1
|
Park J, Lee SH, Lee J, Wi SH, Seo TC, Moon JH, Jang S. Growing vegetables in a warming world - a review of crop response to drought stress, and strategies to mitigate adverse effects in vegetable production. FRONTIERS IN PLANT SCIENCE 2025; 16:1561100. [PMID: 40256598 PMCID: PMC12006132 DOI: 10.3389/fpls.2025.1561100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/19/2025] [Indexed: 04/22/2025]
Abstract
Drought stress caused by climate change is increasingly affecting the productivity and quality of vegetable crops worldwide. This review comprehensively analyzes the physiological, biochemical, and molecular mechanisms that vegetable crops employ to cope with drought stress. In particular, it highlights the significance of key hormonal regulation pathways, such as abscisic acid (ABA), jasmonic acid (JA), and ethylene (ET), which play crucial roles in mediating stress responses. Additionally, the role of antioxidant defense systems in mitigating oxidative damage caused by reactive oxygen species (ROS) is discussed. Advances in agricultural technologies, such as the use of smart irrigation systems and biostimulants, have shown promising results in enhancing drought resistance and optimizing crop yields. Integrating these strategies with the development of drought resistant varieties through gene editing and traditional breeding techniques will ensure sustainable agricultural production in drought stressed environments. This review aims to support future research into sustainable agricultural development to enhance drought tolerance in vegetable production and secure global food supply.
Collapse
Affiliation(s)
- Jongwon Park
- World Vegetable Center Korea Office, Wanju-gun, Republic of Korea
| | - Se-Hyoung Lee
- World Vegetable Center Korea Office, Wanju-gun, Republic of Korea
| | - Joowon Lee
- World Vegetable Center Korea Office, Wanju-gun, Republic of Korea
| | - Seung Hwan Wi
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju-gun, Republic of Korea
| | - Tae Cheol Seo
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju-gun, Republic of Korea
| | - Ji Hye Moon
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju-gun, Republic of Korea
| | - Seonghoe Jang
- World Vegetable Center Korea Office, Wanju-gun, Republic of Korea
| |
Collapse
|
2
|
Ali S, Mir RA, Haque MA, Danishuddin, Almalki MA, Alfredan M, Khalifa A, Mahmoudi H, Shahid M, Tyagi A, Mir ZA. Exploring physiological and molecular dynamics of drought stress responses in plants: challenges and future directions. FRONTIERS IN PLANT SCIENCE 2025; 16:1565635. [PMID: 40196426 PMCID: PMC11973087 DOI: 10.3389/fpls.2025.1565635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/25/2025] [Indexed: 04/09/2025]
Abstract
Plants face multifactorial environmental stressors mainly due to global warming and climate change which affect their growth, metabolism, and productivity. Among them, is drought stress which alters intracellular water relations, photosynthesis, ion homeostasis and elevates reactive oxygen species which eventually reduce their growth and yields. In addition, drought alters soil physicochemical properties and beneficial microbiota which are critical for plant survival. Recent reports have shown that climate change is increasing the occurrence and intensity of drought in many regions of the world, which has become a primary concern in crop productivity, ecophysiology and food security. To develop ideas and strategies for protecting plants against the harmful effects of drought stress and meeting the future food demand under climatic calamities an in-depth understanding of molecular regulatory pathways governing plant stress responses is imperative. In parallel, more research is needed to understand how drought changes the features of soil, particularly microbiomes, as microorganisms can withstand drought stress faster than plants, which could assist them to recover. In this review we first discuss the effect of drought stress on plants, soil physicochemical properties and microbiomes. How drought stress affects plant microbe interactions and other microbe-driven beneficial traits was also highlighted. Next, we focused on how plants sense drought and undergo biochemical reprogramming from root to shoot to regulate diverse adaptive traits. For instance, the role of calcium (Ca2+), reactive oxygen species (ROS) and abscisic acid (ABA) in modulating different cellular responses like stomata functioning, osmotic adjustment, and other adaptive traits. We also provide an update on the role of different hormones in drought signaling and their crosstalk which allows plants to fine tune their responses during drought stress. Further, we discussed how recurrent drought exposure leads to the development of short-term memory in plants that allows them to survive future drought stresses. Lastly, we discussed the application of omics and biotechnological-based mitigating approaches to combat drought stress in sustainable agriculture. This review offers a deeper understanding of multiple factors that are related to drought stress in plants which can be useful for drought improvement programs.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Danishuddin
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Mohammed A. Almalki
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mohammad Alfredan
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Ashraf Khalifa
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Henda Mahmoudi
- Directorate of Programs, International Center for Biosaline Agriculture, Dubai, United Arab Emirates
| | - Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agriculture Sciences, Aligarh Muslim University, Aligarh, India
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Zahoor Ahmad Mir
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
3
|
Wang M, Liu W, Feng G, Nie G, Yang Z, Hao F, Huang L, Zhang X. Comprehensive genome-wide analysis of ARF transcription factors in orchardgrass (Dactylis glomerata): the positive regulatory role of DgARF7 in drought resistance. BMC Genomics 2025; 26:101. [PMID: 39901077 PMCID: PMC11792575 DOI: 10.1186/s12864-025-11241-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/13/2025] [Indexed: 02/05/2025] Open
Abstract
Auxin response factor (ARF), a transcription factor, is crucial in controlling growth, development, and response to environmental stress. Orchardgrass (Dactylis glomerata) is an economically significant, widely cultivated forage grass. However, information on the genome-wide information and functional characterization of ARFs in orchardgrass is limited. This study identified 27 ARF genes based on the orchardgrass genome database. These DgARFs were unevenly distributed across the seven orchardgrass chromosomes and clustered into four classes. Phylogenetic analysis with multispecies of ARF proteins indicated that the ARFs exhibit a relatively conserved evolutionary path. Focusing on hormone signaling responses, DgARF7 demonstrated a potential positive regulatory role in response to 3-indole acetic acid, methyl jasmonate, gibberellin, salicylic acid, and abscisic acid signals. Additionally, exposure to drought stress induced noticeable oscillatory changes in DgARF7 gene. Notably, DgARF7 enhanced drought tolerance through heterologous expression in yeast and overexpression in Arabidopsis. Overexpressed Arabidopsis lines of DgARF7 exhibited a markedly higher relative water content and superoxide dismutase activity, while the malondialdehyde content was significantly decreased compared to wild type under drought stress. DgARF7 also accelerated flowering time by inducing the flowering-related gene expression levels in Arabidopsis. This research provides important insights into the role of DgARF7 in orchardgrass and provides further understanding in molecular breeding.
Collapse
Affiliation(s)
- Miaoli Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wen Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhongfu Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Feixiang Hao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
4
|
Ben Sedrine I, Werghi S, Hachef A, Maalaoui A, Zarkouna R, Akriche S, Hannachi H, Zehdi S, Fakhfakh H, Gorsane F. Alleviation of drought stress in tomato by foliar application of seafood waste extract. Sci Rep 2024; 14:30572. [PMID: 39706919 DOI: 10.1038/s41598-024-80798-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/21/2024] [Indexed: 12/23/2024] Open
Abstract
To manage the adverse effects of garbage pollution and avoid using chemicals, a natural extract of seafood shells was obtained and explored for its beneficial role. Physical characterization highlighted that its active compounds correspond to chitin and its derivative, chitosan. The ability of the extracted biostimulant to foster tomato tolerance was tested on drought-stressed plants. Along with changes in morphological parameters, the accumulation of chlorophyll and carotenoids was improved. The biostimulant also mediates the accumulation of osmoprotectants and an increased leaf water content. Furthermore, the biostimulant effectively promotes tolerance by increasing drought-stress SIERF84 Transcription factor and decreasing both SIARF4 and SlWRKY81 transcript levels, which in turn, mediates stomatal closure. In addition, the up-regulation of key genes related to NO3- uptake (NTR1.1/2) and assimilation (NR) coupled with the downregulation of ammonium transporters' genes (AMT1.1/2), allowed the uptake of NO3- over NH4+ in the tolerant genotype which is likely to be associated with drought tolerance. Overall, the biostimulant was effective in alleviating water stress and showed similar effects to commercial chitosan. Besides the benefits of a circular economy framework, this biostimulant-based approach is innovative to promote a sustainable eco-agriculture, in the face of persistent water scarcity.
Collapse
Grants
- LR99ES12 Ministry of Higher Education and Scientific Reserach, TUNISIA
- LR99ES12 Ministry of Higher Education and Scientific Reserach, TUNISIA
- LR99ES12 Ministry of Higher Education and Scientific Reserach, TUNISIA
- LR99ES12 Ministry of Higher Education and Scientific Reserach, TUNISIA
- LR99ES12 Ministry of Higher Education and Scientific Reserach, TUNISIA
- LR99ES12 Ministry of Higher Education and Scientific Reserach, TUNISIA
- LR99ES12 Ministry of Higher Education and Scientific Reserach, TUNISIA
- LR99ES12 Ministry of Higher Education and Scientific Reserach, TUNISIA
- LR99ES12 Ministry of Higher Education and Scientific Reserach, TUNISIA
- LR99ES12 Ministry of Higher Education and Scientific Reserach, TUNISIA
Collapse
Affiliation(s)
- Imen Ben Sedrine
- Laboratory of Molecular Genetics, Immunology and Biotechnology (LR99ES12), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia
| | - Sirine Werghi
- Laboratory of Molecular Genetics, Immunology and Biotechnology (LR99ES12), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia
| | - Afifa Hachef
- Laboratory of Molecular Genetics, Immunology and Biotechnology (LR99ES12), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia
| | - Ahlem Maalaoui
- Laboratory of Materials Chemistry, Faculty of Sciences of Bizerte, Zarzouna, Bizerte, 7021, Tunisia
| | - Rahma Zarkouna
- Laboratory of Molecular Genetics, Immunology and Biotechnology (LR99ES12), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia
| | - Samah Akriche
- Laboratory of Materials Chemistry, Faculty of Sciences of Bizerte, Zarzouna, Bizerte, 7021, Tunisia
| | - Hedia Hannachi
- Laboratory of Vegetable Productivity and Environmental Constraint (LR18ES04), University of Tunis El Manar, Tunis, Tunisia
| | - Salwa Zehdi
- Laboratory of Molecular Genetics, Immunology and Biotechnology (LR99ES12), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia
| | - Hatem Fakhfakh
- Laboratory of Molecular Genetics, Immunology and Biotechnology (LR99ES12), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia
- Faculty of Sciences of Bizerte, University of Carthage, Zarzouna, Bizerte, 7021, Tunisia
| | - Faten Gorsane
- Laboratory of Molecular Genetics, Immunology and Biotechnology (LR99ES12), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia.
