1
|
Baidoo N, Sanger GJ. Age-related decline in goblet cell numbers and mucin content of the human colon: Implications for lower bowel functions in the elderly. Exp Mol Pathol 2024; 139:104923. [PMID: 39154390 DOI: 10.1016/j.yexmp.2024.104923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND & AIMS Older people experience a greater incidence of lower bowel disorders, including constipation. Causes can include factors associated with growing older, such as use of medications or disease, but compounded by degenerative changes within the bowel wall. It has been suggested that the latter is exacerbated by loss of an effective mucosal barrier to luminal contents. In human colon, little is known about the impact of ageing on key components of this barrier, namely the goblet cells and mucin content. METHODS Changes in the number of goblet cells and density of mucin content were investigated in macroscopically normal human ascending (AC; n = 13) and descending (DC; n = 14) colon from elderly (≥ 67 years) and younger adults (60 years and below). Samples were serially sectioned and stained for haematoxylin and eosin to assess tissue morphology, and alcian blue periodic acid Schiff (ABPAS) and MUC-2 antibody to identify goblet cells producing mucins. New procedures in visualization and identification of goblet cells and mucin contents were employed to ensure unbiased counting and densitometric analysis. RESULTS Compared with the younger adults, the numbers of goblet cells per crypt were significantly lower in the elderly AC (72 ± 1.2 vs 51 ± 0.5) and DC (75 ± 2.6 vs. 54 ± 1.9), although this reduction did not reach statistical significance when assessed per mucosal area (AC: P = 0.068; DC: P = 0.096). In both regions from the elderly, numerous empty vesicles (normally containing mucins) were observed, and some areas of epithelium were devoid of goblet cells. Thus, the density of mucin content per unit mucosal area were significantly reduced with age. CONCLUSIONS Ageing could result in a reduced number of goblet cells and development of degenerative changes in mucin production. Together, these have implications for the mucus barrier function in the colon of elderly individuals.
Collapse
Affiliation(s)
- Nicholas Baidoo
- University of Westminster, School of Life Sciences. New Cavendish Street, UK; Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Gareth J Sanger
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
2
|
Chang H, Perkins MH, Novaes LS, Qian F, Zhang T, Neckel PH, Scherer S, Ley RE, Han W, de Araujo IE. Stress-sensitive neural circuits change the gut microbiome via duodenal glands. Cell 2024; 187:5393-5412.e30. [PMID: 39121857 PMCID: PMC11425084 DOI: 10.1016/j.cell.2024.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/13/2024] [Accepted: 07/12/2024] [Indexed: 08/12/2024]
Abstract
Negative psychological states impact immunity by altering the gut microbiome. However, the relationship between brain states and microbiome composition remains unclear. We show that Brunner's glands in the duodenum couple stress-sensitive brain circuits to bacterial homeostasis. Brunner's glands mediated the enrichment of gut Lactobacillus species in response to vagus nerve stimulation. Cell-specific ablation of the glands markedly suppressed Lactobacilli counts and heightened vulnerability to infection. In the forebrain, we mapped a vagally mediated, polysynaptic circuit connecting the central nucleus of the amygdala to Brunner's glands. Chronic stress suppressed central amygdala activity and phenocopied the effects of gland lesions. Conversely, excitation of either the central amygdala or parasympathetic vagal neurons activated Brunner's glands and reversed the effects of stress on the gut microbiome and immunity. The findings revealed a tractable brain-body mechanism linking psychological states to host defense.
Collapse
Affiliation(s)
- Hao Chang
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Matthew H Perkins
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Leonardo S Novaes
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Tong Zhang
- Department of General Surgery, Guangzhou First People's Hospital, Guangzhou 510180, Guangdong, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, Guangzhou Medical University, Guangzhou 510180, Guangdong, China
| | - Peter H Neckel
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen 72074, Germany
| | - Simon Scherer
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital, Tübingen 72076, Germany
| | - Ruth E Ley
- Max-Planck Institute for Biology, Tübingen 72076, Germany
| | - Wenfei Han
- Max-Planck Institute for Biological Cybernetics, Tübingen 72076, Germany.
