However, the role of copper binding to PrPC in prion diseases remains unclear. Here, we fed mice with a low-copper or regular diet and intracerebrally inoculated them with two different mouse-adapted RML scrapie and BSE prions. Mice with a low-copper diet developed disease significantly but only slightly later than those with a regular diet after inoculation with BSE prions, but not with RML prions, suggesting that copper could play a minor role in BSE prion pathogenesis, but not in RML prion pathogenesis. We then generated two lines of transgenic mice expressing mouse PrP with copper-binding histidine (His) residues in the N-terminal domain replaced with alanine residues, termed TgPrP(5H > A)-7342/Prnp0/0 and TgPrP(5H > A)-7524/Prnp0/0 mice, and similarly inoculated RML and BSE prions into them. Due to 2-fold higher expression of PrP(5H > A) than PrPC in wild-type (WT) mice, TgPrP(5H > A)-7524/Prnp0/0 mice were highly susceptible to these prions, compared to WT mice. However, TgPrP(5H > A)-7342/Prnp0/0 mice, which express PrP(5H > A) 1.2-fold as high as PrPC in WT mice, succumbed to disease slightly, but not significantly, later than WT mice after inoculation with RML prions, but significantly so after inoculation with BSE prions. Subsequent secondary inoculation experiments revealed that amino acid sequence differences between PrP(5H > A) and WT PrPSc created no prion transmission barrier to BSE prions. These results suggest that copper-binding His residues in PrPC are dispensable for RML prion pathogenesis but have a minor effect on BSE prion pathogenesis. Taken together, our current results suggest that copper could have a minor effect on prion pathogenesis in a strain-dependent manner through binding to His residues in the N-terminal domain of PrPC .
Collapse
Affiliation(s)
- Hideyuki Hara
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| | - Hironori Miyata
- Animal Research Center, School of Medicine, University of Occupational and Environmental Health, Yahatanishi, Kitakyushu, Japan
| | - Junji Chida
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| | - Suehiro Sakaguchi
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| |
Collapse
|
7
|
Suh JM, Kim M, Yoo J, Han J, Paulina C, Lim MH. Intercommunication between metal ions and amyloidogenic peptides or proteins in protein misfolding disorders. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Guadagno AH, Medina SH. The manifold role of octapeptide repeats in prion protein assembly. Pept Sci (Hoboken) 2023; 115:e24303. [PMID: 37153755 PMCID: PMC10162500 DOI: 10.1002/pep2.24303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
Prion protein misfolding is associated with fatal neurodegenerative disorders such as kuru, Creutzfeldt-Jakob disease, and several animal encephalopathies. While the C-terminal 106-126 peptide has been well studied for its role in prion replication and toxicity, the octapeptide repeat (OPR) sequence found within the N-terminal domain has been relatively under explored. Recent findings that the OPR has both local and long-range effects on prion protein folding and assembly, as well as its ability to bind and regulate transition metal homeostasis, highlights the important role this understudied region may have in prion pathologies. This review attempts to collate this knowledge to advance a deeper understanding on the varied physiologic and pathologic roles the prion OPR plays, and connect these findings to potential therapeutic modalities focused on OPR-metal binding. Continued study of the OPR will not only elucidate a more complete mechanistic model of prion pathology, but may enhance knowledge on other neurodegenerative processes underlying Alzheimer's, Parkinson's, and Huntington's diseases.