- Faculty of Sciences of Bizerte, University of Carthage, Zarzouna, Bizerte, 7021, Tunisia.
| |
Collapse
|
5
|
Qi J, Luo Y, Lu S, Liu H, Huang H, Qiu Y, Zhou X, Ma C. Multi-omics integration analysis reveals the molecular mechanisms of drought adaptation in homologous tetraploid alfalfa(Medicago sativa 'Xinjiang-Daye'). PHYSIOLOGIA PLANTARUM 2024; 176:e14476. [PMID: 39262125 DOI: 10.1111/ppl.14476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 09/13/2024]
Abstract
Drought stress is a predominant abiotic factor leading to decreased alfalfa yield. Genomic ploidy differences contribute to varying adaptation mechanisms of different alfalfa cultivars to drought conditions. This study employed a multi-omics approach to characterize the molecular basis of drought tolerance in a tetraploid variant of alfalfa (Medicago sativa, Xinjiang-Daye). Under drought treatment, a total of 4446 genes, 859 proteins, and 524 metabolites showed significant differences in abundance. Integrative analysis of the multi-omics data revealed that regulatory modules involved in flavonoid biosynthesis, plant hormone signalling transduction, linoleic acid metabolism, and amino acid biosynthesis play crucial roles in alfalfa adaptation to drought stress. The severity of drought led to the substantial accumulation of flavonoids, plant hormones, free fatty acids, amino acids, and their derivatives in the leaves. Genes such as PAL, 4CL, CHI, CHS, PP2C, ARF_3, and AHP_4 play pivotal regulatory roles in flavonoid biosynthesis and hormone signalling pathways. Differential expression of the LOX gene emerged as a key factor in the elevated levels of free fatty acids. Upregulation of P5CS_1 and GOT1/2 contributed significantly to the accumulation of Pro and Phe contents. ERF19 emerged as a principal positive regulator governing the synthesis of the aforementioned compounds. Furthermore, observations suggest that Xinjiang-Daye alfalfa may exhibit widespread post-transcriptional regulatory mechanisms in adapting to drought stress. The study findings unveil the critical mechanisms by which Xinjiang-Daye alfalfa adapts to drought stress, offering novel insights for the improvement of alfalfa germplasm resources.
Collapse
Affiliation(s)
- Jianwei Qi
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Yongzhong Luo
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Songsong Lu
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Hui Liu
- UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Haixia Huang
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Yingde Qiu
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Xiaotong Zhou
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Chao Ma
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
6
|
Rajkumar MS, Tembhare K, Garg R, Jain M. Genome-wide mapping of DNase I hypersensitive sites revealed differential chromatin accessibility and regulatory DNA elements under drought stress in rice cultivars. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2063-2079. [PMID: 38859561 DOI: 10.1111/tpj.16864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/08/2024] [Accepted: 05/22/2024] [Indexed: 06/12/2024]
Abstract
Drought stress (DS) is one of the major constraints limiting yield in crop plants including rice. Gene regulation under DS is largely governed by accessibility of the transcription factors (TFs) to their cognate cis-regulatory elements (CREs). In this study, we used DNase I hypersensitive assays followed by sequencing to identify the accessible chromatin regions under DS in a drought-sensitive (IR64) and a drought-tolerant (N22) rice cultivar. Our results indicated that DNase I hypersensitive sites (DHSs) were highly enriched at transcription start sites (TSSs) and numerous DHSs were detected in the promoter regions. DHSs were concurrent with epigenetic marks and the genes harboring DHSs in their TSS and promoter regions were highly expressed. In addition, DS induced changes in DHSs (∆DHSs) in TSS and promoter regions were positively correlated with upregulation of several genes involved in drought/abiotic stress response, those encoding TFs and located within drought-associated quantitative trait loci, much preferentially in the drought-tolerant cultivar. The CREs representing the binding sites of TFs involved in DS response were detected within the ∆DHSs, suggesting differential accessibility of TFs to their cognate sites under DS in different rice cultivars, which may be further deployed for enhancing drought tolerance in rice.
Collapse
Affiliation(s)
- Mohan Singh Rajkumar
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kunal Tembhare
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rohini Garg
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
| | - Mukesh Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
7
|
Teng Z, Chen C, Pan K, Liu D, Yao X, Bai S, Ni J, Shao Y, Gu Z, Huang L, Chen Y. Natural soil biotin application activates soil beneficial microorganisms to improve the thermotolerance of Chinese cabbage. Front Microbiol 2024; 15:1408359. [PMID: 39027097 PMCID: PMC11254703 DOI: 10.3389/fmicb.2024.1408359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
Chinese cabbage (Brassica campestris L. syn. B. rapa), a widely cultivated leafy vegetable, faces significant challenges in annual production due to high-temperature stress, which adversely affects plant weight and quality. The need for an effective solution to mitigate these impacts is imperative for sustainable horticulture. This study explored the effects of a novel biofertilizer, natural soil biotin (NSB), on Chinese cabbage under high-temperature conditions. NSB, rich in organic matter-degrading enzymes, was applied to assess its impact on crop yield, growth, nutrient use efficiency, product quality, and safety. The study also examined the soil microbial community response to NSB application, particularly the changes in the rhizosphere soil's fungal population. The application of NSB led to an increase in the abundance of Oleomycetes, which was associated with a decrease in the diversity and abundance of harmful fungi in the rhizosphere soil. This microbial shift promoted the growth of Chinese cabbage, enhancing both plant weight and quality by fostering a more favorable growth environment. Furthermore, NSB was found to reduce lipid peroxidation in Chinese cabbage leaves under high-temperature stress (40°C/30°C, 16 h/8 h, 24 h) by boosting antioxidant enzyme activity and osmoregulatory substance content. The findings suggest that the NSB application offers a promising approach to environmentally friendly cultivation of Chinese cabbage during high-temperature seasons. It contributes to improving the crop's adaptation to climate change and soil degradation, supporting the development of sustainable agricultural practices. The integration of NSB into agricultural practices presents a viable strategy for enhancing the resilience of Chinese cabbage to high-temperature stress, thereby potentially increasing yield and improving the quality of the produce, which is crucial for the advancement of sustainable horticulture.
Collapse
Affiliation(s)
- Zhiyan Teng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Caizhi Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Kexuan Pan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Dandan Liu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Xiangtan Yao
- Jiaxing Academy of Agricultural Sciences, Jiaxing, China
| | - Songhua Bai
- Hangzhou Manshanhong Vegetable and Fruit Professional Cooperative, Hangzhou, China
| | - Jinzhuang Ni
- Hangzhou Manshanhong Vegetable and Fruit Professional Cooperative, Hangzhou, China
| | - Yujing Shao
- Hangzhou Manshanhong Vegetable and Fruit Professional Cooperative, Hangzhou, China
| | - Zaiyuan Gu
- Aupro (Hangzhou) Ecological Industry Operation Co., Ltd., Hangzhou, China
| | - Li Huang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Yunwen Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Liu L, Yahaya BS, Li J, Wu F. Enigmatic role of auxin response factors in plant growth and stress tolerance. FRONTIERS IN PLANT SCIENCE 2024; 15:1398818. [PMID: 38903418 PMCID: PMC11188990 DOI: 10.3389/fpls.2024.1398818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
Abiotic and biotic stresses globally constrain plant growth and impede the optimization of crop productivity. The phytohormone auxin is involved in nearly every aspect of plant development. Auxin acts as a chemical messenger that influences gene expression through a short nuclear pathway, mediated by a family of specific DNA-binding transcription factors known as Auxin Response Factors (ARFs). ARFs thus act as effectors of auxin response and translate chemical signals into the regulation of auxin responsive genes. Since the initial discovery of the first ARF in Arabidopsis, advancements in genetics, biochemistry, genomics, and structural biology have facilitated the development of models elucidating ARF action and their contributions to generating specific auxin responses. Yet, significant gaps persist in our understanding of ARF transcription factors despite these endeavors. Unraveling the functional roles of ARFs in regulating stress response, alongside elucidating their genetic and molecular mechanisms, is still in its nascent phase. Here, we review recent research outcomes on ARFs, detailing their involvement in regulating leaf, flower, and root organogenesis and development, as well as stress responses and their corresponding regulatory mechanisms: including gene expression patterns, functional characterization, transcriptional, post-transcriptional and post- translational regulation across diverse stress conditions. Furthermore, we delineate unresolved questions and forthcoming challenges in ARF research.
Collapse
Affiliation(s)
- Ling Liu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Baba Salifu Yahaya
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Sichuan, China
| | - Jing Li
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Sichuan, China
| | - Fengkai Wu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Sichuan, China
| |
Collapse
|
9
|
Li J, Huang Y, Yu X, Wu Q, Man X, Diao Z, You H, Shen J, Cai Y. Identification and Application of CLE Peptides for Drought Resistance in Solanaceae Crops. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38836320 DOI: 10.1021/acs.jafc.4c03684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The CLE (CLAVATA3/Embryo Surrounding Region-related) family, a group of peptides with hormone-like features, plays a pivotal role in plant growth, development, and adaptation to stress. Through homology-based blast analysis of 32 Arabidopsis thaliana CLE peptide sequences, we have identified 5, 14, and 10 CLE family members in Nicotiana tabacum, Capsicum annuum, and Solanum melongena, respectively. Chemical synthesis and functional assays of the peptides led to the discovery that NtCLE3 substantially enhances the drought resistance of these three Solanaceae crops. Our transcriptome, RT-qPCR, and antioxidant enzyme activity data showed that NtCLE3 increased antioxidant capacity and ABA synthesis in tobacco. Moreover, the recombinant protein RPNtCLE3, composed of 6*NtCLE3, preserved the capacity to foster drought resilience and proved to be a promising drought resistance regulator, which presents a more favorable alternative for field applications compared to ABA which degrades rapidly under sunlight exposure. This research unveils the prospective utility of NtCLE3 in enhancing drought tolerance in Solanaceae crops and provides new ideas for the development of novel bioregulators aimed at mitigating drought stress.