| | - Ivan E de Araujo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Max-Planck Institute for Biological Cybernetics, Tübingen 72076, Germany.
| |
Collapse
|
3
|
Chang H, Perkins MH, Novaes LS, Qian F, Han W, de Araujo IE. An Amygdalar-Vagal-Glandular Circuit Controls the Intestinal Microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.594027. [PMID: 38853855 PMCID: PMC11160750 DOI: 10.1101/2024.06.02.594027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Psychological states can regulate intestinal mucosal immunity by altering the gut microbiome. However, the link between the brain and microbiome composition remains elusive. We show that Brunner's glands in the duodenal submucosa couple brain activity to intestinal bacterial homeostasis. Brunner's glands mediated the enrichment of gut probiotic species in response to stimulation of abdominal vagal fibers. Cell-specific ablation of the glands triggered transmissible dysbiosis associated with an immunodeficiency syndrome that led to mortality upon gut infection with pathogens. The syndrome could be largely prevented by oral or intra-intestinal administration of probiotics. In the forebrain, we identified a vagally-mediated, polysynaptic circuit connecting the glands of Brunner to the central nucleus of the amygdala. Intra-vital imaging revealed that excitation of central amygdala neurons activated Brunner's glands and promoted the growth of probiotic populations. Our findings unveil a vagal-glandular neuroimmune circuitry that may be targeted for the modulation of the gut microbiome. The glands of Brunner may be the critical cells that regulate the levels of Lactobacilli species in the intestine.
Collapse
|
4
|
Hu JH, Sheng J, Guo HM, Liu H, Zhang X, Han B, Peng K, Ji FH. Association between labor epidural analgesia and gut microbiota: A prospective cohort study. Heliyon 2024; 10:e29883. [PMID: 38699036 PMCID: PMC11064136 DOI: 10.1016/j.heliyon.2024.e29883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
Background Labor epidural analgesia (LEA) may influence gut microbiota. We explored the association between LEA and gut microbiota for both mothers and their newborns. Methods In this prospective cohort study, parturients aged 25-35 years with a gestational age of 37-42 weeks and planned vaginal delivery were recruited. Twenty-one parturients received LEA (the LEA group), and 24 did not (the control group). Maternal and neonatal fecal samples were collected, and the gut microbiota profiles were analyzed using the 16S rRNA gene sequencing. The impact of LEA on gut microbiota was assessed using the general liner models. Results We showcased the gut microbiota profile from the phyla to species levels based on data on 45 mother-newborn dyads. The results of α- and β-diversity suggested significant changes in gut microbiota between the LEA and control groups. After adjusting for baseline confounders, the administration of LEA had positive correlations with R. ilealis (β = 91.87, adjusted P = 0.007) in mothers; LEA also had negative correlations with A. pittii (β = -449.36, adjusted P = 0.015), P. aeruginosa (β = -192.55, adjusted P = 0.008), or S. maltophilia (β = -142.62, adjusted P = 0.001) in mothers, and with Muribaculaceae (β = -2702.77, adjusted P = 0.003) in neonates. Conclusion LEA was associated with changes in maternal and neonatal gut microbiota, and future studies are still required to assess their impact on clinical outcomes and explore the mechanisms.
Collapse
Affiliation(s)
- Jing-hui Hu
- Departments of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Jie Sheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hui-min Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Liu
- Department of Anesthesiology and Pain Medicine, University of California Davis Health, Sacramento, CA, USA
| | - Xinyue Zhang
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Bing Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ke Peng
- Departments of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Fu-hai Ji
- Departments of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
5
|
Ning K, Shi C, Chi YY, Zhou YF, Zheng W, Duan Y, Tong W, Xie Q, Xiang H. Portulaca oleracea L. polysaccharide alleviates dextran sulfate sodium-induced ulcerative colitis by regulating intestinal homeostasis. Int J Biol Macromol 2024; 256:128375. [PMID: 38000581 DOI: 10.1016/j.ijbiomac.2023.128375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
Portulaca oleracea L. (purslane) is a vegetable that contains a variety of active compounds with nutritional properties and has the potential to treat ulcerative colitis (UC). However, the mechanisms underlying the effects of Portulaca oleracea L. polysaccharide (POP) in alleviating UC remain unclear. In this study, we prepared an aqueous extract of purslane and separated a fraction with molecular weight >10 kDa using membrane separation. This fraction was used to isolate POP. The effect of POP on gut microbiota and colon transcriptome in dextran sulfate sodium-induced UC model mice was evaluated. POP treatment reduced inflammation and oxidative stress imbalance in UC mice. In addition, POP improved the intestinal barrier and regulated intestinal homeostasis. Importantly, POP was found to regulate gut microbiota, maintain the levels of retinol and short-chain fatty acids in the gut, promote the proliferation and differentiation of B cells in the colon, and increase the expression of immunoglobulin A. These results provide novel insights into the role of POP in regulating intestinal homeostasis, which should guide further development of POP as a functional food.
