1
|
Wang J, Wang Y, Xu X, Song C, Zhou Y, Xue D, Feng Z, Zhou Y, Li X. Low methyl-esterified ginseng homogalacturonan pectins promote longevity of Caenorhabditis elegans via impairing insulin/IGF-1 signalling. Carbohydr Polym 2024; 346:122600. [PMID: 39245488 DOI: 10.1016/j.carbpol.2024.122600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024]
Abstract
Panax ginseng C. A. Meyer (ginseng) is a medicinal plant widely used for promoting longevity. Recently, homogalacturonan (HG) domain-rich pectins purified from some plants have been reported to have anti-aging-related activities, leading us to explore the longevity-promoting activity of the HG pectins from ginseng. In this study, we discovered that two of low methyl-esterified ginseng HG pectins (named as WGPA-2-HG and WGPA-3-HG), whose degree of methyl-esterification (DM) was 16 % and 8 % respectively, promoted longevity in Caenorhabditis elegans. Results showed that WGPA-2-HG/WGPA-3-HG impaired insulin/insulin-like growth factor 1 (IGF-1) signalling (IIS) pathway, thereby increasing the nuclear accumulation of transcription factors SKN-1/Nrf2 and DAF-16/FOXO and enhancing the expression of relevant anti-aging genes. BLI and ITC analysis showed that the insulin-receptor binding, the first step to activate IIS pathway, was impeded by the engagement of WGPA-2-HG/WGPA-3-HG with insulin. By chemical modifications, we found that high methyl-esterification of WGPA-2-HG/WGPA-3-HG was detrimental for their longevity-promoting activity. These findings provided novel insight into the precise molecular mechanism for the longevity-promoting effect of ginseng pectins, and suggested a potential to utilize the ginseng HG pectins with appropriate DM values as natural nutrients for increasing human longevity.
Collapse
Affiliation(s)
- Jiayi Wang
- Engineering Research Center of Glycoconjugates of the Ministry of Education, The Key Laboratory of Molecular Epigenetics of the Ministry of Education, School of Life Science, Northeast Normal University, Changchun 130024, China; School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China
| | - Yuan Wang
- Engineering Research Center of Glycoconjugates of the Ministry of Education, The Key Laboratory of Molecular Epigenetics of the Ministry of Education, School of Life Science, Northeast Normal University, Changchun 130024, China
| | - Xuejiao Xu
- Engineering Research Center of Glycoconjugates of the Ministry of Education, The Key Laboratory of Molecular Epigenetics of the Ministry of Education, School of Life Science, Northeast Normal University, Changchun 130024, China
| | - Chengcheng Song
- Engineering Research Center of Glycoconjugates of the Ministry of Education, The Key Laboratory of Molecular Epigenetics of the Ministry of Education, School of Life Science, Northeast Normal University, Changchun 130024, China
| | - Yuwei Zhou
- Engineering Research Center of Glycoconjugates of the Ministry of Education, The Key Laboratory of Molecular Epigenetics of the Ministry of Education, School of Life Science, Northeast Normal University, Changchun 130024, China
| | - Dongxue Xue
- Engineering Research Center of Glycoconjugates of the Ministry of Education, The Key Laboratory of Molecular Epigenetics of the Ministry of Education, School of Life Science, Northeast Normal University, Changchun 130024, China
| | - Zhangkai Feng
- Engineering Research Center of Glycoconjugates of the Ministry of Education, The Key Laboratory of Molecular Epigenetics of the Ministry of Education, School of Life Science, Northeast Normal University, Changchun 130024, China
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates of the Ministry of Education, The Key Laboratory of Molecular Epigenetics of the Ministry of Education, School of Life Science, Northeast Normal University, Changchun 130024, China
| | - Xiaoxue Li
- Engineering Research Center of Glycoconjugates of the Ministry of Education, The Key Laboratory of Molecular Epigenetics of the Ministry of Education, School of Life Science, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
2
|
Wang Y, Cao X, Ma J, Liu S, Jin X, Liu B. Unveiling the Longevity Potential of Natural Phytochemicals: A Comprehensive Review of Active Ingredients in Dietary Plants and Herbs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24908-24927. [PMID: 39480905 PMCID: PMC11565747 DOI: 10.1021/acs.jafc.4c07756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
Ancient humans used dietary plants and herbs to treat disease and to pursue eternal life. Today, phytochemicals in dietary plants and herbs have been shown to be the active ingredients, some of which have antiaging and longevity-promoting effects. Here, we summarize 210 antiaging phytochemicals in dietary plants and herbs, systematically classify them into 8 groups. We found that all groups of phytochemicals can be categorized into six areas that regulate organism longevity: ROS levels, nutrient sensing network, mitochondria, autophagy, gut microbiota, and lipid metabolism. We review the role of these processes in aging and the molecular mechanism of the health benefits through phytochemical-mediated regulation. Among these, how phytochemicals promote longevity through the gut microbiota and lipid metabolism is rarely highlighted in the field. Our understanding of the mechanisms of phytochemicals based on the above six aspects may provide a theoretical basis for the further development of antiaging drugs and new insights into the promotion of human longevity.