Collapse
Affiliation(s)
- Junhao Li
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Yan Huang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Xiaosong Yu
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Qiqi Wu
- Chengdu Lusyno Biotechnology Co., Ltd., Chengdu 610213, PR China
| | - Xiaxia Man
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Zhihong Diao
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Huang You
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Yi Cai
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| |
Collapse
|
10
|
Gao Z, Wu Y, Li M, Ding L, Li J, Liu Y, Cao Y, Hua Y, Jia Q, Wang D. The auxin response factor ( ARF) gene family in Cyclocarya paliurus: genome-wide identification and their expression profiling under heat and drought stresses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:921-944. [PMID: 38974352 PMCID: PMC11222355 DOI: 10.1007/s12298-024-01474-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/20/2024] [Accepted: 06/18/2024] [Indexed: 07/09/2024]
Abstract
Auxin response factors (ARFs), as the main components of auxin signaling, play a crucial role in various processes of plant growth and development, as well as in stress response. So far, there have been no reports on the genome-wide identification of the ARF transcription factor family in Cyclocarya paliurus, a deciduous tree plant in the family Juglaceae. In this study, a total of 34 CpARF genes were identified based on whole genome sequence, and they were unevenly distributed on 16 chromosomes, with the highest distribution on chromosome 6. Domain analysis of CpARF proteins displayed that 31 out of 34 CpARF proteins contain a typical B3 domain (DBD domain), except CpARF12/ CpARF14/CpARF31, which all belong to Class VI. And 20 CpARFs (58.8%) contain an auxin_IAA binding domain, and are mainly distributed in classes I, and VI. Phylogenetic analysis showed that CpARF was divided into six classes (I-VI), each containing 4, 4, 1, 8, 4, and 13 members, respectively. Gene duplication analysis showed that there are 14 segmental duplications and zero tandem repeats were identified in the CpARF gene family of the C. paliurus genome. The Ka/Ks ratio of duplicate gene pairs indicates that CpARF genes are subjected to strong purification selection pressure. Synteny analysis showed that C. paliurus shared the highest homology in 74 ARF gene pairs with Juglans regia, followed by 73, 51, 25, and 11 homologous gene pairs with Populus trichocarpa, Juglans cathayensis, Arabidopsis, and rice, respectively. Promoter analysis revealed that 34 CpARF genes had cis-elements related to hormones, stress, light, and growth and development except for CpARF12. The expression profile analysis showed that almost all CpARF genes were differentially expressed in at least one tissue, and several CpARF genes displayed tissue-specific expression. Furthermore, 24 out of the 34 CpARF genes have significantly response to drought stress (P < 0.05), and most of them (16) being significantly down-regulated under moderate drought treatment. Meanwhile, the majority of CpARF genes (28) have significantly response to drought stress (P < 0.05), and most of them (26) are significantly down-regulated under severe drought treatment. Furthermore, 32 out of the 34 CpARF genes have significantly response to high, middle, and low salt stress under salt treatment (P < 0.05). Additionally, subcellular localization analysis confirmed that CpARF16 and CpARF32 were all localized to nucleus. Thus, our findings expand the understanding of the function of CpARF genes and provide a basis for further functional studies on CpARF genes in C. paliurus. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01474-1.
Collapse
Affiliation(s)
- Ziyong Gao
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 Zhejiang China
| | - Yazhu Wu
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 Zhejiang China
| | - Muzi Li
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 Zhejiang China
| | - Lan Ding
- Linan District Agriculture and Rural Bureau, Hangzhou, 311399 People’s Republic of China
| | - Junyi Li
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 Zhejiang China
| | - Ying Liu
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 Zhejiang China
| | - Yu Cao
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 Zhejiang China
| | - Yangguang Hua
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 Zhejiang China
| | - Qiaojun Jia
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 Zhejiang China
| | - Dekai Wang
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 Zhejiang China
| |
Collapse
|
11
|
Larriba E, Yaroshko O, Pérez-Pérez JM. Recent Advances in Tomato Gene Editing. Int J Mol Sci 2024; 25:2606. [PMID: 38473859 PMCID: PMC10932025 DOI: 10.3390/ijms25052606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
The use of gene-editing tools, such as zinc finger nucleases, TALEN, and CRISPR/Cas, allows for the modification of physiological, morphological, and other characteristics in a wide range of crops to mitigate the negative effects of stress caused by anthropogenic climate change or biotic stresses. Importantly, these tools have the potential to improve crop resilience and increase yields in response to challenging environmental conditions. This review provides an overview of gene-editing techniques used in plants, focusing on the cultivated tomatoes. Several dozen genes that have been successfully edited with the CRISPR/Cas system were selected for inclusion to illustrate the possibilities of this technology in improving fruit yield and quality, tolerance to pathogens, or responses to drought and soil salinity, among other factors. Examples are also given of how the domestication of wild species can be accelerated using CRISPR/Cas to generate new crops that are better adapted to the new climatic situation or suited to use in indoor agriculture.
Collapse
Affiliation(s)
- Eduardo Larriba
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain;
| | | | | |
Collapse
|
12
|
Mishra A, Pandey VP. CRISPR/Cas system: A revolutionary tool for crop improvement. Biotechnol J 2024; 19:e2300298. [PMID: 38403466 DOI: 10.1002/biot.202300298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 02/27/2024]
Abstract
World's population is elevating at an alarming rate thus, the rising demands of producing crops with better adaptability to biotic and abiotic stresses, superior nutritional as well as morphological qualities, and generation of high-yielding varieties have led to encourage the development of new plant breeding technologies. The availability and easy accessibility of genome sequences for a number of crop plants as well as the development of various genome editing technologies such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) has opened up possibilities to develop new varieties of crop plants with superior desirable traits. However, these approaches has limitation of being more expensive as well as having complex steps and time-consuming. The CRISPR/Cas genome editing system has been intensively studied for allowing versatile target-specific modifications of crop genome that fruitfully aid in the generation of novel varieties. It is an advanced and promising technology with the potential to meet hunger needs and contribute to food production for the ever-growing human population. This review summarizes the usage of novel CRISPR/Cas genome editing tool for targeted crop improvement in stress resistance, yield, quality and nutritional traits in the desired crop plants.
Collapse
Affiliation(s)
- Ayushi Mishra
- Department of Biochemistry, University of Lucknow, Lucknow, India
| | - Veda P Pandey
- Department of Biochemistry, University of Lucknow, Lucknow, India
| |
Collapse
|
13
|
Chauhan PK, Upadhyay SK, Rajput VD, Dwivedi P, Minkina T, Wong MH. Fostering plant growth performance under drought stress using rhizospheric microbes, their gene editing, and biochar. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:41. [PMID: 38227068 DOI: 10.1007/s10653-023-01823-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/27/2023] [Indexed: 01/17/2024]
Abstract
Stress due to drought lowers crop yield and frequently leads to a rise in food scarcity. Plants' intricate metabolic systems enable them to tolerate drought stress, but they are unable to handle it well. Adding some external, environmentally friendly supplements can boost plant growth and productivity when it comes to drought-stressed plants. In order to prevent the detrimental effects of drought in agricultural regions, environmentally friendly practices must be upheld. Plant growth-promoting rhizobacteria (PGPR) can exhibit beneficial phytostimulation, mineralization, and biocontrol activities under drought stress. The significant impact of the PGPR previously reported has not been accepted as an effective treatment to lessen drought stress. Recent studies have successfully shown that manipulating microbes can be a better option to reduce the severity of drought in plants. In this review, we demonstrate how modifying agents such as biochar, PGPR consortia, PGPR, and mycorrhizal fungi can help overcome drought stress responses in crop plants. This article also discusses CRISPR/Cas9-modifiable genes, increase plant's effectiveness in drought conditions, and increase plant resistance to drought stress. With an eco-friendly approach in mind, there is a need for practical management techniques having potential prospects based on an integrated strategy mediated by CRISPR-Cas9 editing, PGPR, which may alleviate the effects of drought stress in crops and aid in achieving the United Nation Sustainable Development Goals (UN-SDGs-2030).
Collapse
Affiliation(s)
- Prabhat K Chauhan
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India.
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090
| | - Ming Hung Wong
- Consortium On Health, Environment, Education, and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, 999077, China
| |
Collapse
|
14
|
Jing H, Wilkinson EG, Sageman-Furnas K, Strader LC. Auxin and abiotic stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:7000-7014. [PMID: 37591508 PMCID: PMC10690732 DOI: 10.1093/jxb/erad325] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Plants are exposed to a variety of abiotic stresses; these stresses have profound effects on plant growth, survival, and productivity. Tolerance and adaptation to stress require sophisticated stress sensing, signaling, and various regulatory mechanisms. The plant hormone auxin is a key regulator of plant growth and development, playing pivotal roles in the integration of abiotic stress signals and control of downstream stress responses. In this review, we summarize and discuss recent advances in understanding the intersection of auxin and abiotic stress in plants, with a focus on temperature, salt, and drought stresses. We also explore the roles of auxin in stress tolerance and opportunities arising for agricultural applications.
Collapse
Affiliation(s)
- Hongwei Jing
- Department of Biology, Duke University, Durham, NC 27008, USA
| | | | | | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27008, USA
| |
Collapse
|
15
|
Jing H, Strader LC. AUXIN RESPONSE FACTOR protein accumulation and function. Bioessays 2023; 45:e2300018. [PMID: 37584215 PMCID: PMC10592145 DOI: 10.1002/bies.202300018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
Auxin is a key regulator of plant developmental processes. Its effects on transcription are mediated by the AUXIN RESPONSE FACTOR (ARF) family of transcription factors. ARFs tightly control specific auxin responses necessary for proper plant growth and development. Recent research has revealed that regulated ARF protein accumulation and ARF nucleo-cytoplasmic partitioning can determine auxin transcriptional outputs. In this review, we explore these recent findings and consider the potential for regulated ARF accumulation in driving auxin responses in plants.
Collapse
Affiliation(s)
- Hongwei Jing
- Department of Biology, Duke University, Durham, NC 27008, USA
| | | |
Collapse
|
16
|
Matinvafa MA, Makani S, Parsasharif N, Zahed MA, Movahed E, Ghiasvand S. CRISPR-Cas technology secures sustainability through its applications: a review in green biotechnology. 3 Biotech 2023; 13:383. [PMID: 37920190 PMCID: PMC10618153 DOI: 10.1007/s13205-023-03786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 09/09/2023] [Indexed: 11/04/2023] Open
Abstract
The CRISPR-Cas system's applications in biotechnology offer a promising avenue for addressing pressing global challenges, such as climate change, environmental pollution, the energy crisis, and the food crisis, thereby advancing sustainability. The ever-growing demand for food due to the projected population of around 9.6 billion by 2050 requires innovation in agriculture. CRISPR-Cas technology emerges as a powerful solution, enhancing crop varieties, optimizing yields, and improving resilience to stressors. It offers multiple gene editing, base editing, and prime editing, surpassing conventional methods. CRISPR-Cas introduces disease and herbicide resistance, high-yielding, drought-tolerant, and water-efficient crops to address rising water utilization and to improve the efficiency of agricultural practices which promise food sustainability and revolutionize agriculture for the benefit of future generations. The application of CRISPR-Cas technology extends beyond agriculture to address environmental challenges. With the adverse impacts of climate change and pollution endangering ecosystems, there is a growing need for sustainable solutions. The technology's potential in carbon capture and reduction through bio-sequestration is a pivotal strategy for combating climate change. Genomic advancements allow for the development of genetically modified organisms, optimizing biofuel and biomaterial production, and contributing to a renewable and sustainable energy future. This study reviews the multifaceted applications of CRISPR-Cas technology in the agricultural and environmental fields and emphasizes its potential to secure a sustainable future.