Collapse
Affiliation(s)
- Ke Ning
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Chao Shi
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Yan-Yu Chi
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Yong-Fei Zhou
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Weiwei Zheng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Yameng Duan
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Weiwei Tong
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Qiuhong Xie
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China; Institute of Changbai Mountain Resource and Health, Jilin University, Fusong 134504, PR China.
| | - Hongyu Xiang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China; Institute of Changbai Mountain Resource and Health, Jilin University, Fusong 134504, PR China.
| |
Collapse
|
6
|
Sang X, Wang Q, Ning Y, Wang H, Zhang R, Li Y, Fang B, Lv C, Zhang Y, Wang X, Ren F. Age-Related Mucus Barrier Dysfunction in Mice Is Related to the Changes in Muc2 Mucin in the Colon. Nutrients 2023; 15:nu15081830. [PMID: 37111049 PMCID: PMC10145456 DOI: 10.3390/nu15081830] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/07/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
During aging, the protective function of mucus barrier is significantly reduced among which changes in colonic mucus barrier function received the most attention. Additionally, the incidence of colon-related diseases increases significantly in adulthood, posing a threat to the health of the elderly. However, the specific changes in colonic mucus barrier with aging and the underlying mechanisms have not been fully elucidated. To understand the effects of aging on the colonic mucus barrier, changes in the colonic mucus layer were evaluated in mice aged 2, 12, 18, and 24 months. Microbial invasion, thickness, and structure of colonic mucus in mice at different months of age were analyzed by in situ hybridization fluorescence staining, AB/PAS staining, and cryo-scanning electron microscopy. Results showed that the aged colon exhibited intestinal mucus barrier dys-function and altered mucus properties. During aging, microorganisms invaded the mucus layer to reach epithelial cells. Compared with young mice, the thickness of mucus layer in aged mice in-creased by 11.66 μm. And the contents of the main components and glycosylation structure of colon changed. Among them, the proportion of goblet cells decreased significantly in older mice, and the expression of spdef genes that regulate goblet cell differentiation decreased. Further, the expression of key enzymes involved in mucin core structure formation and glycan modification also changed with aging. The expression of core 1 β1,3-galactosyltransferase (C1GalT1) which is the key enzyme forming the main core structure increased by one time, while core 2 β1,6 N-acetylglucosaminyltransferase (C2GnT) and core 3 β1,3 N-acetylglucosaminyltransferase (C3GnT) decreased 2 to 6- and 2-fold, respectively. Also, the expression of sialyltransferase, one of the mucin-glycan modifying enzymes, was decreased by 1-fold. Overall, our results indicate that the goblet cells/glycosyltransferase/O-glycan axis plays an important role in maintaining the physicochemical properties of colonic mucus and the stability of intestinal environment.
Collapse
Affiliation(s)
- Xueqin Sang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Qingyu Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| | - Yueyan Ning
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100083, China
| | - Huihui Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Rui Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Cong Lv
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yan Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaoyu Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fazheng Ren
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
- Food Laboratory of Zhongyuan, Luohe 462000, China
| |
Collapse
|
7
|
The Role of Sympathetic Nerves in Osteoporosis: A Narrative Review. Biomedicines 2022; 11:biomedicines11010033. [PMID: 36672541 PMCID: PMC9855775 DOI: 10.3390/biomedicines11010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
Osteoporosis, a systemic bone disease, is characterized by decreased bone density due to various reasons, destructed bone microstructure, and increased bone fragility. The incidence of osteoporosis is very high among the elderly, and patients with osteoporosis are prone to suffer from spine fractures and hip fractures, which cause great harm to patients. Meanwhile, osteoporosis is mainly treated with anti-osteoporosis drugs that have side effects. Therefore, the development of new treatment modalities has a significant clinical impact. Sympathetic nerves play an important role in various physiological activities and the regulation of osteoporosis as well. Therefore, the role of sympathetic nerves in osteoporosis was reviewed, aiming to provide information for future targeting of sympathetic nerves in osteoporosis.