Collapse
Affiliation(s)
- Yu Wang
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiuling Cao
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Jin Ma
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Shenkui Liu
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Xuejiao Jin
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Beidong Liu
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg 41390, Sweden
| |
Collapse
|
3
|
Eom SY, Kim MM. The effect of IGFBP3 gene knockout by the CRISPR/Cas9 system on the IGF-1 pathway in murine cells. Arch Gerontol Geriatr 2024; 125:105484. [PMID: 38838451 DOI: 10.1016/j.archger.2024.105484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND The IGF-1 signaling pathway has been deeply involved in the aging mechanism. The insulin-like growth factor binding protein 3 (IGFBP-3) is a protein that binds to IGF-1 that regulates growth, survival, and aging. OBJECTIVE The purpose of this study was to investigate the impact of the IGFBP3 gene knockout (KO) on the expressions of aging-related proteins and genes using the CRISPR/Cas9 system. METHODS The IGFBP3 gene knockout (KO) was performed by the CRISPR/Cas9 system. Sanger DNA sequencing and Indel analyses were used to verify the induction of mutation. RESULTS First, Sanger DNA sequencing was used to analyze the IGFBP3 gene knockout in murine cells (B16F1). The isolation of three colonies with the mutated DNA sequences in the IGFBP3 gene was validated. In addition, the expression levels of the IGFBP3 gene and protein in the edited B16F1 cells were lower than in those of normal B16F1 cells in western blot analysis as well as RT-PCR and qPCR. Moreover, IGFBP3 gene KO cells enhanced the level of SA-ß-gal staining and short telomere length compared to normal B16F1 cells. In particular, it was found that the expression levels of senescence-related proteins such as PI3K, AKT1, PDK1, and p53 were higher in IGFBP3 gene KO cells than in normal cells in both the absence and presence of IGF-1. CONCLUSIONS Therefore, the above findings could provide a clue that IGFBP3 could play a key role in the aging mechanism.
Collapse
Affiliation(s)
- Su Yeon Eom
- Department of Applied Chemistry Food Science and Technology, Dong-Eui University, Busan 614-714, Republic of Korea
| | - Moon-Moo Kim
- Department of Applied Chemistry, Dong-Eui University, Busan 614-714, Republic of Korea.
| |
Collapse
|
4
|
Wang S, Yang C, Luo Y, Chen Q, Xu M, Ji Y, Jiang X, Qu C. Poplar Bud ( Populus) Extraction and Chinese Propolis Counteract Oxidative Stress in Caenorhabditis elegans via Insulin/IGF-1 Signaling Pathway. Antioxidants (Basel) 2024; 13:860. [PMID: 39061928 PMCID: PMC11274317 DOI: 10.3390/antiox13070860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Poplar buds are characterized by a high content of phenolic compounds, which exhibit a broad spectrum of biological activities. However, the relationship between Chinese propolis and poplar buds based on their antioxidant capacities and underlying mechanisms remains unclear. This study aimed to investigate the antioxidant properties of poplar bud (Populus) extract (PBE) and Chinese propolis (CP) and to elucidate the mechanisms behind their activity. High-performance liquid chromatography (HPLC) analysis revealed that both PBE and CP contain a significant amount of phenolic acids and flavonoids. 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and ferric-reducing antioxidant power (FRAP) assays demonstrated that PBE and CP possess excellent antioxidant activity. Furthermore, administration of PBE and CP improved the survival rate of C. elegans under oxidative stress. They also decreased the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), while enhancing the activity of antioxidant enzymes (SOD, CAT). PBE and CP intervention upregulated the expression of key genes daf-16, sod-3, hsp-16.2, and skn-1 in nematodes. This suggests that the antioxidant activity of PBE and CP is dependent on daf-16 and skn-1 signaling pathways. In conclusion, poplar bud extracts ha have the potential to become a substitute for propolis and a potential therapeutic agent for treating diseases associated with oxidative damage.
Collapse
Affiliation(s)
- Shuo Wang
- Engineering Technology Research Center of Anti-Aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang 236000, China
| | - Chengchao Yang
- Liaoning Provincial Institute of Poplar, Gaizhou 115200, China
| | - Yaling Luo
- Engineering Technology Research Center of Anti-Aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang 236000, China
| | - Qingyi Chen
- Engineering Technology Research Center of Anti-Aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang 236000, China
| | - Mengyang Xu
- Engineering Technology Research Center of Anti-Aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang 236000, China
| | - Yuntao Ji
- Engineering Technology Research Center of Anti-Aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang 236000, China
| | - Xiasen Jiang
- Engineering Technology Research Center of Anti-Aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang 236000, China
| | - Changqing Qu
- Engineering Technology Research Center of Anti-Aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang 236000, China
| |
Collapse
|
5
|
Zhao XR, Zhao DT, Zhang LY, Chang JH, Cui JH. Combining transcriptome and metabolome analysis to understand the response of sorghum to Melanaphis sacchari. BMC PLANT BIOLOGY 2024; 24:529. [PMID: 38862926 PMCID: PMC11165916 DOI: 10.1186/s12870-024-05229-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND The sorghum aphid Melanaphis sacchari (Zehntner) (Homoptera: Aphididae) is an important insect in the late growth phase of sorghum (Sorghum bicolor L.). However, the mechanisms of sorghum response to aphid infestation are unclear. RESULTS In this paper, the mechanisms of aphid resistance in different types of sorghum varieties were revealed by studying the epidermal cell structure and performing a transcriptome and metabolome association analysis of aphid-resistant and aphid-susceptible varieties. The epidermal cell results showed that the resistance of sorghum to aphids was positively correlated with epidermal cell regularity and negatively correlated with the intercellular space and leaf thickness. Transcriptome and metabolomic analyses showed that differentially expressed genes in the resistant variety HN16 and susceptible variety BTX623 were mainly enriched in the flavonoid biosynthesis pathway and differentially expressed metabolites were mainly related to isoflavonoid biosynthesis and flavonoid biosynthesis. The q-PCR results of key genes were consistent with the transcriptome expression results. Meanwhile, the metabolome test results showed that after aphidinfestation, naringenin and genistein were significantly upregulated in the aphid-resistant variety HN16 and aphid-susceptible variety BTX623 while luteolin was only significantly upregulated in BTX623. These results show that naringenin, genistein, and luteolin play important roles in plant resistance to aphid infestation. The results of exogenous spraying tests showed that a 1‰ concentration of naringenin and genistein is optimal for improving sorghum resistance to aphid feeding. CONCLUSIONS In summary, the physical properties of the sorghum leaf structure related to aphid resistance were studied to provide a reference for the breeding of aphid-resistant varieties. The flavonoid biosynthesis pathway plays an important role in the response of sorghum aphids and represents an important basis for the biological control of these pests. The results of the spraying experiment provide insights for developing anti-aphid substances in the future.