Collapse
Affiliation(s)
- Mohammad Ali Matinvafa
- Department of Biotechnology & Environment, Faculty of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Shadi Makani
- Faculty of Biological Sciences, Kharazmi University, Tehran, 14911 - 15719 Iran
| | - Negin Parsasharif
- Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Mohammad Ali Zahed
- Faculty of Biological Sciences, Kharazmi University, Tehran, 14911 - 15719 Iran
| | - Elaheh Movahed
- Wadsworth Center, New York State Department of Health, Albany, NY USA
| | - Saeedeh Ghiasvand
- Department of Biology, Faculty of Basic Science, Malayer University, Malayer, Hamedan, Iran
| |
Collapse
|
17
|
Hafeez A, Ali B, Javed MA, Saleem A, Fatima M, Fathi A, Afridi MS, Aydin V, Oral MA, Soudy FA. Plant breeding for harmony between sustainable agriculture, the environment, and global food security: an era of genomics-assisted breeding. PLANTA 2023; 258:97. [PMID: 37823963 DOI: 10.1007/s00425-023-04252-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/22/2023] [Indexed: 10/13/2023]
Abstract
MAIN CONCLUSION Genomics-assisted breeding represents a crucial frontier in enhancing the balance between sustainable agriculture, environmental preservation, and global food security. Its precision and efficiency hold the promise of developing resilient crops, reducing resource utilization, and safeguarding biodiversity, ultimately fostering a more sustainable and secure food production system. Agriculture has been seriously threatened over the last 40 years by climate changes that menace global nutrition and food security. Changes in environmental factors like drought, salt concentration, heavy rainfalls, and extremely low or high temperatures can have a detrimental effects on plant development, growth, and yield. Extreme poverty and increasing food demand necessitate the need to break the existing production barriers in several crops. The first decade of twenty-first century marks the rapid development in the discovery of new plant breeding technologies. In contrast, in the second decade, the focus turned to extracting information from massive genomic frameworks, speculating gene-to-phenotype associations, and producing resilient crops. In this review, we will encompass the causes, effects of abiotic stresses and how they can be addressed using plant breeding technologies. Both conventional and modern breeding technologies will be highlighted. Moreover, the challenges like the commercialization of biotechnological products faced by proponents and developers will also be accentuated. The crux of this review is to mention the available breeding technologies that can deliver crops with high nutrition and climate resilience for sustainable agriculture.
Collapse
Affiliation(s)
- Aqsa Hafeez
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Muhammad Ammar Javed
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Aroona Saleem
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Mahreen Fatima
- Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Amin Fathi
- Department of Agronomy, Ayatollah Amoli Branch, Islamic Azad University, Amol, 46151, Iran
| | - Muhammad Siddique Afridi
- Department of Plant Pathology, Federal University of Lavras (UFLA), Lavras, MG, 37200-900, Brazil
| | - Veysel Aydin
- Sason Vocational School, Department of Plant and Animal Production, Batman University, Batman, 72060, Turkey
| | - Mükerrem Atalay Oral
- Elmalı Vocational School of Higher Education, Akdeniz University, Antalya, 07058, Turkey
| | - Fathia A Soudy
- Genetics and Genetic Engineering Department, Faculty of Agriculture, Benha University, Moshtohor, 13736, Egypt
| |
Collapse
|
18
|
Liu X, Lin Y, Wu C, Yang Y, Su D, Xian Z, Zhu Y, Yu C, Hu G, Deng W, Li Z, Bouzayen M, Chen R, Hao Y. The SlARF4-SlHB8 regulatory module mediates leaf rolling in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111790. [PMID: 37454820 DOI: 10.1016/j.plantsci.2023.111790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/06/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Leaf is the main photosynthetic organ in plants and the primary energy source all along the plant life. Given the beneficial role of leaf rolling in improving photosynthetic efficiency and yield in specific environmental conditions, a better understanding of the factors and molecular mechanisms underlying this process is highly suited. Previously, the SlARF4 knocking out mutant exhibited upward curly leaf showed higher resistance to water deficit which driving us to uncover the function of SlARF4 in regulating the curly leaf formation. In this study, we unraveled the unexplored role of the SlARF4-SlHB8 module of transcription factors in the development of leaf rolling. Both SlARF4 loss-of-function and SlHB8 overexpressing tomato plants exhibited upward-rolled leaves, reflecting the active role of the two genes in controlling leaf rolling. Dual-luciferase reporter assays and phenotypic analysis of hybrid progenies suggested that SlHB8 acts downstream of SlARF4 in curly leaf formation. SlARF4 and SlHB8 influence the development of leaf palisade tissues via modulating the expression of genes associated with curly leaf formation. SEM analysis revealed no significant differences in leaf epidermal cells between the two leaf-rolling mutants and the wild type, indicating that curly leaves of arf4 and SlHB8-OE do not result from the asymmetric leaf epidermal cell growth. Our data provide novel insight into the molecular mechanism of abaxial-adaxial determination involving SlARF4 and SlHB8 and reveals that leaf rolling operates via different regulation mechanisms in tomato and Arabidopsis model plant.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yuxiang Lin
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Caiyu Wu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yang Yang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Deding Su
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China; Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Zhiqiang Xian
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China; Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Yiyi Zhu
- BioGround Biotechnology Institution, International Park of Entrepreneur' Port, Shapingba, Chongqing, China
| | - Canye Yu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Guojian Hu
- UMR990 INRA/INP-ENSAT, Université de Toulouse, Castanet-Tolosan, France
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China; Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China; Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Mondher Bouzayen
- UMR990 INRA/INP-ENSAT, Université de Toulouse, Castanet-Tolosan, France
| | - Riyuan Chen
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Yanwei Hao
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
19
|
Sardar A. Genetic amelioration of fruit and vegetable crops to increase biotic and abiotic stress resistance through CRISPR Genome Editing. FRONTIERS IN PLANT SCIENCE 2023; 14:1260102. [PMID: 37841604 PMCID: PMC10570431 DOI: 10.3389/fpls.2023.1260102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/28/2023] [Indexed: 10/17/2023]
Abstract
Environmental changes and increasing population are major concerns for crop production and food security as a whole. To address this, researchers had focussed on the improvement of cereals and pulses and have made considerable progress till the beginning of this decade. However, cereals and pulses together, without vegetables and fruits, are inadequate to meet the dietary and nutritional demands of human life. Production of good quality vegetables and fruits is highly challenging owing to their perishable nature and short shelf life as well as abiotic and biotic stresses encountered during pre- and post-harvest. Genetic engineering approaches to produce good quality, to increase shelf life and stress-resistance, and to change the time of flowering and fruit ripening by introducing foreign genes to produce genetically modified crops were quite successful. However, several biosafety concerns, such as the risk of transgene-outcrossing, limited their production, marketing, and consumption. Modern genome editing techniques, like the CRISPR/Cas9 system, provide a perfect solution in this scenario, as it can produce transgene-free genetically edited plants. Hence, these genetically edited plants can easily satisfy the biosafety norms for crop production and consumption. This review highlights the potential of the CRISPR/Cas9 system for the successful generation of abiotic and biotic stress resistance and thereby improving the quality, yield, and overall productivity of vegetables and fruits.
Collapse
Affiliation(s)
- Atish Sardar
- Department of Botany, Jogesh Chandra Chaudhuri College, West Bengal, Kolkata, India
| |
Collapse
|
20
|
El Mamoun I, Bouzroud S, Zouine M, Smouni A. The Knockdown of AUXIN RESPONSE FACTOR 2 Confers Enhanced Tolerance to Salt and Drought Stresses in Tomato ( Solanum lycopersicum L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:2804. [PMID: 37570958 PMCID: PMC10420960 DOI: 10.3390/plants12152804] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Auxin response factors (ARFs) act as key elements of the auxin-signaling pathway and play important roles in the process of a plant's growth, development, and response to environmental conditions. We studied the implication of the SlARF2 gene in the tomato response to salt (150 mM of NaCl) and drought (15% PEG 20000) stresses. The functional characterization of SlARF2 knockdown tomato mutants revealed that the downregulation of this gene enhanced primary root length and root branching and reduced plant wilting. At the physiological level, the arf2 mutant line displayed higher chlorophyll, soluble sugars, proline, and relative water contents as well as lower stomatal conductance and a decreased malondialdehyde content. Moreover, SlARF2 knockdown tomato mutants demonstrated higher activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) under salt and drought stresses than the wild type. Indeed, the stress tolerance of the arf2 mutant was also reflected by the upregulation of stress-related genes involved in ROS scavenging and plant defense, including SOD, CAT, dehydration-responsive element-binding protein, and early responsive to dehydration, which can ultimately result in a better resistance to salt and drought stresses. Furthermore, the transcriptional levels of the Δ1-pyrroline-5-carboxylate synthase (P5CS) gene were upregulated in the arf2 mutant after stress, in correlation with the higher levels of proline. Taken together, our findings reveal that SlARF2 is implicated in salt and drought tolerance in tomato and provides some considerable elements for improving the abiotic stress tolerance and increasing the crop yields of tomato.
Collapse
Affiliation(s)
- Ibtihaj El Mamoun
- Laboratoire de Biotechnologie et de Physiologie Végétales, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10000, Morocco;
- Laboratoire de Recherche en Sciences Végétales, UMR5546, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse Paul Sabatier (UPS), Toulouse-INP, 31320 Auzeville-Tolosane, France
| | - Sarah Bouzroud
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10000, Morocco;
| | - Mohamed Zouine
- Laboratoire de Recherche en Sciences Végétales, UMR5546, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse Paul Sabatier (UPS), Toulouse-INP, 31320 Auzeville-Tolosane, France
| | - Abdelaziz Smouni
- Laboratoire de Biotechnologie et de Physiologie Végétales, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10000, Morocco;
| |
Collapse
|
21
|
Qi Y, Wang L, Li W, Dang Z, Xie Y, Zhao W, Zhao L, Li W, Yang C, Xu C, Zhang J. Genome-Wide Identification and Expression Analysis of Auxin Response Factor Gene Family in Linum usitatissimum. Int J Mol Sci 2023; 24:11006. [PMID: 37446183 DOI: 10.3390/ijms241311006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Auxin response factors (ARFs) are critical components of the auxin signaling pathway, and are involved in diverse plant biological processes. However, ARF genes have not been investigated in flax (Linum usitatissimum L.), an important oilseed and fiber crop. In this study, we comprehensively analyzed the ARF gene family and identified 33 LuARF genes unevenly distributed on the 13 chromosomes of Longya-10, an oil-use flax variety. Detailed analysis revealed wide variation among the ARF family members and predicted nuclear localization for all proteins. Nineteen LuARFs contained a complete ARF structure, including DBD, MR, and CTD, whereas the other fourteen lacked the CTD. Phylogenetic analysis grouped the LuARFs into four (I-V) clades. Combined with sequence analysis, the LuARFs from the same clade showed structural conservation, implying functional redundancy. Duplication analysis identified twenty-seven whole-genome-duplicated LuARF genes and four tandem-duplicated LuARF genes. These duplicated gene pairs' Ka/Ks ratios suggested a strong purifying selection pressure on the LuARF genes. Collinearity analysis revealed that about half of the LuARF genes had homologs in other species, indicating a relatively conserved nature of the ARFs. The promoter analysis identified numerous hormone- and stress-related elements, and the qRT-PCR experiment revealed that all LuARF genes were responsive to phytohormone (IAA, GA3, and NAA) and stress (PEG, NaCl, cold, and heat) treatments. Finally, expression profiling of LuARF genes in different tissues by qRT-PCR indicated their specific functions in stem or capsule growth. Thus, our findings suggest the potential functions of LuARFs in flax growth and response to an exogenous stimulus, providing a basis for further functional studies on these genes.