Collapse
Affiliation(s)
- Amy H. Guadagno
- Nanomedicine, Intercollegiate Degree Program, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Scott H. Medina
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
9
|
Alves Conceição C, Assis de Lemos G, Barros CA, Vieira TCRG. What is the role of lipids in prion conversion and disease? Front Mol Neurosci 2023; 15:1032541. [PMID: 36704327 PMCID: PMC9871914 DOI: 10.3389/fnmol.2022.1032541] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
The molecular cause of transmissible spongiform encephalopathies (TSEs) involves the conversion of the cellular prion protein (PrPC) into its pathogenic form, called prion scrapie (PrPSc), which is prone to the formation of amorphous and amyloid aggregates found in TSE patients. Although the mechanisms of conversion of PrPC into PrPSc are not entirely understood, two key points are currently accepted: (i) PrPSc acts as a seed for the recruitment of native PrPC, inducing the latter's conversion to PrPSc; and (ii) other biomolecules, such as DNA, RNA, or lipids, can act as cofactors, mediating the conversion from PrPC to PrPSc. Interestingly, PrPC is anchored by a glycosylphosphatidylinositol molecule in the outer cell membrane. Therefore, interactions with lipid membranes or alterations in the membranes themselves have been widely investigated as possible factors for conversion. Alone or in combination with RNA molecules, lipids can induce the formation of PrP in vitro-produced aggregates capable of infecting animal models. Here, we discuss the role of lipids in prion conversion and infectivity, highlighting the structural and cytotoxic aspects of lipid-prion interactions. Strikingly, disorders like Alzheimer's and Parkinson's disease also seem to be caused by changes in protein structure and share pathogenic mechanisms with TSEs. Thus, we posit that comprehending the process of PrP conversion is relevant to understanding critical events involved in a variety of neurodegenerative disorders and will contribute to developing future therapeutic strategies for these devastating conditions.
Collapse
Affiliation(s)
- Cyntia Alves Conceição
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriela Assis de Lemos
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline Augusto Barros
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tuane C. R. G. Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,*Correspondence: Tuane C. R. G. Vieira, ✉
| |
Collapse
|
10
|
Nafe R, Arendt CT, Hattingen E. Human prion diseases and the prion protein - what is the current state of knowledge? Transl Neurosci 2023; 14:20220315. [PMID: 37854584 PMCID: PMC10579786 DOI: 10.1515/tnsci-2022-0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 10/20/2023] Open
Abstract
Prion diseases and the prion protein are only partially understood so far in many aspects. This explains the continued research on this topic, calling for an overview on the current state of knowledge. The main objective of the present review article is to provide a comprehensive up-to-date presentation of all major features of human prion diseases bridging the gap between basic research and clinical aspects. Starting with the prion protein, current insights concerning its physiological functions and the process of pathological conversion will be highlighted. Diagnostic, molecular, and clinical aspects of all human prion diseases will be discussed, including information concerning rare diseases like prion-associated amyloidoses and Huntington disease-like 1, as well as the question about a potential human threat due to the transmission of prions from prion diseases of other species such as chronic wasting disease. Finally, recent attempts to develop future therapeutic strategies will be addressed.
Collapse
Affiliation(s)
- Reinhold Nafe
- Department of Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528Frankfurt am Main, Germany
| | - Christophe T. Arendt
- Department of Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528Frankfurt am Main, Germany
| | - Elke Hattingen
- Department of Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528Frankfurt am Main, Germany
| |
Collapse
|
11
|
Yagita K, Noguchi H, Koyama S, Hamasaki H, Komori T, Aishima S, Kosaka T, Ueda M, Komohara Y, Watanabe A, Sasagasako N, Ninomiya T, Oda Y, Honda H. Chronological Changes in the Expression Pattern of Hippocampal Prion Proteins During Disease Progression in Sporadic Creutzfeldt-Jakob Disease MM1 Subtype. J Neuropathol Exp Neurol 2022; 81:900-909. [PMID: 36063412 DOI: 10.1093/jnen/nlac078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The differential effects of sporadic Creutzfeldt-Jakob disease (sCJD) on the hippocampus and other neocortical areas are poorly understood. We aimed to reveal the histological patterns of cellular prion protein (PrPC) and abnormal prion protein (PrPSc) in hippocampi of sCJD patients and normal controls (NCs). Our study examined 18 postmortem sCJD patients (MM1, 14 cases; MM1 + 2c, 3 cases; MM1 + 2t, 1 case) and 12 NCs. Immunohistochemistry was conducted using 4 primary antibodies, of which 3 targeted the N-terminus of the prion protein (PrP), and 1 (EP1802Y) targeted the C-terminal domain. PrPC expression was abundant in the hippocampus of NCs, and the distribution of PrPC at CA3/4 was reminiscent of synaptic complexes. In sCJD cases with a disease history of <2 years, antibodies against the N-terminus could not detect synapse-like PrP expression at CA4; however, EP1802Y could characterize the synapse-like expression. PrPSc accumulation and spongiform changes became evident after 2 years of illness, when PrPSc deposits were more noticeably detected by N-terminal-specific antibodies. Our findings highlighted the chronology of histopathological alterations in the CA4 region in sCJD patients.