Collapse
Affiliation(s)
- Xin-Rui Zhao
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Baoding, 071000, China
| | - Dong-Ting Zhao
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Baoding, 071000, China
| | - Ling-Yu Zhang
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Baoding, 071000, China
| | - Jin-Hua Chang
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, China.
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Baoding, 071000, China.
| | - Jiang-Hui Cui
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, China.
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Baoding, 071000, China.
| |
Collapse
|
6
|
Yin F, Zhou Y, Xie D, Liang Y, Luo X. Evaluating the adverse effects and mechanisms of nanomaterial exposure on longevity of C. elegans: A literature meta-analysis and bioinformatics analysis of multi-transcriptome data. ENVIRONMENTAL RESEARCH 2024; 247:118106. [PMID: 38224941 DOI: 10.1016/j.envres.2024.118106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024]
Abstract
Exposure to large-size particulate air pollution (PM2.5 or PM10) has been reported to increase risks of aging-related diseases and human death, indicating the potential pro-aging effects of airborne nanomaterials with ultra-fine particle size (which have been widely applied in various fields). However, this hypothesis remains inconclusive. Here, a meta-analysis of 99 published literatures collected from electronic databases (PubMed, EMBASE and Cochrane Library; from inception to June 2023) was performed to confirm the effects of nanomaterial exposure on aging-related indicators and molecular mechanisms in model animal C. elegans. The pooled analysis by Stata software showed that compared with the control, nanomaterial exposure significantly shortened the mean lifespan [standardized mean difference (SMD) = -2.30], reduced the survival rate (SMD = -4.57) and increased the death risk (hazard ratio = 1.36) accompanied by upregulation of ced-3, ced-4 and cep-1, while downregulation of ctl-2, ape-1, aak-2 and pmk-1. Furthermore, multi-transcriptome data associated with nanomaterial exposure were retrieved from Gene Expression Omnibus (GSE32521, GSE41486, GSE24847, GSE59470, GSE70509, GSE14932, GSE93187, GSE114881, and GSE122728) and bioinformatics analyses showed that pseudogene prg-2, mRNAs of abu, car-1, gipc-1, gsp-3, kat-1, pod-2, acdh-8, hsp-60 and egrh-2 were downregulated, while R04A9.7 was upregulated after exposure to at least two types of nanomaterials. Resveratrol (abu, hsp-60, pod-2, egrh-2, acdh-8, gsp-3, car-1, kat-1, gipc-1), naringenin (kat-1, egrh-2), coumestrol (egrh-2) or swainsonine/niacin/ferulic acid (R04A9.7) exerted therapeutic effects by reversing the expression levels of target genes. In conclusion, our study demonstrates the necessity to use phytomedicines that target hub genes to delay aging for populations with nanomaterial exposure.
Collapse
Affiliation(s)
- Fei Yin
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China
| | - Yang Zhou
- School of Textile Science and Engineering/National Engineering Laboratory for Advanced Yarn and Clean Production, Wuhan Textile University, Wuhan, 430200, China.
| | - Dongli Xie
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China
| | - Yunxia Liang
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China.
| | - Xiaogang Luo
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China.
| |
Collapse
|
7
|
Barathikannan K, Chelliah R, Vinothkanna A, Prathiviraj R, Tyagi A, Vijayalakshmi S, Lim MJ, Jia AQ, Oh DH. Untargeted metabolomics-based network pharmacology reveals fermented brown rice towards anti-obesity efficacy. NPJ Sci Food 2024; 8:20. [PMID: 38555366 PMCID: PMC10981755 DOI: 10.1038/s41538-024-00258-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/14/2024] [Indexed: 04/02/2024] Open
Abstract
There is a substantial rise in the global incidence of obesity. Brown rice contains metabolic substances that can help minimize the prevalence of obesity. This study evaluated nine brown rice varieties using probiotic fermentation using Pediococcus acidilacti MNL5 to enhance bioactive metabolites and their efficacy. Among the nine varieties, FBR-1741 had the highest pancreatic lipase inhibitory efficacy (87.6 ± 1.51%), DPPH assay (358.5 ± 2.80 mg Trolox equiv./100 g, DW), and ABTS assay (362.5 ± 2.32 mg Trolox equiv./100 g, DW). Compared to other fermented brown rice and FBR-1741 varieties, UHPLC-Q-TOF-MS/MS demonstrated significant untargeted metabolite alterations. The 17 most abundant polyphenolic metabolites in the FBR-1741 variety and 132 putative targets were assessed for obesity-related target proteins, and protein interaction networks were constructed using the Cystoscope software. Network pharmacology analysis validated FBR-1741 with active metabolites in the C. elegans obesity-induced model. Administration of FBR-1741 with ferulic acid improved lifespan decreased triglycerides, and suppressed the expression of fat-related genes. The enhanced anti-obesity properties of FBR-1741 suggest its implementation in obesity-functional food.
Collapse
Affiliation(s)
- Kaliyan Barathikannan
- Agricultural and Life Science Research Institute, Kangwon National University, Chuncheon, 24341, Korea
- Saveetha School of Engineering, Saveetha (SIMATS) University, Tamil Nadu, 600124, India
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
- Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon, 24341, South Korea
| | - Annadurai Vinothkanna
- School of Life Sciences, Hainan University, 570228, Haikou, China
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, 570311, Haikou, China
| | | | - Akanksha Tyagi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Selvakumar Vijayalakshmi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Min-Jin Lim
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Ai-Qun Jia
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, 570311, Haikou, China
| | - Deog- Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 200-701, South Korea.