Collapse
Affiliation(s)
- Yanni Qi
- Institute of Crop, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Limin Wang
- Institute of Crop, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Wenjuan Li
- Institute of Crop, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Zhao Dang
- Institute of Crop, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Yaping Xie
- Institute of Crop, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Wei Zhao
- Institute of Crop, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Lirong Zhao
- Institute of Crop, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Wen Li
- Institute of Crop, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Chenxi Yang
- Institute of Crop, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Chenmeng Xu
- Institute of Crop, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Jianping Zhang
- Institute of Crop, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| |
Collapse
|
22
|
Rai GK, Khanday DM, Kumar P, Magotra I, Choudhary SM, Kosser R, Kalunke R, Giordano M, Corrado G, Rouphael Y, Pandey S. Enhancing Crop Resilience to Drought Stress through CRISPR-Cas9 Genome Editing. PLANTS (BASEL, SWITZERLAND) 2023; 12:2306. [PMID: 37375931 DOI: 10.3390/plants12122306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
With increasing frequency and severity of droughts in various parts of the world, agricultural productivity may suffer major setbacks. Among all the abiotic factors, drought is likely to have one of the most detrimental effects on soil organisms and plants. Drought is a major problem for crops because it limits the availability of water, and consequently nutrients which are crucial for plant growth and survival. This results in reduced crop yields, stunted growth, and even plant death, according to the severity and duration of the drought, the plant's developmental stage, and the plant's genetic background. The ability to withstand drought is a highly complex characteristic that is controlled by multiple genes, making it one of the most challenging attributes to study, classify, and improve. Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) technology has opened a new frontier in crop enhancement, revolutionizing plant molecular breeding. The current review provides a general understanding of principles as well as optimization of CRISPR system, and presents applications on genetic enhancement of crops, specifically in terms of drought resistance and yield. Moreover, we discuss how innovative genome editing techniques can aid in the identification and modification of genes conferring drought tolerance.
Collapse
Affiliation(s)
- Gyanendra Kumar Rai
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Danish Mushtaq Khanday
- Division of Plant Breeding and Genetics, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Pradeep Kumar
- Division of Integrated Farming System, ICAR-Central Arid Zone Research Institute, Jodhpur 342003, India
| | - Isha Magotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Sadiya M Choudhary
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Rafia Kosser
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Raviraj Kalunke
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Maria Giordano
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via Valdisavoia 5, 95123 Catania, Italy
| | - Giandomenico Corrado
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Sudhakar Pandey
- Indian Council of Agricultural Research, Krishi Anusandhan Bhavan II, New Delhi 110012, India
| |
Collapse
|
23
|
Pirona R, Frugis G, Locatelli F, Mattana M, Genga A, Baldoni E. Transcriptomic analysis reveals the gene regulatory networks involved in leaf and root response to osmotic stress in tomato. FRONTIERS IN PLANT SCIENCE 2023; 14:1155797. [PMID: 37332696 PMCID: PMC10272567 DOI: 10.3389/fpls.2023.1155797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023]
Abstract
Introduction Tomato (Solanum lycopersicum L.) is a major horticultural crop that is cultivated worldwide and is characteristic of the Mediterranean agricultural system. It represents a key component of the diet of billion people and an important source of vitamins and carotenoids. Tomato cultivation in open field often experiences drought episodes, leading to severe yield losses, since most modern cultivars are sensitive to water deficit. Water stress leads to changes in the expression of stress-responsive genes in different plant tissues, and transcriptomics can support the identification of genes and pathways regulating this response. Methods Here, we performed a transcriptomic analysis of two tomato genotypes, M82 and Tondo, in response to a PEG-mediated osmotic treatment. The analysis was conducted separately on leaves and roots to characterize the specific response of these two organs. Results A total of 6,267 differentially expressed transcripts related to stress response was detected. The construction of gene co-expression networks defined the molecular pathways of the common and specific responses of leaf and root. The common response was characterized by ABA-dependent and ABA-independent signaling pathways, and by the interconnection between ABA and JA signaling. The root-specific response concerned genes involved in cell wall metabolism and remodeling, whereas the leaf-specific response was principally related to leaf senescence and ethylene signaling. The transcription factors representing the hubs of these regulatory networks were identified. Some of them have not yet been characterized and can represent novel candidates for tolerance. Discussion This work shed new light on the regulatory networks occurring in tomato leaf and root under osmotic stress and set the base for an in-depth characterization of novel stress-related genes that may represent potential candidates for improving tolerance to abiotic stress in tomato.
Collapse
Affiliation(s)
- Raul Pirona
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Milano, Italy
| | - Giovanna Frugis
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Rome Unit, Roma, Italy
| | - Franca Locatelli
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Milano, Italy
| | - Monica Mattana
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Milano, Italy
| | - Annamaria Genga
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Milano, Italy
| | - Elena Baldoni
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Milano, Italy
| |
Collapse
|
24
|
Lu J, Zheng D, Li M, Fu M, Zhang X, Wan X, Zhang S, Chen Q. A hierarchical model of ABA-mediated signal transduction in tea plant revealed by systematic genome mining analysis and interaction validation. TREE PHYSIOLOGY 2023; 43:867-878. [PMID: 36694977 DOI: 10.1093/treephys/tpad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/20/2022] [Accepted: 01/19/2023] [Indexed: 05/13/2023]
Abstract
As a critical signaling molecule, ABA plays an important role in plant growth, development and stresses response. However, tea plant [Camellia sinensis (L.)], an important economical perennial woody plant, has not been systematically reported in response to ABA signal transduction in vivo. In this study, we mined and identified the gene structure of CsPYL/CsPP2C-A/CsSnRK gene families in the ABA signal transduction pathway through the genome-wide analysis of tea plants. Spatiotemporal expression and stress response (drought, salt, chilling) expression patterns were characterized. The results showed that most members of CsPYLs were conserved, and the gene structures of members of A-type CsPP2Cs were highly similar, whereas the gene structure of CsSnRK2s was highly variable. The transcription levels of different family members were differentially expressed with plant growth and development, and their response to stress signal patterns was highly correlated. The expression patterns of CsPYL/CsPP2C-A/CsSnRK2 gene family members in different tissues of tea plant cuttings after exogenous ABA treatment were detected by qRT-PCR, and the hierarchical model of ABA signaling was constructed by correlation analysis to preliminarily obtain three potential ABA-dependent signaling transduction pathways. Subsequently, the protein interaction of the CsPYL4/7-CsPP2C-A2-CsSnRK2.8 signaling pathway was verified by yeast two-hybrid and surface plasmon resonance experiments, indicating that there is specific selectivity in the ABA signaling pathway. Our results provided novel insights into the ABA-dependent signal transduction model in tea plant and information for future functional characterizations of stress tolerance genes in tea plant.
Collapse
Affiliation(s)
- Jing Lu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Dongqiao Zheng
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Mengshuang Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Maoyin Fu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Xianchen Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036 , China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Shihua Zhang
- College of Life Science and Health, Wuhan University of Science and Technology, 947 Peace Avenue, Wuhan 430081, China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| |
Collapse
|
25
|
Gajardo HA, Gómez-Espinoza O, Boscariol Ferreira P, Carrer H, Bravo LA. The Potential of CRISPR/Cas Technology to Enhance Crop Performance on Adverse Soil Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091892. [PMID: 37176948 PMCID: PMC10181257 DOI: 10.3390/plants12091892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Worldwide food security is under threat in the actual scenery of global climate change because the major staple food crops are not adapted to hostile climatic and soil conditions. Significant efforts have been performed to maintain the actual yield of crops, using traditional breeding and innovative molecular techniques to assist them. However, additional strategies are necessary to achieve the future food demand. Clustered regularly interspaced short palindromic repeat/CRISPR-associated protein (CRISPR/Cas) technology, as well as its variants, have emerged as alternatives to transgenic plant breeding. This novelty has helped to accelerate the necessary modifications in major crops to confront the impact of abiotic stress on agriculture systems. This review summarizes the current advances in CRISPR/Cas applications in crops to deal with the main hostile soil conditions, such as drought, flooding and waterlogging, salinity, heavy metals, and nutrient deficiencies. In addition, the potential of extremophytes as a reservoir of new molecular mechanisms for abiotic stress tolerance, as well as their orthologue identification and edition in crops, is shown. Moreover, the future challenges and prospects related to CRISPR/Cas technology issues, legal regulations, and customer acceptance will be discussed.