Collapse
Affiliation(s)
- Kaoru Yagita
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideko Noguchi
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sachiko Koyama
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideomi Hamasaki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Komori
- Department of Laboratory Medicine and Pathology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Shinichi Aishima
- Department of Pathology and Microbiology, Faculty of Medicine, University of Saga, Saga, Japan
| | - Takayuki Kosaka
- Department of Neurology, National Hospital Organization Kumamoto Medical Center, Kumamoto, Japan
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Akihiro Watanabe
- Department of Neurology, Neuro-Muscular Center, National Omuta Hospital, Omuta, Japan
| | - Naokazu Sasagasako
- Department of Neurology, Neuro-Muscular Center, National Omuta Hospital, Omuta, Japan
| | - Toshiharu Ninomiya
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Honda
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
12
|
Fei HX, Qian CF, Wu XM, Wei YH, Huang JY, Wei LH. Role of micronutrients in Alzheimer's disease: Review of available evidence. World J Clin Cases 2022; 10:7631-7641. [PMID: 36158513 PMCID: PMC9372870 DOI: 10.12998/wjcc.v10.i22.7631] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/29/2022] [Accepted: 06/26/2022] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common age-related neurodegenerative disorders that have been studied for more than 100 years. Although an increased level of amyloid precursor protein is considered a key contributor to the development of AD, the exact pathogenic mechanism remains known. Multiple factors are related to AD, such as genetic factors, aging, lifestyle, and nutrients. Both epidemiological and clinical evidence has shown that the levels of micronutrients, such as copper, zinc, and iron, are closely related to the development of AD. In this review, we summarize the roles of eight micronutrients, including copper, zinc, iron, selenium, silicon, manganese, arsenic, and vitamin D in AD based on recently published studies.
Collapse
Affiliation(s)
- Hong-Xin Fei
- Department of Pathology, Guangxi University of Science and Technology, Liuzhou 545000, Guangxi Zhuang Autonomous Region, China
| | - Chao-Fan Qian
- Department of Pathology, Guangxi University of Science and Technology, Liuzhou 545000, Guangxi Zhuang Autonomous Region, China
| | - Xiang-Mei Wu
- Department of Pathology, Guangxi University of Science and Technology, Liuzhou 545000, Guangxi Zhuang Autonomous Region, China
| | - Yu-Hua Wei
- Department of Pathology, Guangxi University of Science and Technology, Liuzhou 545000, Guangxi Zhuang Autonomous Region, China
| | - Jin-Yu Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou 545000, Guangxi Zhuang Autonomous Region, China
| | - Li-Hua Wei
- Department of Pathology, Guangxi University of Science and Technology, Liuzhou 545000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
13
|
Kawahara M, Tanaka KI, Kato-Negishi M. Crosstalk of copper and zinc in the pathogenesis of vascular dementia. J Clin Biochem Nutr 2022; 71:7-15. [PMID: 35903609 PMCID: PMC9309079 DOI: 10.3164/jcbn.22-40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/12/2022] [Indexed: 11/23/2022] Open
Abstract
Copper and zinc are essential for normal brain functions. Both are localized in presynaptic vesicles and are secreted into synaptic clefts during neuronal excitation. Despite their significance, excesses of copper and zinc are neurotoxic. In particular, excess zinc after transient global ischemia plays a central role in the ischemia-induced neurodegeneration and pathogenesis of vascular type senile dementia. We previously found that sub-lethal concentrations of copper remarkably exacerbated zinc-induced neurotoxicity, and we investigated the molecular pathways of copper-enhanced zinc-induced neurotoxicity. The endoplasmic reticulum stress pathway, the stress-activated protein kinases/c-Jun amino-terminal kinases pathway, and mitochondrial energy production failure were revealed to be involved in the neurodegenerative processes. Regarding the upstream factors of these pathways, we focused on copper-derived reactive oxygen species and the disruption of calcium homeostasis. Because excess copper and zinc may be present in the synaptic clefts during ischemia, it is possible that secreted copper and copper-induced reactive oxygen species may enhance zinc neurotoxicity and eventually contribute to the pathogenesis of vascular type senile dementia.