| |
Collapse
|
8
|
Du N, Yang R, Jiang S, Niu Z, Zhou W, Liu C, Gao L, Sun Q. Anti-Aging Drugs and the Related Signal Pathways. Biomedicines 2024; 12:127. [PMID: 38255232 PMCID: PMC10813474 DOI: 10.3390/biomedicines12010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/16/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Aging is a multifactorial biological process involving chronic diseases that manifest from the molecular level to the systemic level. From its inception to 31 May 2022, this study searched the PubMed, Web of Science, EBSCO, and Cochrane library databases to identify relevant research from 15,983 articles. Multiple approaches have been employed to combat aging, such as dietary restriction (DR), exercise, exchanging circulating factors, gene therapy, and anti-aging drugs. Among them, anti-aging drugs are advantageous in their ease of adherence and wide prevalence. Despite a shared functional output of aging alleviation, the current anti-aging drugs target different signal pathways that frequently cross-talk with each other. At present, six important signal pathways were identified as being critical in the aging process, including pathways for the mechanistic target of rapamycin (mTOR), AMP-activated protein kinase (AMPK), nutrient signal pathway, silent information regulator factor 2-related enzyme 1 (SIRT1), regulation of telomere length and glycogen synthase kinase-3 (GSK-3), and energy metabolism. These signal pathways could be targeted by many anti-aging drugs, with the corresponding representatives of rapamycin, metformin, acarbose, nicotinamide adenine dinucleotide (NAD+), lithium, and nonsteroidal anti-inflammatory drugs (NSAIDs), respectively. This review summarized these important aging-related signal pathways and their representative targeting drugs in attempts to obtain insights into and promote the development of mechanism-based anti-aging strategies.
Collapse
Affiliation(s)
- Nannan Du
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
| | - Ruigang Yang
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
- Nanhu Laboratory, Jiaxing 314002, China
| | - Shengrong Jiang
- The Meta-Center, 29 Xierqi Middle Rd, Beijing 100193, China;
| | - Zubiao Niu
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
- Nanhu Laboratory, Jiaxing 314002, China
| | - Wenzhao Zhou
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
| | - Chenyu Liu
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Lihua Gao
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
| | - Qiang Sun
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
- Nanhu Laboratory, Jiaxing 314002, China
| |
Collapse
|
9
|
Loo J, Shah Bana MAF, Tan JK, Goon JA. Effect of dietary restriction on health span in Caenorhabditis elegans: A systematic review. Exp Gerontol 2023; 182:112294. [PMID: 37730186 DOI: 10.1016/j.exger.2023.112294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/03/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
Dietary restriction (DR) interventions have demonstrated their efficacy in extending lifespan; however, the association between lifespan extension and health span remains unclear. This article aims to analyze the relationship between DR-induced lifespan and health span in Caenorhabditis elegans (C. elegans), a widely used animal model in lifespan studies. By examining various parameters such as lipofuscin accumulation (an aging marker) and locomotor and feeding capacities (indicators of muscle degradation rate), we have compiled papers that investigate and report on these DR-induced effects.The majority of the papers reviewed consistently demonstrate that DR improves both lifespan and health span in C. elegans. Worms subjected to DR exhibit slower lipofuscin accumulation compared to those fed ad libitum, indicating a reduction in age-related cellular damage. Additionally, DR-treated worms display a higher locomotion capacity, suggesting a slower rate of muscle degradation. However, it is worth noting that there are some discrepancies among the papers regarding feeding capacity. These contradictions can be attributed to the different methods employed to initiate DR. While many approaches slow muscle degeneration and enhance pumping rates through adaptation to limited food sources, other methods, such as using eat-2 mutant worms or interventions that mimic the effects of eat-2, reduce feeding capacity and consequently restrict food intake. In conclusion, the findings suggest a strong correlation between DR-induced longevity and the extension of health span in C. elegans, as evidenced by improvements in various health span parameters. DR interventions not only extend lifespan but also mitigate age-related markers and preserve locomotor capacity. Although conflicting results are observed regarding feeding capacity, the overall evidence supports the notion that DR promotes healthier aging in this animal model.
Collapse
Affiliation(s)
- Jazween Loo
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.
| | | | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Jo Aan Goon
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
10
|
Varela-López A, Romero-Márquez JM, Navarro-Hortal MD, Ramirez-Tortosa CL, Battino M, Forbes-Hernández TY, Quiles JL. Dietary antioxidants and lifespan: Relevance of environmental conditions, diet, and genotype of experimental models. Exp Gerontol 2023; 178:112221. [PMID: 37230336 DOI: 10.1016/j.exger.2023.112221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
The rise of life expectancy in current societies is not accompanied, to date, by a similar increase in healthspan, which represents a great socio-economic problem. It has been suggested that aging can be manipulated and then, the onset of all age-associated chronic disorders can be delayed because these pathologies share age as primary underlying risk factor. One of the most extended ideas is that aging is consequence of the accumulation of molecular damage. According to the oxidative damage theory, antioxidants should slow down aging, extending lifespan and healthspan. The present review analyzes studies evaluating the effect of dietary antioxidants on lifespan of different aging models and discusses the evidence on favor of their antioxidant activity as anti-aging mechanisms. Moreover, possible causes for differences between the reported results are evaluated.
Collapse
Affiliation(s)
- Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Avda del Conocimiento s/n, Parque Tecnologico de la Salud, Armilla, Granada 18016, Spain
| | - José M Romero-Márquez
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Avda del Conocimiento s/n, Parque Tecnologico de la Salud, Armilla, Granada 18016, Spain
| | - María D Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Avda del Conocimiento s/n, Parque Tecnologico de la Salud, Armilla, Granada 18016, Spain
| | | | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Tamara Y Forbes-Hernández
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Avda del Conocimiento s/n, Parque Tecnologico de la Salud, Armilla, Granada 18016, Spain
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Avda del Conocimiento s/n, Parque Tecnologico de la Salud, Armilla, Granada 18016, Spain; Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain; Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, 18016 Granada, Spain.