Collapse
Affiliation(s)
- Humberto A Gajardo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 1145, Chile
| | - Olman Gómez-Espinoza
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 1145, Chile
- Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | - Pedro Boscariol Ferreira
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba 13418-900, Brazil
| | - Helaine Carrer
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba 13418-900, Brazil
| | - León A Bravo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 1145, Chile
| |
Collapse
|
26
|
Shen X, Ping Y, Bao C, Liu C, Tahir MM, Li X, Song Y, Xu W, Ma F, Guan Q. Mdm-miR160-MdARF17-MdWRKY33 module mediates freezing tolerance in apple. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:262-278. [PMID: 36738108 DOI: 10.1111/tpj.16132] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 05/10/2023]
Abstract
Apple (Malus domestica) trees are vulnerable to freezing temperatures. Cold resistance in woody perennial plants can be improved through biotechnological approaches. However, genetic engineering requires a thorough understanding of the molecular mechanisms of the tree's response to cold. In this study, we demonstrated that the Mdm-miR160-MdARF17-MdWRKY33 module is crucial for apple freezing tolerance. Mdm-miR160 plays a negative role in apple freezing tolerance, whereas MdARF17, one of the targets of Mdm-miR160, is a positive regulator of apple freezing tolerance. RNA sequencing analysis revealed that in apple, MdARF17 mediates the cold response by influencing the expression of cold-responsive genes. EMSA and ChIP-qPCR assays demonstrated that MdARF17 can bind to the promoter of MdWRKY33 and promotes its expression. Overexpression of MdWRKY33 enhanced the cold tolerance of the apple calli. In addition, we found that the Mdm-miR160-MdARF17-MdWRKY33 module regulates cold tolerance in apple by regulating reactive oxygen species (ROS) scavenging, as revealed by (i) increased H2 O2 levels and decreased peroxidase (POD) and catalase (CAT) activities in Mdm-miR160e OE plants and MdARF17 RNAi plants and (ii) decreased H2 O2 levels and increased POD and CAT activities in MdmARF17 OE plants and MdWRKY33 OE calli. Taken together, our study uncovered the molecular roles of the Mdm-miR160-MdARF17-MdWRKY33 module in freezing tolerance in apple, thus providing support for breeding of cold-tolerant apple cultivars.
Collapse
Affiliation(s)
- Xiaoxia Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yikun Ping
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chana Bao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chen Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Muhammad Mobeen Tahir
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yi Song
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Weirong Xu
- Ningxia Engineering and Technology Research Center of Grape and Wine, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
27
|
AHMAD M. Plant breeding advancements with "CRISPR-Cas" genome editing technologies will assist future food security. FRONTIERS IN PLANT SCIENCE 2023; 14:1133036. [PMID: 36993865 PMCID: PMC10040607 DOI: 10.3389/fpls.2023.1133036] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/20/2023] [Indexed: 06/19/2023]
Abstract
Genome editing techniques are being used to modify plant breeding, which might increase food production sustainably by 2050. A product made feasible by genome editing is becoming better known, because of looser regulation and widespread acceptance. The world's population and food supply would never have increased proportionally under current farming practices. The development of plants and food production has been greatly impacted by global warming and climate change. Therefore, minimizing these effects is crucial for agricultural production that is sustainable. Crops are becoming more resilient to abiotic stress because of sophisticated agricultural practices and a better understanding of the abiotic stress response mechanism. Both conventional and molecular breeding techniques have been used to create viable crop types both processes are time-consuming. Recently, plant breeders have shown an interest in genome editing approaches for genetic manipulation that use clustered regularly interspaced short palindromic repeats (CRISPR/Cas9). To ensure the security of the food supply in the future, plant kinds with desired traits must be developed. A completely new era in plant breeding has begun because of the revolution in genome editing techniques based on the CRISPR/CRISPR-associated nuclease (Cas9) systems. All plants may effectively target a particular gene or group of loci using Cas9 and single-guide RNA (sgRNA). CRISPR/Cas9 can thereby save time and labor compared to conventional breeding methods. An easy, quick, and efficient method for directly altering the genetic sequences in cells is with the CRISPR and Cas9 systems. The CRISPR-Cas9 system, which was developed from components of the earliest known bacterial immune system, allows for targeted gene breakage and gene editing in a variety of cells/RNA sequences to guide endonuclease cleavage specificity in the CRISPR-Cas9 system. Editing can be directed to practically any genomic site by altering the guide RNA (gRNA) sequence and delivering it to a target cell along with the Cas9 endonuclease. We summarize recent CRISPR/Cas9 plant research findings, investigate potential applications in plant breeding, and make predictions about likely future breakthroughs and approaches to food security through 2050.
Collapse
Affiliation(s)
- M. AHMAD
- Department of Plant Sciences, University of Nebraska, Lincoln, NE, United States
- Department of Genetics and Plant Breeding, Sheri-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Srinagar, India
| |
Collapse
|
28
|
Nascimento FDS, Rocha ADJ, Soares JMDS, Mascarenhas MS, Ferreira MDS, Morais Lino LS, Ramos APDS, Diniz LEC, Mendes TADO, Ferreira CF, dos Santos-Serejo JA, Amorim EP. Gene Editing for Plant Resistance to Abiotic Factors: A Systematic Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:305. [PMID: 36679018 PMCID: PMC9860801 DOI: 10.3390/plants12020305] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 05/22/2023]
Abstract
Agricultural crops are exposed to various abiotic stresses, such as salinity, water deficits, temperature extremes, floods, radiation, and metal toxicity. To overcome these challenges, breeding programs seek to improve methods and techniques. Gene editing by Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR/Cas-is a versatile tool for editing in all layers of the central dogma with focus on the development of cultivars of plants resistant or tolerant to multiple biotic or abiotic stresses. This systematic review (SR) brings new contributions to the study of the use of CRISPR/Cas in gene editing for tolerance to abiotic stress in plants. Articles deposited in different electronic databases, using a search string and predefined inclusion and exclusion criteria, were evaluated. This SR demonstrates that the CRISPR/Cas system has been applied to several plant species to promote tolerance to the main abiotic stresses. Among the most studied crops are rice and Arabidopsis thaliana, an important staple food for the population, and a model plant in genetics/biotechnology, respectively, and more recently tomato, whose number of studies has increased since 2021. Most studies were conducted in Asia, specifically in China. The Cas9 enzyme is used in most articles, and only Cas12a is used as an additional gene editing tool in plants. Ribonucleoproteins (RNPs) have emerged as a DNA-free strategy for genome editing without exogenous DNA. This SR also identifies several genes edited by CRISPR/Cas, and it also shows that plant responses to stress factors are mediated by many complex-signaling pathways. In addition, the quality of the articles included in this SR was validated by a risk of bias analysis. The information gathered in this SR helps to understand the current state of CRISPR/Cas in the editing of genes and noncoding sequences, which plays a key role in the regulation of various biological processes and the tolerance to multiple abiotic stresses, with potential for use in plant genetic improvement programs.
Collapse
Affiliation(s)
| | - Anelita de Jesus Rocha
- Department of Biological Sciences, Feira de Santana State University, Feira de Santana 44036-900, BA, Brazil
| | | | | | - Mileide dos Santos Ferreira
- Department of Biological Sciences, Feira de Santana State University, Feira de Santana 44036-900, BA, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Wei J, Chen Q, Lin J, Chen F, Chen R, Liu H, Chu P, Lu Z, Li S, Yu G. Genome-wide identification and expression analysis of tomato glycoside hydrolase family 1 β-glucosidase genes in response to abiotic stresses. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2072767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Jinpeng Wei
- Ministry of Agriculture and Rural Affairs Agro-products and Processed Products Quality Supervision, Inspection and Testing Center, Daqing, Heilongjiang, PR China
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Qiusen Chen
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Jiaxin Lin
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Fengqiong Chen
- Ministry of Agriculture and Rural Affairs Agro-products and Processed Products Quality Supervision, Inspection and Testing Center, Daqing, Heilongjiang, PR China
| | - Runan Chen
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Hanlin Liu
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Peiyu Chu
- Ministry of Agriculture and Rural Affairs Agro-products and Processed Products Quality Supervision, Inspection and Testing Center, Daqing, Heilongjiang, PR China
| | - Zhiyong Lu
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Shaozhe Li
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Gaobo Yu
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| |
Collapse
|
30
|
Nowicka B. Modifications of Phytohormone Metabolism Aimed at Stimulation of Plant Growth, Improving Their Productivity and Tolerance to Abiotic and Biotic Stress Factors. PLANTS (BASEL, SWITZERLAND) 2022; 11:3430. [PMID: 36559545 PMCID: PMC9781743 DOI: 10.3390/plants11243430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Due to the growing human population, the increase in crop yield is an important challenge for modern agriculture. As abiotic and biotic stresses cause severe losses in agriculture, it is also crucial to obtain varieties that are more tolerant to these factors. In the past, traditional breeding methods were used to obtain new varieties displaying demanded traits. Nowadays, genetic engineering is another available tool. An important direction of the research on genetically modified plants concerns the modification of phytohormone metabolism. This review summarizes the state-of-the-art research concerning the modulation of phytohormone content aimed at the stimulation of plant growth and the improvement of stress tolerance. It aims to provide a useful basis for developing new strategies for crop yield improvement by genetic engineering of phytohormone metabolism.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
31
|
Li X, Liu L, Sun S, Li Y, Jia L, Ye S, Yu Y, Dossa K, Luan Y. Leaf-transcriptome profiles of phoebe bournei provide insights into temporal drought stress responses. FRONTIERS IN PLANT SCIENCE 2022; 13:1010314. [PMID: 36352866 PMCID: PMC9637941 DOI: 10.3389/fpls.2022.1010314] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Phoebe bournei (Hemsl.) Yang is used as a commercial wood in China and is enlisted as a near-threatened species. Prolonged droughts pose a serious threat to young seedlings (1-2 years old). A transcriptome sequencing approach, together with the measurement of growth parameters and biochemical analyses were used to understand P. bournei's drought responses on 15d, 30d, and 45d of drought stress treatment. The stem and root dry weights decreased significantly with drought stress duration. Activities of antioxidative enzymes i.e., peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) increased significantly with the increase in drought stress duration. A total of 13,274, 15,648, and 9,949 genes were differentially expressed in CKvs15d, CKvs30d, and CKvs45d, respectively. The differential expression analyses showed that photosystem I and II underwent structural changes, chlorophyll biosynthesis, and photosynthesis were reduced. The genes annotated as POD, SOD, and CAT were upregulated in drought-treated leaves as compared to control. Additionally, plant-hormone signal transduction, MAPK signaling-plant, phenylpropanoid biosynthesis, flavonoid biosynthesis, and starch and sucrose metabolism pathways showed large-scale expression changes in major genes. We also found that members of 25 transcription factor families were differentially expressed. Our study presents and discusses these transcriptome signatures. Overall, our findings represent key data for breeding towards drought stress tolerance in P. bournei.