Collapse
Affiliation(s)
- Masahiro Kawahara
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Ken-Ichiro Tanaka
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Midori Kato-Negishi
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| |
Collapse
|
14
|
Abstract
Amyloids are protein aggregates bearing a highly ordered cross β structural motif, which may be functional but are mostly pathogenic. Their formation, deposition in tissues and consequent organ dysfunction is the central event in amyloidogenic diseases. Such protein aggregation may be brought about by conformational changes, and much attention has been directed toward factors like metal binding, post-translational modifications, mutations of protein etc., which eventually affect the reactivity and cytotoxicity of the associated proteins. Over the past decade, a global effort from different groups working on these misfolded/unfolded proteins/peptides has revealed that the amino acid residues in the second coordination sphere of the active sites of amyloidogenic proteins/peptides cause changes in H-bonding pattern or protein-protein interactions, which dramatically alter the structure and reactivity of these proteins/peptides. These second sphere effects not only determine the binding of transition metals and cofactors, which define the pathology of some of these diseases, but also change the mechanism of redox reactions catalyzed by these proteins/peptides and form the basis of oxidative damage associated with these amyloidogenic diseases. The present review seeks to discuss such second sphere modifications and their ramifications in the etiopathology of some representative amyloidogenic diseases like Alzheimer's disease (AD), type 2 diabetes mellitus (T2Dm), Parkinson's disease (PD), Huntington's disease (HD), and prion diseases.
Collapse
Affiliation(s)
- Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Arnab Kumar Nath
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ishita Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
15
|
Crestini A, Santilli F, Martellucci S, Carbone E, Sorice M, Piscopo P, Mattei V. Prions and Neurodegenerative Diseases: A Focus on Alzheimer's Disease. J Alzheimers Dis 2021; 85:503-518. [PMID: 34864675 DOI: 10.3233/jad-215171] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Specific protein misfolding and aggregation are mechanisms underlying various neurodegenerative diseases such as prion disease and Alzheimer's disease (AD). The misfolded proteins are involved in prions, amyloid-β (Aβ), tau, and α-synuclein disorders; they share common structural, biological, and biochemical characteristics, as well as similar mechanisms of aggregation and self-propagation. Pathological features of AD include the appearance of plaques consisting of deposition of protein Aβ and neurofibrillary tangles formed by the hyperphosphorylated tau protein. Although it is not clear how protein aggregation leads to AD, we are learning that the cellular prion protein (PrPC) plays an important role in the pathogenesis of AD. Herein, we first examined the pathogenesis of prion and AD with a focus on the contribution of PrPC to the development of AD. We analyzed the mechanisms that lead to the formation of a high affinity bond between Aβ oligomers (AβOs) and PrPC. Also, we studied the role of PrPC as an AβO receptor that initiates an AβO-induced signal cascade involving mGluR5, Fyn, Pyk2, and eEF2K linking Aβ and tau pathologies, resulting in the death of neurons in the central nervous system. Finally, we have described how the PrPC-AβOs interaction can be used as a new potential therapeutic target for the treatment of PrPC-dependent AD.