Collapse
|
8
|
Zhang Y, Duan C, Wu S, Ma J, Liu Y, Li W, Wang T, Yang L, Cheng K, Zhuang R. Knockout of IL-6 mitigates cold water-immersion restraint stress-induced intestinal epithelial injury and apoptosis. Front Immunol 2022; 13:936689. [PMID: 36505466 PMCID: PMC9732082 DOI: 10.3389/fimmu.2022.936689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Background Interleukin-6 (IL-6) is essential for maintaining intestinal epithelial homeostasis. Although cold water-immersion restraint (CWIR) stress is commonly used to induce in vivo gastric injury, it also affects intestinal epithelial permeability. Although IL-6 is increased in response to acute physiological and psychological stress, its exact effects on the pathophysiology of the intestinal epithelium in response to acute CWIR stress remain unknown. Methods We used IL-6 knockout (KO) mice with acute CWIR modeling to investigate the effect of IL-6 deficiency on intestinal epithelial morphology and pathological damage using histological staining assays under the acute stress. We detected jejunal epithelial apoptosis using TUNEL and standard molecular experiments. Results CWIR caused intestinal epithelial damage, which was alleviated by the absence of IL-6, as evidenced by morphological changes and goblet cell and intestinal permeability alteration. IL-6 KO also reduced CWIR-mediated inflammatory levels and improved stress defense. Meanwhile, IL-6 deficiency decreased the intestinal epithelial apoptosis induced by CWIR administration. This IL-6 KO-led effect depended more on mitochondrial AIF signaling rather than the traditional caspase pathway. Conclusion As a result, we concluded that acute CWIR-induced severe intestinal damage and jejunal epithelium apoptosis could be alleviated by IL-6 deficiency, implying a protective effect of IL-6 deficiency on the intestines under acute stress. The findings shed new light on treating CWIR-induced intestinal disorders by inhibiting IL-6 signaling.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Chujun Duan
- Department of Immunology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Shuwen Wu
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Jingchang Ma
- Department of Immunology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yongming Liu
- Orthopedic Department of Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Wenpeng Li
- Orthopedic Department of Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Tingting Wang
- Department of Immunology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Lu Yang
- Department of Immunology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Kun Cheng
- Department of Immunology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Ran Zhuang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, Shaanxi, China,Department of Immunology, Fourth Military Medical University, Xi’an, Shaanxi, China,*Correspondence: Ran Zhuang,
| |
Collapse
|
9
|
Six types of tea extracts attenuated high-fat diet-induced metabolic syndrome via modulating gut microbiota in rats. Food Res Int 2022; 161:111788. [DOI: 10.1016/j.foodres.2022.111788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/03/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
|
10
|
Yin Y, Guo Q, Zhou X, Duan Y, Yang Y, Gong S, Han M, Liu Y, Yang Z, Chen Q, Li F. Role of brain-gut-muscle axis in human health and energy homeostasis. Front Nutr 2022; 9:947033. [PMID: 36276808 PMCID: PMC9582522 DOI: 10.3389/fnut.2022.947033] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/02/2022] [Indexed: 11/26/2022] Open
Abstract
The interrelationship between brain, gut and skeletal muscle plays a key role in energy homeostasis of the body, and is becoming a hot topic of research. Intestinal microbial metabolites, such as short-chain fatty acids (SCFAs), bile acids (BAs) and tryptophan metabolites, communicate with the central nervous system (CNS) by binding to their receptors. In fact, there is a cross-talk between the CNS and the gut. The CNS, under the stimulation of pressure, will also affect the stability of the intestinal system, including the local intestinal transport, secretion and permeability of the intestinal system. After the gastrointestinal tract collects information about food absorption, it sends signals to the central system through vagus nerve and other channels to stimulate the secretion of brain-gut peptide and produce feeding behavior, which is also an important part of maintaining energy homeostasis. Skeletal muscle has receptors for SCFAs and BAs. Therefore, intestinal microbiota can participate in skeletal muscle energy metabolism and muscle fiber conversion through their metabolites. Skeletal muscles can also communicate with the gut system during exercise. Under the stimulation of exercise, myokines secreted by skeletal muscle causes the secretion of intestinal hormones, and these hormones can act on the central system and affect food intake. The idea of the brain-gut-muscle axis is gradually being confirmed, and at present it is important for regulating energy homeostasis, which also seems to be relevant to human health. This article focuses on the interaction of intestinal microbiota, central nervous, skeletal muscle energy metabolism, and feeding behavior regulation, which will provide new insight into the diagnostic and treatment strategies for obesity, diabetes, and other metabolic diseases.