| |
Collapse
|
11
|
Pang X, Mao L, Ye D, Wang W, Yang H, Fan X, Yang Y, Su Z, Ma T, Sun M, Liu Y. Synthesis, anti-aging and mechanism of magnolol derivatives. Front Chem 2023; 11:1180375. [PMID: 37288076 PMCID: PMC10242077 DOI: 10.3389/fchem.2023.1180375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/27/2023] [Indexed: 06/09/2023] Open
Abstract
Magnolol (M), a hydroquinone containing an allyl side chain, is one of the major active components of Houpoea officinalis for antioxidation and anti-aging. To enhance the antioxidant activity of magnolol, the different sites of magnolol were structurally modified in this experiment, and a total of 12 magnolol derivatives were obtained. Based on the preliminary exploration of the anti-aging effect of magnolol derivatives in a Caenorhabditis elegans (C. elegans) model. Our results indicate that the active groups of magnolol exerting anti-aging effects were allyl groups and hydroxyl on the phenyl. Meanwhile, the anti-aging effect of the novel magnolol derivative M27 was found to be significantly superior to that of magnolol. To investigate the effect of M27 on senescence and the potential mechanism of action, we investigated the effect of M27 on senescence in C. elegans. In this study, we investigated the effect of M27 on C. elegans physiology by examining body length, body curvature and pharyngeal pumping frequency. The effect of M27 on stress resistance in C. elegans was explored by acute stress experiments. The mechanism of M27 anti-aging was investigated by measuring ROS content, DAF-16 nuclear translocation, sod-3 expression, and lifespan of transgenic nematodes. Our results indicate that M27 prolonged the lifespan of C. elegans. Meanwhile, M27 improved the healthy lifespan of C. elegans by improving pharyngeal pumping ability and reducing lipofuscin accumulation in C. elegans. M27 increased resistance to high temperature and oxidative stress in C. elegans by reducing ROS. M27 induced DAF-16 translocation from cytoplasm to nucleus in transgenic TJ356 nematodes and upregulated the expression of sod-3 (a gene downstream of DAF-16) in CF1553 nematodes. Furthermore, M27 did not extend the lifespan of daf-16, age-1, daf-2, and hsp-16.2 mutants. This work suggests that M27 may ameliorate aging and extend lifespan in C. elegans through the IIS pathway.
Collapse
Affiliation(s)
- Xinxin Pang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Li Mao
- Beijing Tide Pharmaceutical Co, Ltd., Beijing Econnomi Technological Development Area (BDA), Beijing, China
| | - Danyang Ye
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wenqi Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hongliu Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoxiao Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuping Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhijun Su
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Tao Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Mingqian Sun
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yonggang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
12
|
Ma J, Wang YT, Chen LH, Yang BY, Jiang YZ, Wang LX, Chen ZQ, Ma GR, Fang LQ, Wang ZB. Dauer larva-derived extracellular vesicles extend the life of Caenorhabditis elegans. Biogerontology 2023:10.1007/s10522-023-10030-5. [PMID: 37052773 PMCID: PMC10267011 DOI: 10.1007/s10522-023-10030-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023]
Abstract
There is growing evidence that extracellular vesicles (EVs) play a functional role in tissue repair and anti-aging by transferring the contents of donor cells to recipient cells. We hypothesized that Dauer (C. elegans), known as "ageless" nematodes, can also secrete extracellular vesicles and influence the lifespan of C. elegans. Here, we isolated EVs of dauer larvae (dauer EVs). Dauer EVs were characterized using transmission electron microscopy, nanoparticle tracking analysis (NTA), and Western blot analysis. Wild-type C. elegans were fed in the presence or absence of dauer EVs and tested for a range of phenotypes, including longevity, mobility and reproductive capacity. Results showed that dauer EVs increased the average lifespan of nematodes by 15.74%, improved mobility, slowed age-related pigmentation as well as body length, and reduced the accumulation of reactive oxygen species and lipids, while not impairing nematode reproductive capacity. These findings suggest that dauer EVs can extend the lifespan of C. elegans as well as the healthy lifespan by reducing ROS accumulation, with potential anti-aging capacity.
Collapse
Affiliation(s)
- Jing Ma
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Yi-Ting Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Ling-Hui Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Bang-Ya Yang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Yong-Zhu Jiang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Lan-Xi Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Zhi-Qi Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Guan-Rong Ma
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Liao-Qiong Fang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
- National Engineering Research Center of Ultrasound Medicine, Chongqing, 401121, China.
| | - Zhi-Biao Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
- National Engineering Research Center of Ultrasound Medicine, Chongqing, 401121, China.
| |
Collapse
|
13
|
Metabolic landscape in cardiac aging: insights into molecular biology and therapeutic implications. Signal Transduct Target Ther 2023; 8:114. [PMID: 36918543 PMCID: PMC10015017 DOI: 10.1038/s41392-023-01378-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Cardiac aging is evident by a reduction in function which subsequently contributes to heart failure. The metabolic microenvironment has been identified as a hallmark of malignancy, but recent studies have shed light on its role in cardiovascular diseases (CVDs). Various metabolic pathways in cardiomyocytes and noncardiomyocytes determine cellular senescence in the aging heart. Metabolic alteration is a common process throughout cardiac degeneration. Importantly, the involvement of cellular senescence in cardiac injuries, including heart failure and myocardial ischemia and infarction, has been reported. However, metabolic complexity among human aging hearts hinders the development of strategies that targets metabolic susceptibility. Advances over the past decade have linked cellular senescence and function with their metabolic reprogramming pathway in cardiac aging, including autophagy, oxidative stress, epigenetic modifications, chronic inflammation, and myocyte systolic phenotype regulation. In addition, metabolic status is involved in crucial aspects of myocardial biology, from fibrosis to hypertrophy and chronic inflammation. However, further elucidation of the metabolism involvement in cardiac degeneration is still needed. Thus, deciphering the mechanisms underlying how metabolic reprogramming impacts cardiac aging is thought to contribute to the novel interventions to protect or even restore cardiac function in aging hearts. Here, we summarize emerging concepts about metabolic landscapes of cardiac aging, with specific focuses on why metabolic profile alters during cardiac degeneration and how we could utilize the current knowledge to improve the management of cardiac aging.