Collapse
Affiliation(s)
- Alessio Crestini
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Santilli
- Biomedicine and Advanced Technologies Rieti Center, "Sabina Universitas", Rieti, Italy.,Department of Experimental Medicine, "Sapienza" University, Rome, Italy
| | - Stefano Martellucci
- Biomedicine and Advanced Technologies Rieti Center, "Sabina Universitas", Rieti, Italy
| | - Elena Carbone
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, "Sapienza" University, Rome, Italy
| | - Paola Piscopo
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, "Sabina Universitas", Rieti, Italy.,Department of Experimental Medicine, "Sapienza" University, Rome, Italy
| |
Collapse
|
16
|
Gielnik M, Taube M, Zhukova L, Zhukov I, Wärmländer SKTS, Svedružić Ž, Kwiatek WM, Gräslund A, Kozak M. Zn(II) binding causes interdomain changes in the structure and flexibility of the human prion protein. Sci Rep 2021; 11:21703. [PMID: 34737343 PMCID: PMC8568922 DOI: 10.1038/s41598-021-00495-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/05/2021] [Indexed: 12/31/2022] Open
Abstract
The cellular prion protein (PrPC) is a mainly α-helical 208-residue protein located in the pre- and postsynaptic membranes. For unknown reasons, PrPC can undergo a structural transition into a toxic, β-sheet rich scrapie isoform (PrPSc) that is responsible for transmissible spongiform encephalopathies (TSEs). Metal ions seem to play an important role in the structural conversion. PrPC binds Zn(II) ions and may be involved in metal ion transport and zinc homeostasis. Here, we use multiple biophysical techniques including optical and NMR spectroscopy, molecular dynamics simulations, and small angle X-ray scattering to characterize interactions between human PrPC and Zn(II) ions. Binding of a single Zn(II) ion to the PrPC N-terminal domain via four His residues from the octarepeat region induces a structural transition in the C-terminal α-helices 2 and 3, promotes interaction between the N-terminal and C-terminal domains, reduces the folded protein size, and modifies the internal structural dynamics. As our results suggest that PrPC can bind Zn(II) under physiological conditions, these effects could be important for the physiological function of PrPC.
Collapse
Affiliation(s)
- Maciej Gielnik
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, 61-614, Poznań, Poland
| | - Michał Taube
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, 61-614, Poznań, Poland
| | - Lilia Zhukova
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warszawa, Poland
| | - Igor Zhukov
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warszawa, Poland
| | | | - Željko Svedružić
- Department of Biotechnology, University of Rijeka, 51000, Rijeka, Croatia
| | - Wojciech M Kwiatek
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342, Kraków, Poland
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, 61-614, Poznań, Poland.
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, 30-392, Kraków, Poland.
| |
Collapse
|
17
|
Kawahara M, Tanaka KI, Kato-Negishi M. Copper as a Collaborative Partner of Zinc-Induced Neurotoxicity in the Pathogenesis of Vascular Dementia. Int J Mol Sci 2021; 22:ijms22147242. [PMID: 34298862 PMCID: PMC8305384 DOI: 10.3390/ijms22147242] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/17/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022] Open
Abstract
Copper is an essential trace element and possesses critical roles in various brain functions. A considerable amount of copper accumulates in the synapse and is secreted in neuronal firings in a manner similar to zinc. Synaptic copper and zinc modulate neuronal transmission and contribute to information processing. It has been established that excess zinc secreted during transient global ischemia plays central roles in ischemia-induced neuronal death and the pathogenesis of vascular dementia. We found that a low concentration of copper exacerbates zinc-induced neurotoxicity, and we have demonstrated the involvement of the endoplasmic reticulum (ER) stress pathway, the stress-activated protein kinases/c-Jun amino-terminal kinases (SAPK/JNK) signaling pathway, and copper-induced reactive oxygen species (ROS) production. On the basis of our results and other studies, we discuss the collaborative roles of copper in zinc-induced neurotoxicity in the synapse and the contribution of copper to the pathogenesis of vascular dementia.
Collapse
|