Collapse
Affiliation(s)
- Yunju Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Qiuping Guo
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Xihong Zhou
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Yuhuan Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Saiming Gong
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Mengmeng Han
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yating Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zhikang Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Qinghua Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Marques-Feixa L, Castro-Quintas Á, Palma-Gudiel H, Romero S, Morer A, Rapado-Castro M, Martín M, Zorrilla I, Blasco-Fontecilla H, Ramírez M, Mayoral M, Mendez I, San Martín-Gonzalez N, Rodrigo-Yanguas M, Luis Monteserín-García J, Fañanás L. Secretory immunoglobulin A (s-IgA) reactivity to acute psychosocial stress in children and adolescents: The influence of pubertal development and history of maltreatment. Brain Behav Immun 2022; 103:122-129. [PMID: 35427757 DOI: 10.1016/j.bbi.2022.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Mucosal secretory immunoglobulin A (s-IgA) is an antibody protein-complex that plays a crucial role in immune first defense against infection. Although different immune biomarkers have been associated with stress-related psychopathology, s-IgA remains poorly studied, especially in youth. OBJECTIVES The present study investigated how s-IgA behaves in front of acute psychosocial stress in children and adolescents, including possible variability associated with developmental stage and history of childhood maltreatment (CM). METHODS 94 children and adolescents from 7 to 17 years (54 with a current psychiatric diagnostic and 40 healthy controls) drawn from a larger Spanish study were explored (EPI-Young Stress Project). To assess biological reactivity, participants provided five saliva samples during an acute laboratory-based psychosocial stressor, the Trier Social Stress Test for Children (TSST-C). Samples were assayed for s-IgA, as well as for cortisol. Pubertal development was ascertained by Tanner stage and CM following TASSCV criteria. RESULTS We observed s-IgA fluctuations throughout the stressor, indicating the validity of TSST-C to stimulate s-IgA secretion (F(4,199) = 6.200, p <.001). Although s-IgA trajectories followed a reactivity and recovery pattern in adolescents, children exhibited no s-IgA response when faced with stress (F(4,197) = 3.406, p =.010). An interaction was found between s-IgA and CM (F(4,203) = 2.643, p =.035). Interestingly, an interaction between developmental stage, CM history and s-IgA reactivity was identified (F(12,343) = 2.036, p =.017); while children non-exposed to maltreatment exhibited no s-IgA changes to acute stress, children with a history of CM showed a similar response to adolescents, increasing their s-IgA levels after the psychosocial stressor. CONCLUSION Acute psychosocial stress stimulates s-IgA secretion, but only after puberty. However, children with a history of maltreatment exhibited a response resembling that of adolescents, suggesting an early maturation of the immune system. Further studies are needed to clarify the validity of s-IgA as an acute stress biomarker, including additional measures during stress exposure.