Collapse
|
14
|
Abedi H, Zarrin-Mehr A, Ebrahimi B, Haghshenas H, Parvin N, Kargar Jahromi H. The effect of aqueous extract of orchid root on the structure of ovary and hypothalamic-pituitary-gonadal hormones in polycystic ovary syndrome rat model: An experimental study. Int J Reprod Biomed 2023; 22:203-210. [PMID: 38868447 PMCID: PMC11165220 DOI: 10.18502/ijrm.v22i3.16164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/25/2023] [Accepted: 02/19/2024] [Indexed: 06/14/2024] Open
Abstract
Background Some medical conditions, including polycystic ovarian syndrome (PCOs), may lead to infertility. In PCOs, hormonal imbalance is significant. Antioxidants such as natural antioxidants have many health benefits, including positive effects on hormone production. Objective Since herbal medicines are more acceptable to people, the present study was designed to evaluate the effect of an aqueous extract of orchid (SA), with antioxidative effects, on the structure of the ovary and the hypothalamic-pituitary-gonadal axis hormones and free testosterone in PCOs rats. Materials and Methods In this experimental study, 64 healthy female Wistar rats (180-200 gr) were randomly divided into 60 and 89 day control groups, PCOs, and 4 PCOs + SA groups that received 40, 80, 160, and 320 mg/kg of SA. Serum levels of gonadotropin-releasing hormone, estrogen, progesterone, testosterone, follicle-stimulating hormone, and luteinizing hormone were measured. In addition, the ovaries were extracted and examined histologically. Results The amount of primordial, primary, secondary, and Graafian follicles and serum levels of follicle-stimulating hormone and progesterone hormones decreased in PCOs groups, while atretic follicles and the serum levels of gonadotropin-releasing hormone, luteinizing hormone, estrogen, and free testosterone were increased. SA at different doses regulated hormonal and histological imbalances caused by PCOs, and 320 mg/kg was the most effective. Conclusion The aqueous extract of orchids root can have a positive effect on the improvement of polycystic ovary syndrome. This effect can be achieved by regulating the level of sex hormones and correcting follicular abnormalities in the ovarian tissue.
Collapse
Affiliation(s)
- Hassanali Abedi
- Research Center for Noncommunicable Disease, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Armin Zarrin-Mehr
- Student Research Committee, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Bahareh Ebrahimi
- Shiraz Geriatric Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hoda Haghshenas
- Student Research Committee, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Negar Parvin
- Student Research Committee, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Hossein Kargar Jahromi
- Research Center for Noncommunicable Disease, Jahrom University of Medical Sciences, Jahrom, Iran
| |
Collapse
|
15
|
Yen PL, Yang CR, Huang ML, Lin TA, Liao VHC. Chronic exposure to di(2-ethylhexyl) phthalate (DEHP) weakens innate immunity and leads to immunosenescence in C. elegans. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104071. [PMID: 36690191 DOI: 10.1016/j.etap.2023.104071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP), a widespread contaminant, has numerous adverse impacts on human health and ecosystems. Chronic DEHP exposure has been found to accelerate aging; however, its potential threat to age-dependent innate immune decline remains unknown. This study aims to evaluate the effects of chronic DEHP exposure on innate immunosenescence in Caenorhabditis elegans. We show that the length of the exposure period significantly impacts DEHP-induced age-related declines, which is linked to immunosenescence and oxidative stress. We found that the DEHP-caused immunosenescence is accompanied with downregulation of an antimicrobial gene lys-7 as well as an enhancement of the nuclear translocation of HLH-30, an orthologue of mammalian transcription factor EB (TFEB). Moreover, DEHP exposure increases the expression of riok-1, a human RIO kinase homolog, which is associated with DEHP-induced HLH-30/TFEB translocation. Our findings suggest that early-life and chronic exposure to DEHP, mostly due to parent compound rather than its metabolite mono(2-ethylhexyl) phthalate (MEHP), may weaken the innate immunity in C. elegans and may enhance susceptibility to infections or promote immunosenescence in aged populations.