Collapse
Affiliation(s)
- Xiang Li
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Lanlan Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Shixian Sun
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services Southwest Forestry University, Kunming, China
| | - Yanmei Li
- Department of Life Technology Teaching and Research, School of Life Science, Southwest Forestry University, Kunming, China
| | - Lu Jia
- Department of Life Technology Teaching and Research, School of Life Science, Southwest Forestry University, Kunming, China
| | - Shili Ye
- Faculty of Mathematics and Physics, Southwest Forestry University, Kunming, China
| | - Yanxuan Yu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | | | - Yunpeng Luan
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| |
Collapse
|
32
|
Biotechnological Interventions in Tomato ( Solanum lycopersicum) for Drought Stress Tolerance: Achievements and Future Prospects. BIOTECH (BASEL (SWITZERLAND)) 2022; 11:biotech11040048. [PMID: 36278560 PMCID: PMC9624322 DOI: 10.3390/biotech11040048] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
Tomato production is severely affected by abiotic stresses (drought, flood, heat, and salt) and causes approximately 70% loss in yield depending on severity and duration of the stress. Drought is the most destructive abiotic stress and tomato is very sensitive to the drought stress, as cultivated tomato lack novel gene(s) for drought stress tolerance. Only 20% of agricultural land worldwide is irrigated, and only 14.51% of that is well-irrigated, while the rest is rain fed. This scenario makes drought very frequent, which restricts the genetically predetermined yield. Primarily, drought disturbs tomato plant physiology by altering plant–water relation and reactive oxygen species (ROS) generation. Many wild tomato species have drought tolerance gene(s); however, their exploitation is very difficult because of high genetic distance and pre- and post-transcriptional barriers for embryo development. To overcome these issues, biotechnological methods, including transgenic technology and CRISPR-Cas, are used to enhance drought tolerance in tomato. Transgenic technology permitted the exploitation of non-host gene/s. On the other hand, CRISPR-Cas9 technology facilitated the editing of host tomato gene(s) for drought stress tolerance. The present review provides updated information on biotechnological intervention in tomato for drought stress management and sustainable agriculture.
Collapse
|
33
|
Zhang Y, Yu J, Xu X, Wang R, Liu Y, Huang S, Wei H, Wei Z. Molecular Mechanisms of Diverse Auxin Responses during Plant Growth and Development. Int J Mol Sci 2022; 23:12495. [PMID: 36293351 PMCID: PMC9604407 DOI: 10.3390/ijms232012495] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
The plant hormone auxin acts as a signaling molecule to regulate numerous developmental processes throughout all stages of plant growth. Understanding how auxin regulates various physiological and developmental processes has been a hot topic and an intriguing field. Recent studies have unveiled more molecular details into how diverse auxin responses function in every aspect of plant growth and development. In this review, we systematically summarized and classified the molecular mechanisms of diverse auxin responses, and comprehensively elaborated the characteristics and multilevel regulation mechanisms of the canonical transcriptional auxin response. On this basis, we described the characteristics and differences between different auxin responses. We also presented some auxin response genes that have been genetically modified in plant species and how their changes impact various traits of interest. Finally, we summarized some important aspects and unsolved questions of auxin responses that need to be focused on or addressed in future research. This review will help to gain an overall understanding of and some insights into the diverse molecular mechanisms of auxin responses in plant growth and development that are instrumental in harnessing genetic resources in molecular breeding of extant plant species.
Collapse
Affiliation(s)
- Yang Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jiajie Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xiuyue Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Ruiqi Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Shan Huang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Zhigang Wei
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
34
|
Esmaeili N, Shen G, Zhang H. Genetic manipulation for abiotic stress resistance traits in crops. FRONTIERS IN PLANT SCIENCE 2022; 13:1011985. [PMID: 36212298 PMCID: PMC9533083 DOI: 10.3389/fpls.2022.1011985] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Abiotic stresses are major limiting factors that pose severe threats to agricultural production. Conventional breeding has significantly improved crop productivity in the last century, but traditional breeding has reached its maximum capacity due to the multigenic nature of abiotic stresses. Alternatively, biotechnological approaches could provide new opportunities for producing crops that can adapt to the fast-changing environment and still produce high yields under severe environmental stress conditions. Many stress-related genes have been identified and manipulated to generate stress-tolerant plants in the past decades, which could lead to further increase in food production in most countries of the world. This review focuses on the recent progress in using transgenic technology and gene editing technology to improve abiotic stress tolerance in plants, and highlights the potential of using genetic engineering to secure food and fiber supply in a world with an increasing population yet decreasing land and water availability for food production and fast-changing climate that will be largely hostile to agriculture.
Collapse
Affiliation(s)
- Nardana Esmaeili
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Guoxin Shen
- Zhejiang Academy of Agricultural Sciences, Sericultural Research Institute, Hangzhou, China
| | - Hong Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
35
|
Wu Y, Sun Z, Qi F, Tian M, Wang J, Zhao R, Wang X, Wu X, Shi X, Liu H, Dong W, Huang B, Zheng Z, Zhang X. Comparative transcriptomics analysis of developing peanut ( Arachis hypogaea L.) pods reveals candidate genes affecting peanut seed size. FRONTIERS IN PLANT SCIENCE 2022; 13:958808. [PMID: 36172561 PMCID: PMC9511224 DOI: 10.3389/fpls.2022.958808] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/03/2022] [Indexed: 06/16/2023]
Abstract
Pod size is one of the most important agronomic features of peanuts, which directly affects peanut yield. Studies on the regulation mechanism underpinning pod size in cultivated peanuts remain hitherto limited compared to model plant systems. To better understand the molecular elements that underpin peanut pod development, we conducted a comprehensive analysis of chronological transcriptomics during pod development in four peanut accessions with similar genetic backgrounds, but varying pod sizes. Several plant transcription factors, phytohormones, and the mitogen-activated protein kinase (MAPK) signaling pathways were significantly enriched among differentially expressed genes (DEGs) at five consecutive developmental stages, revealing an eclectic range of candidate genes, including PNC, YUC, and IAA that regulate auxin synthesis and metabolism, CYCD and CYCU that regulate cell differentiation and proliferation, and GASA that regulates seed size and pod elongation via gibberellin pathway. It is plausible that MPK3 promotes integument cell division and regulates mitotic activity through phosphorylation, and the interactions between these genes form a network of molecular pathways that affect peanut pod size. Furthermore, two variant sites, GCP4 and RPPL1, were identified which are stable at the QTL interval for seed size attributes and function in plant cell tissue microtubule nucleation. These findings may facilitate the identification of candidate genes that regulate pod size and impart yield improvement in cultivated peanuts.
Collapse
Affiliation(s)
- Yue Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan Academy of Agricultural Sciences, Henan Academy of Crop Molecular Breeding, State Industrial Innovation Center of Biological Breeding, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Innovation Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Ziqi Sun
- Henan Academy of Agricultural Sciences, Henan Academy of Crop Molecular Breeding, State Industrial Innovation Center of Biological Breeding, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Innovation Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Feiyan Qi
- Henan Academy of Agricultural Sciences, Henan Academy of Crop Molecular Breeding, State Industrial Innovation Center of Biological Breeding, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Innovation Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengdi Tian
- Henan Academy of Agricultural Sciences, Henan Academy of Crop Molecular Breeding, State Industrial Innovation Center of Biological Breeding, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Innovation Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Juan Wang
- Henan Academy of Agricultural Sciences, Henan Academy of Crop Molecular Breeding, State Industrial Innovation Center of Biological Breeding, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Innovation Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruifang Zhao
- Henan Academy of Agricultural Sciences, Henan Academy of Crop Molecular Breeding, State Industrial Innovation Center of Biological Breeding, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Innovation Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiao Wang
- Henan Academy of Agricultural Sciences, Henan Academy of Crop Molecular Breeding, State Industrial Innovation Center of Biological Breeding, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Innovation Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaohui Wu
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xinlong Shi
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Hongfei Liu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Wenzhao Dong
- Henan Academy of Agricultural Sciences, Henan Academy of Crop Molecular Breeding, State Industrial Innovation Center of Biological Breeding, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Innovation Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Bingyan Huang
- Henan Academy of Agricultural Sciences, Henan Academy of Crop Molecular Breeding, State Industrial Innovation Center of Biological Breeding, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Innovation Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Zheng Zheng
- Henan Academy of Agricultural Sciences, Henan Academy of Crop Molecular Breeding, State Industrial Innovation Center of Biological Breeding, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Innovation Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinyou Zhang
- Henan Academy of Agricultural Sciences, Henan Academy of Crop Molecular Breeding, State Industrial Innovation Center of Biological Breeding, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Innovation Base of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
36
|
Raza A, Salehi H, Rahman MA, Zahid Z, Madadkar Haghjou M, Najafi-Kakavand S, Charagh S, Osman HS, Albaqami M, Zhuang Y, Siddique KHM, Zhuang W. Plant hormones and neurotransmitter interactions mediate antioxidant defenses under induced oxidative stress in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:961872. [PMID: 36176673 PMCID: PMC9514553 DOI: 10.3389/fpls.2022.961872] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/03/2022] [Indexed: 05/24/2023]
Abstract
Due to global climate change, abiotic stresses are affecting plant growth, productivity, and the quality of cultivated crops. Stressful conditions disrupt physiological activities and suppress defensive mechanisms, resulting in stress-sensitive plants. Consequently, plants implement various endogenous strategies, including plant hormone biosynthesis (e.g., abscisic acid, jasmonic acid, salicylic acid, brassinosteroids, indole-3-acetic acid, cytokinins, ethylene, gibberellic acid, and strigolactones) to withstand stress conditions. Combined or single abiotic stress disrupts the normal transportation of solutes, causes electron leakage, and triggers reactive oxygen species (ROS) production, creating oxidative stress in plants. Several enzymatic and non-enzymatic defense systems marshal a plant's antioxidant defenses. While stress responses and the protective role of the antioxidant defense system have been well-documented in recent investigations, the interrelationships among plant hormones, plant neurotransmitters (NTs, such as serotonin, melatonin, dopamine, acetylcholine, and γ-aminobutyric acid), and antioxidant defenses are not well explained. Thus, this review discusses recent advances in plant hormones, transgenic and metabolic developments, and the potential interaction of plant hormones with NTs in plant stress response and tolerance mechanisms. Furthermore, we discuss current challenges and future directions (transgenic breeding and genome editing) for metabolic improvement in plants using modern molecular tools. The interaction of plant hormones and NTs involved in regulating antioxidant defense systems, molecular hormone networks, and abiotic-induced oxidative stress tolerance in plants are also discussed.
Collapse
Affiliation(s)
- Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hajar Salehi
- Laboratory of Plant Cell Biology, Department of Biology, Bu-Ali Sina University, Hamedan, Iran
| | - Md Atikur Rahman
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, South Korea
| | - Zainab Zahid
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Maryam Madadkar Haghjou
- Department of Biology, Plant Physiology, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Shiva Najafi-Kakavand
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Hany S. Osman
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Mohammed Albaqami
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Yuhui Zhuang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Weijian Zhuang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
37
|
Li X, Xu S, Fuhrmann-Aoyagi MB, Yuan S, Iwama T, Kobayashi M, Miura K. CRISPR/Cas9 Technique for Temperature, Drought, and Salinity Stress Responses. Curr Issues Mol Biol 2022; 44:2664-2682. [PMID: 35735623 PMCID: PMC9221872 DOI: 10.3390/cimb44060182] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023] Open
Abstract
Global warming and climate change have severely affected plant growth and food production. Therefore, minimizing these effects is required for sustainable crop yields. Understanding the molecular mechanisms in response to abiotic stresses and improving agricultural traits to make crops tolerant to abiotic stresses have been going on unceasingly. To generate desirable varieties of crops, traditional and molecular breeding techniques have been tried, but both approaches are time-consuming. Clustered regularly interspaced short palindromic repeat/Cas9 (CRISPR/Cas9) and transcription activator-like effector nucleases (TALENs) are genome-editing technologies that have recently attracted the attention of plant breeders for genetic modification. These technologies are powerful tools in the basic and applied sciences for understanding gene function, as well as in the field of crop breeding. In this review, we focus on the application of genome-editing systems in plants to understand gene function in response to abiotic stresses and to improve tolerance to abiotic stresses, such as temperature, drought, and salinity stresses.