Collapse
Affiliation(s)
- Laia Marques-Feixa
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Biomedicine Institute of the University of Barcelona (IBUB), Barcelona, Spain; Network Centre for Biomedical Research in Mental Health (CIBERSAM), Spain
| | - Águeda Castro-Quintas
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Biomedicine Institute of the University of Barcelona (IBUB), Barcelona, Spain; Network Centre for Biomedical Research in Mental Health (CIBERSAM), Spain
| | - Helena Palma-Gudiel
- Network Centre for Biomedical Research in Mental Health (CIBERSAM), Spain; College of Public Health and Health Professions, Department of Epidemiology, University of Florida, USA
| | - Soledad Romero
- Network Centre for Biomedical Research in Mental Health (CIBERSAM), Spain; Department of Child and Adolescent Psychiatry and Psychology, 2017SGR88, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Astrid Morer
- Network Centre for Biomedical Research in Mental Health (CIBERSAM), Spain; Department of Child and Adolescent Psychiatry and Psychology, 2017SGR88, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marta Rapado-Castro
- Network Centre for Biomedical Research in Mental Health (CIBERSAM), Spain; Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, Madrid, Spain; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Victoria, Australia
| | - María Martín
- Hospital Benito Menni, Adolescent Crisis Unit, Sant Boi de Llobregat, Spain
| | - Iñaki Zorrilla
- Network Centre for Biomedical Research in Mental Health (CIBERSAM), Spain; Hospital Santiago Apostol, Department of Psychiatry, Vitoria-Gasteiz, Spain
| | - Hilario Blasco-Fontecilla
- Network Centre for Biomedical Research in Mental Health (CIBERSAM), Spain; Department of Psychiatry, Puerta de Hierro University Hospital-Majadahonda, Autonoma University, ITA Mental Health, Madrid, Spain
| | - Maite Ramírez
- Day Hospital for Adolescents Barrualde-Galdakao, Child and Adolescent Mental Health, Galdakao, Spain
| | - María Mayoral
- Network Centre for Biomedical Research in Mental Health (CIBERSAM), Spain; Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, Madrid, Spain
| | - Iría Mendez
- Department of Child and Adolescent Psychiatry and Psychology, 2017SGR88, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Nerea San Martín-Gonzalez
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Biomedicine Institute of the University of Barcelona (IBUB), Barcelona, Spain
| | - María Rodrigo-Yanguas
- Department of Psychiatry, Puerta de Hierro University Hospital-Majadahonda, Autonoma University, ITA Mental Health, Madrid, Spain
| | - José Luis Monteserín-García
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Biomedicine Institute of the University of Barcelona (IBUB), Barcelona, Spain; Network Centre for Biomedical Research in Mental Health (CIBERSAM), Spain
| | - Lourdes Fañanás
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Biomedicine Institute of the University of Barcelona (IBUB), Barcelona, Spain; Network Centre for Biomedical Research in Mental Health (CIBERSAM), Spain.
| | | |
Collapse
|
12
|
Lactoferrin and Its Potential Impact for the Relief of Pain: A Preclinical Approach. Pharmaceuticals (Basel) 2021; 14:ph14090868. [PMID: 34577568 PMCID: PMC8468947 DOI: 10.3390/ph14090868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/21/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
Pain is one of the most disabling symptoms of several clinical conditions. Neurobiologically, it is classified as nociceptive, inflammatory, neuropathic and dysfunctional. Opioids and nonsteroidal anti-inflammatory drugs (NSAIDs) are conventionally prescribed for the treatment of pain. Long-term administration of opioids results in the loss of analgesic efficacy, leading to increased dosage, tolerance, and addiction as the main drawbacks of their use, while the adverse effects of NSAIDs include gastric ulcer formation, intestinal bleeding, acute kidney injury, and hepatotoxicity. Lactoferrin is an iron-binding, anti-inflammatory glycoprotein that displays analgesic activities associated, in part, by interacting with the low-density lipoprotein receptor-related protein (LRP), which may result in the regulation of the DAMP-TRAF6-NFκB, NO-cGMP-ATP K+-sensitive channel and opioid receptor signaling pathways. This review summarizes and discusses for the first time the analgesic effects of lactoferrin and its presumable mechanisms based on pre-clinical trials. Given its anti-nociceptive and anti-inflammatory properties, lactoferrin may be used as an adjunct to enhance the efficacy and to decrease the tolerogenic effects of canonical therapeutic drugs prescribed for pain treatment.
Collapse
|