Collapse
Affiliation(s)
- Pei-Ling Yen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Cai-Ru Yang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Mei-Lun Huang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Ting-An Lin
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
16
|
Yang W, Xia W, Zheng B, Li T, Liu RH. DAF-16 is involved in colonic metabolites of ferulic acid-promoted longevity and stress resistance of Caenorhabditis elegans. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:7017-7029. [PMID: 35689482 DOI: 10.1002/jsfa.12063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/11/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Ferulic acid (FA) is a dietary polyphenol widely found in plant tissues. It has long been considered to have health-promoting qualities. However, the biological properties of dietary polyphenols depend largely on their absorption during digestion, and the effects of their intestinal metabolites on human health have attracted the interest of researchers. This study evaluated the effects of three main colonic metabolites of FA - 3-(3,4-dihydroxyphenyl)propionic acid (3,4diOHPPA), 3-(3-hydroxyphenyl)propionic acid (3OHPPA) and 3-phenylpropionic acid (3PPA) - on longevity and stress resistance in Caenorhabditis elegans. RESULTS Our results showed that 3,4diOHPPA, 3OHPPA and 3PPA extended the lifespan under normal conditions in C. elegans whereas FA did not. High doses of 3,4diOHPPA (0.5 mmol L-1 ), 3OHPPA (2.5 mmol L-1 ) and 3PPA (2.5 mmol L-1 ) prolonged the mean lifespan by 11.2%, 13.0% and 10.6%, respectively. Moreover, 3,4diOHPPA, 3OHPPA and 3PPA treatments promoted stress tolerance against heat, UV irradiation and paraquat. Furthermore, three metabolites ameliorated physical functions, including reactive oxygen species and malondialdehyde levels, motility and pharyngeal pumping rate. The anti-aging activities mediated by 3,4diOHPPA, 3OHPPA and 3PPA depend on the HSF-1 and JNK-1 linked insulin/IGF-1 signaling pathway, which converge onto DAF-16. CONCLUSION The current findings suggest that colonic metabolites of FA have the potential for use as anti-aging bioactivate compounds. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenhan Yang
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Wen Xia
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Bisheng Zheng
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong ERA Food and Life Health Research Institute, Guangzhou, China
| | - Tong Li
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Rui Hai Liu
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
17
|
Li Y, Sair AT, Zhao W, Li T, Liu RH. Ferulic Acid Mediates Metabolic Syndrome via the Regulation of Hepatic Glucose and Lipid Metabolisms and the Insulin/IGF-1 Receptor/PI3K/AKT Pathway in Palmitate-Treated HepG2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14706-14717. [PMID: 36367981 DOI: 10.1021/acs.jafc.2c05676] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ferulic acid (FA) is one of the most abundant bound phenolics in whole grains, partly contributing to its preventive effects on metabolic syndrome (MetS). The study aims to investigate if FA mediates MetS through the regulation of hepatic metabolisms and the insulin receptor related pathways in the palmitate-treated HepG2 cells (MetS model). We found that FA (50, 100, and 200 μM) dramatically ameliorated the lipid accumulation in the MetS model. FA significantly decreased the activities of the gluconeogenic enzymes, G6Pase and PEPCK, downregulated the lipogenic enzyme FAS-1, and upregulated the lipolytic enzyme CPT-1 by regulating a series of transcriptional factors including HNF4α, FOXO-1, SREBP-1c, and PPAR-γ. Notably, we found that FA's ability to alleviate MetS is achieved by activating the insulin receptor/PI3K/AKT pathway. Our results validated the effects of FA on mediating the metabolic disorders of lipid and glucose pathways and unveiled its potential intracellular mechanisms for the prevention of MetS.
Collapse
Affiliation(s)
- Yitong Li
- Department of Food Science, YanGuFang Company Laboratory, 245 Stocking Hall, Cornell University, Ithaca, New York 14853, United States
| | - Ali Tahir Sair
- Department of Food Science, YanGuFang Company Laboratory, 245 Stocking Hall, Cornell University, Ithaca, New York 14853, United States
| | - Weiyang Zhao
- Department of Food Science, YanGuFang Company Laboratory, 245 Stocking Hall, Cornell University, Ithaca, New York 14853, United States
| | - Tong Li
- Department of Food Science, YanGuFang Company Laboratory, 245 Stocking Hall, Cornell University, Ithaca, New York 14853, United States
| | - Rui Hai Liu
- Department of Food Science, YanGuFang Company Laboratory, 245 Stocking Hall, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
18
|
Semaniuk UV, Gospodaryov DV, Strilbytska OM, Kucharska AZ, Sokół-Łętowska A, Burdyliuk NI, Storey KB, Bayliak MM, Lushchak O. Chili pepper extends lifespan in a concentration-dependent manner and confers cold resistance on Drosophila melanogaster cohorts by influencing specific metabolic pathways. Food Funct 2022; 13:8313-8328. [PMID: 35842943 DOI: 10.1039/d2fo00930g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Chili powder is a widely used spice with pungent taste, often consumed on a daily basis in several countries. Recent prospective cohort studies showed that the regular use of chili pepper improves healthspan in humans. Indeed, chili pepper fruits contain phenolic substances which are structurally similar to those that show anti-aging properties. The objective of our study was to test whether consumption of chili-supplemented food by the fruit fly, Drosophila melanogaster, would prolong lifespan and in which way this chili-supplemented food affects animal metabolism. Chili powder added to food in concentrations of 0.04%-0.12% significantly extended median lifespan in fruit fly cohorts of both genders by 9% to 13%. However, food supplemented with 3% chili powder shortened lifespan of male cohorts by 9%. Lifespan extension was accompanied by a decrease in age-independent mortality (i.e., death in early ages). The metabolic changes caused by consumption of chili-supplemented food had a pronounced dependence on gender. A characteristic of both fruit fly sexes that ate chili-supplemented food was an increased resistance to cold shock. Flies of both sexes had lower levels of hemolymph glucose when they ate food supplemented with low concentrations of chili powder, as compared with controls. However, males fed on food with 3% chili had lower levels of storage lipids and pyruvate reducing activity of lactate dehydrogenase compared with controls. Females fed on this food showed lower activities of hexokinase and pyruvate kinase, as well as lower ADP/O ratios, compared with control flies.
Collapse
Affiliation(s)
- Uliana V Semaniuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Shevchenka 57, 76018, Ivano-Frankivsk, Ukraine.
| | - Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Shevchenka 57, 76018, Ivano-Frankivsk, Ukraine.
| | - Olha M Strilbytska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Shevchenka 57, 76018, Ivano-Frankivsk, Ukraine.
| | - Alicja Z Kucharska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland
| | - Anna Sokół-Łętowska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland
| | - Nadia I Burdyliuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Shevchenka 57, 76018, Ivano-Frankivsk, Ukraine.
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Maria M Bayliak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Shevchenka 57, 76018, Ivano-Frankivsk, Ukraine.