Collapse
Affiliation(s)
- Xiaohan Li
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; (X.L.); (S.X.); (M.B.F.-A.); (S.Y.); (T.I.); (M.K.)
| | - Siyan Xu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; (X.L.); (S.X.); (M.B.F.-A.); (S.Y.); (T.I.); (M.K.)
| | - Martina Bianca Fuhrmann-Aoyagi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; (X.L.); (S.X.); (M.B.F.-A.); (S.Y.); (T.I.); (M.K.)
| | - Shaoze Yuan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; (X.L.); (S.X.); (M.B.F.-A.); (S.Y.); (T.I.); (M.K.)
| | - Takeru Iwama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; (X.L.); (S.X.); (M.B.F.-A.); (S.Y.); (T.I.); (M.K.)
| | - Misaki Kobayashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; (X.L.); (S.X.); (M.B.F.-A.); (S.Y.); (T.I.); (M.K.)
| | - Kenji Miura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; (X.L.); (S.X.); (M.B.F.-A.); (S.Y.); (T.I.); (M.K.)
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba 305-8572, Japan
| |
Collapse
|
38
|
Genome–Wide Identification and Functional Characterization of Auxin Response Factor (ARF) Genes in Eggplant. Int J Mol Sci 2022; 23:ijms23116219. [PMID: 35682898 PMCID: PMC9181582 DOI: 10.3390/ijms23116219] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 01/04/2023] Open
Abstract
Auxin response factors (ARFs) are important plant transcription factors that are differentially expressed in response to auxin and various abiotic stresses. ARFs play important roles in mediating plant growth and stress responses; however, these factors have not been studied in eggplants. In this study, genome–wide identification and the functional analysis of the ARF gene family in eggplants (Solanum melongena L.) were performed. A total of 20 ARF (SmARF) genes were identified and phylogenetically classified into three groups. Our analysis revealed four functional domains and 10 motifs in these proteins. Subcellular localization showed that the SmARFs localized in the nucleus. To investigate the biological functions of the SmARFs under 2,4–D and salt stress treatments, quantitative real–time RT–PCR (qRT–PCR) was conducted. Most SmARF genes exhibited changes in expression in response to 2,4–D treatments in the flowers, especially SmARF4 and 7B. All SmARF genes quickly responded to salt stress, except SmARF17 and 19 in leaves, SmARF1A and 7B in roots, and SmARF2A, SmARF7B, and SmARF16B in stems. These results helped to elucidate the role of ARFs in auxin signaling under 2,4–D and salt stress in eggplants.
Collapse
|
39
|
Verma S, Negi NP, Pareek S, Mudgal G, Kumar D. Auxin response factors in plant adaptation to drought and salinity stress. PHYSIOLOGIA PLANTARUM 2022; 174:e13714. [PMID: 35560231 DOI: 10.1111/ppl.13714] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Salinity and drought stresses affect plant growth worldwide and limit crop production. Auxin is crucial in regulating plants' salinity and drought stress adaptative response. As a chemical messenger, auxin influences gene expression through a family of functionally distinct transcription factors, the DNA-binding AUXIN RESPONSE FACTORS (ARFs). Various studies have revealed the important roles of ARFs in regulating drought and salinity stress responses in plants. Different ARFs regulate soluble sugar content, promote root development, and maintain chlorophyll content under drought and saline stress conditions to help plants adapt to these stresses. The functional characterization of ARFs pertaining to the regulation of drought and salinity stress responses is still in its infancy. Interestingly, the small RNA-mediated post-transcriptional regulation of ARF expression has been shown to influence plant responses to both stresses. The current knowledge on the diverse roles of ARFs in conferring specificity to auxin-mediated drought and salinity stress responses has not been reviewed to date. In this review, we summarize the recent research concerning the role of ARFs in response to drought and salinity stresses: gene expression patterns, functional characterization, and post-transcriptional regulation under drought and salinity stresses. We have also reviewed the modulation of ARF expression by other molecular regulators in the context of drought and salt stress signaling.
Collapse
Affiliation(s)
- Swati Verma
- College of Horticulture and Forestry Thunag, Dr. Y. S. Parmar University of Horticulture and Forestry, Solan, India
| | - Neelam Prabha Negi
- University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Shalini Pareek
- School of Life Sciences, Jaipur National University, Jaipur, Rajasthan, India
| | - Gaurav Mudgal
- University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Deepak Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
40
|
Li X, Zhang X, Shi T, Chen M, Jia C, Wang J, Hou Z, Han J, Bian S. Identification of ARF family in blueberry and its potential involvement of fruit development and pH stress response. BMC Genomics 2022; 23:329. [PMID: 35477362 PMCID: PMC9047364 DOI: 10.1186/s12864-022-08556-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/12/2022] [Indexed: 12/13/2022] Open
Abstract
Background Auxin responsive factor (ARF) family is one of core components in auxin signalling pathway, which governs diverse developmental processes and stress responses. Blueberry is an economically important berry-bearing crop and prefers to acidic soil. However, the understandings of ARF family has not yet been reported in blueberry. Results In the present study, 60 ARF genes (VcARF) were identified in blueberry, and they showed diverse gene structures and motif compositions among the groups and similar within each group in the phylogenetic tree. Noticeably, 9 digenic, 5 trigenic and 6 tetragenic VcARF pairs exhibited more than 95% identity to each other. Computational analysis indicated that 23 VcARFs harbored the miRNA responsive element (MRE) of miR160 or miR167 like other plant ARF genes. Interestingly, the MRE of miR156d/h-3p was observed in the 5’UTR of 3 VcARFs, suggesting a potentially novel post-transcriptional control. Furthermore, the transcript accumulations of VcARFs were investigated during fruit development, and three categories of transcript profiles were observed, implying different functional roles. Meanwhile, the expressions of VcARFs to different pH conditions (pH4.5 and pH6.5) were surveyed in pH-sensitive and tolerant blueberry species, and a number of VcARFs showed different transcript accumulations. More importantly, distinct transcriptional response to pH stress (pH6.5) were observed for several VcARFs (such as VcARF6s and VcARF19-3/19–4) between pH-sensitive and tolerant species, suggesting their potential roles in adaption to pH stress. Conclusions Sixty VcARF genes were identified and characterized, and their transcript profiles were surveyed during fruit development and in response to pH stress. These findings will contribute to future research for eliciting the functional roles of VcARFs and regulatory mechanisms, especially fruit development and adaption to pH stress. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08556-y.
Collapse
Affiliation(s)
- Xuyan Li
- College of Plant Science, Jilin University, Changchun, China
| | - Xiaoyi Zhang
- College of Plant Science, Jilin University, Changchun, China
| | - Tianran Shi
- College of Plant Science, Jilin University, Changchun, China
| | - Min Chen
- College of Plant Science, Jilin University, Changchun, China
| | - Chengguo Jia
- College of Plant Science, Jilin University, Changchun, China
| | - Jingying Wang
- College of Plant Science, Jilin University, Changchun, China
| | - Zhixia Hou
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Research & Development Center of Blueberry, Beijing, 100083, China
| | - Junyou Han
- College of Plant Science, Jilin University, Changchun, China.
| | - Shaomin Bian
- College of Plant Science, Jilin University, Changchun, China.
| |
Collapse
|
41
|
Tang Y, Li H, Liu C, He Y, Wang H, Zhao T, Xu X, Li J, Yang H, Jiang J. CRISPR-Cas9-mediated mutagenesis of the SlSRM1-like gene leads to abnormal leaf development in tomatoes. BMC PLANT BIOLOGY 2022; 22:13. [PMID: 34979927 PMCID: PMC8722279 DOI: 10.1186/s12870-021-03397-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Leaves, which are the most important organs of plants, can not only fix carbon sources through photosynthesis, but also absorb nutrients through transpiration. Leaf development directly determines the growth, flowering and fruiting of plants. There are many factors that affect leaf development, such as the growth environment, gene expression, and hormone synthesis. In this study, tomatoes were used to study the role of the transcription factor Solanum lycopersicum salt-related MYB1-like (SlSRM1-like) in the development of tomato leaves. RESULTS Loss-of-function of the SlSRM1-like gene mediated by clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated 9 (Cas9) resulted in abnormal tomato leaf morphology, including thinner leaves, wrinkled edges, raised veins, disordered edge veins, and left and right asymmetry. An analysis of the transcription levels of genes related to leaf development revealed that the expression of these genes was significantly altered in the SlSRM1-like mutants (SlSRM1-like-Ms). Moreover, the SlSRM1-like gene was expressed at higher transcription levels in young tissues than in old tissues, and its expression was also induced in response to auxin. In addition, the transcription levels of genes related to the auxin pathway, which regulates tomato growth and development, were severely affected in the SlSRM1-like-Ms. Therefore, it is hypothesized that the SlSRM1-like gene functions in the regulation of tomato leaf development through the auxin-related pathway. CONCLUSIONS In this study, we successfully knocked out the SlSRM1-like gene in the tomato variety Ailsa Craig using CRISPR technology and found that knockout of the SlSRM1-like gene resulted in abnormal development of tomato leaves. Further research indicated that SlSRM1-like regulated tomato leaf development through auxin-related pathways. The results provide an important reference for the functional study of other SRM1-like genes in plants and provide new insights into the regulation of leaf development in tomato and other plants.
Collapse
Affiliation(s)
- Yao Tang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 Heilongjiang Province China
| | - Huijia Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 Heilongjiang Province China
| | - Chunxin Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 Heilongjiang Province China
| | - Yuqing He
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 Heilongjiang Province China
| | - Hexuan Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 Heilongjiang Province China
| | - Tingting Zhao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 Heilongjiang Province China
| | - Xiangyang Xu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 Heilongjiang Province China
| | - Jingfu Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 Heilongjiang Province China
| | - Huanhuan Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 Heilongjiang Province China
| | - Jingbin Jiang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 Heilongjiang Province China
| |
Collapse
|