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Shevchenka 57, 76018, Ivano-Frankivsk, Ukraine. .,Research and Development University, 13a Shota Rustaveli str., Ivano-Frankivsk, 76000, Ukraine
| |
Collapse
|
19
|
Rivas-García L, Romero-Márquez JM, Navarro-Hortal MD, Esteban-Muñoz A, Giampieri F, Sumalla-Cano S, Battino M, Quiles JL, Llopis J, Sánchez-González C. Unravelling potential biomedical applications of the edible flower Tulbaghia violacea. Food Chem 2022; 381:132096. [PMID: 35094882 DOI: 10.1016/j.foodchem.2022.132096] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 01/24/2023]
Abstract
Traditionally, edible flowers have been used as foods and for therapeutic purposes, today they have gained importance due to their bioactive compounds such as flavonols, anthocyanins or other phenolic compounds, which give them potential for biomedical applications. This work evaluated a methanolic extract of Tulbaghia violacea. Eleven individual phenolic compounds were found and quantified by mass spectrometry in the extract. Antioxidant activity tests (TEAC, FRAP and DPPH) and other characterization parameters were assayed (total phenolic content and total flavonoid content). In vitro studies showed antitumoral activity against ovarian tumoral cells mediated by the induction of non-dependent caspase cell death and by the activation of reactive oxygen species. The effect of the extract against features of Alzheimer disease was in vivo assayed in Caenorhabditis elegans. Tulbaghia extract led to a reduction in the 1-42 beta amyloid peptide formation and prevented oxidative stress. These results suggested that Tulbaghia violacea could be a new source of phenolic compounds for nutraceuticals and functional food development.
Collapse
Affiliation(s)
- Lorenzo Rivas-García
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain; Sport and Health Research Centre, University of Granada, C/. Menéndez Pelayo 32. 18016 Armilla, Granada, Spain; Centro Regional de Investigaciones Biomédicas (CRIB), Campus de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Jose M Romero-Márquez
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain
| | - M D Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain
| | | | - Francesca Giampieri
- Department of Clinical Sicences, Università Politecnica delle Marche, 60131 Ancona, Italy; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sandra Sumalla-Cano
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
| | - Maurizio Battino
- Department of Clinical Sicences, Università Politecnica delle Marche, 60131 Ancona, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain; Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
| | - Juan Llopis
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain; Sport and Health Research Centre, University of Granada, C/. Menéndez Pelayo 32. 18016 Armilla, Granada, Spain
| | - Cristina Sánchez-González
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain; Sport and Health Research Centre, University of Granada, C/. Menéndez Pelayo 32. 18016 Armilla, Granada, Spain.
| |
Collapse
|
20
|
A Novel Selenium Polysaccharide Alleviates the Manganese (Mn)-Induced Toxicity in Hep G2 Cells and Caenorhabditis elegans. Int J Mol Sci 2022; 23:ijms23084097. [PMID: 35456914 PMCID: PMC9029073 DOI: 10.3390/ijms23084097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 12/14/2022] Open
Abstract
Manganese (Mn) is now known to have a variety of toxicities, particularly when exposed to it in the workplace. However, there are still ineffective methods for reducing Mn's hazardous effects. In this study, a new selenium polysaccharide (Se-PCS) was developed from the shell of Camellia oleifera to reduce Mn toxicity in vitro and in vivo. The results revealed that Se-PCS may boost cell survival in Hep G2 cells exposed to Mn and activate antioxidant enzyme activity, lowering ROS and cell apoptosis. Furthermore, after being treated with Se-PCS, Caenorhabditis elegans survived longer under Mn stress. daf-16, a tolerant critical gene, was turned on. Moreover, the antioxidant system was enhanced as the increase in strong antioxidant enzyme activity and high expression of the sod-3, ctl-2, and gst-1 genes. A variety of mutations were also used to confirm that Se-PCS downregulated the insulin signaling pathway. These findings showed that Se-PCS protected Hep G2 cells and C. elegans via the insulin/IGF-1 signaling pathway and that it could be developed into a promising medication to treat Mn toxicity.
Collapse
|
21
|
Okoro NO, Odiba AS, Osadebe PO, Omeje EO, Liao G, Fang W, Jin C, Wang B. Bioactive Phytochemicals with Anti-Aging and Lifespan Extending Potentials in Caenorhabditis elegans. Molecules 2021; 26:molecules26237323. [PMID: 34885907 PMCID: PMC8658929 DOI: 10.3390/molecules26237323] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
In the forms of either herbs or functional foods, plants and their products have attracted medicinal, culinary, and nutraceutical applications due to their abundance in bioactive phytochemicals. Human beings and other animals have employed those bioactive phytochemicals to improve health quality based on their broad potentials as antioxidant, anti-microbial, anti-carcinogenic, anti-inflammatory, neuroprotective, and anti-aging effects, amongst others. For the past decade and half, efforts to discover bioactive phytochemicals both in pure and crude forms have been intensified using the Caenorhabditis elegans aging model, in which various metabolic pathways in humans are highly conserved. In this review, we summarized the aging and longevity pathways that are common to C. elegans and humans and collated some of the bioactive phytochemicals with health benefits and lifespan extending effects that have been studied in C. elegans. This simple animal model is not only a perfect system for discovering bioactive compounds but is also a research shortcut for elucidating the amelioration mechanisms of aging risk factors and associated diseases.
Collapse
Affiliation(s)
- Nkwachukwu Oziamara Okoro
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, China; (N.O.O.); (A.S.O.); (C.J.)
- College of Life Science and Technology, Guangxi University, Nanning 530007, China;
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka 410001, Nigeria; (P.O.O.); (E.O.O.)
| | - Arome Solomon Odiba
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, China; (N.O.O.); (A.S.O.); (C.J.)
- College of Life Science and Technology, Guangxi University, Nanning 530007, China;
| | - Patience Ogoamaka Osadebe
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka 410001, Nigeria; (P.O.O.); (E.O.O.)
| | - Edwin Ogechukwu Omeje
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka 410001, Nigeria; (P.O.O.); (E.O.O.)
| | - Guiyan Liao
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China;
| | - Wenxia Fang
- College of Life Science and Technology, Guangxi University, Nanning 530007, China;
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China;
| | - Cheng Jin
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, China; (N.O.O.); (A.S.O.); (C.J.)
- College of Life Science and Technology, Guangxi University, Nanning 530007, China;
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Wang
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, China; (N.O.O.); (A.S.O.); (C.J.)
- College of Life Science and Technology, Guangxi University, Nanning 530007, China;
- Correspondence: ; Tel.: +86-771-2503-601
| |
Collapse
|