1
|
Ran Q, Zhang J, Zhong J, Lin J, Zhang S, Li G, You B. Organ preservation: current limitations and optimization approaches. Front Med (Lausanne) 2025; 12:1566080. [PMID: 40206471 PMCID: PMC11980443 DOI: 10.3389/fmed.2025.1566080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 02/28/2025] [Indexed: 04/11/2025] Open
Abstract
Despite the annual rise in patients with end-stage diseases necessitating organ transplantation, the scarcity of high-quality grafts constrains the further development of transplantation. The primary causes of the graft shortage are the scarcity of standard criteria donors, unsatisfactory organ preservation strategies, and mismatching issues. Organ preservation strategies are intimately related to pre-transplant graft viability and the incidence of adverse clinical outcomes. Static cold storage (SCS) is the current standard practice of organ preservation, characterized by its cost-effectiveness, ease of transport, and excellent clinical outcomes. However, cold-induced injury during static cold preservation, toxicity of organ preservation solution components, and post-transplantation reperfusion injury could further exacerbate graft damage. Long-term ex vivo dynamic machine perfusion (MP) preserves grafts in a near-physiological condition, evaluates graft viability, and cures damage to grafts, hence enhancing the usage and survival rates of marginal organs. With the increased use of extended criteria donors (ECD) and advancements in machine perfusion technology, static cold storage is being gradually replaced by machine perfusion. This review encapsulates the latest developments in cryopreservation, subzero non-freezing storage, static cold storage, and machine perfusion. The emphasis is on the injury mechanisms linked to static cold storage and optimization strategies, which may serve as references for the optimization of machine perfusion techniques.
Collapse
Affiliation(s)
- Qiulin Ran
- Department of Cardiovascular Surgery, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jiayi Zhang
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Jisheng Zhong
- Department of Cardiovascular Surgery, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ji Lin
- Department of Cardiovascular Surgery, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Shuai Zhang
- Department of Cardiovascular Surgery, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Guang Li
- Department of Cardiovascular Surgery, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Bin You
- Department of Cardiovascular Surgery, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Jeddou IB, Zaouali MA, Chaabani R, Belgacem S, Cherif A, Ben Abdennebi H. Mitigating hepatic ischemia and reperfusion injury with polyethylene glycol-enriched Ringer's lactate fluid: insights from an isolated perfused rat model. BMC Pharmacol Toxicol 2025; 26:70. [PMID: 40140874 PMCID: PMC11938607 DOI: 10.1186/s40360-025-00835-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/03/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Cold ischemia-reperfusion (IR) injury is a multifactorial process detrimental to liver graft function during liver transplantation (LT). Although flushing hepatic grafts prior to reperfusion have been well explored, the optimal graft rinse solution to prevent cold IR injury remains largely undefined. The aim of this study was to evaluate whether a new rinse solution combining polyethylene glycol PM 35,000 Da (PEG35) with lactated solution (RLS) could mitigate cold IR injury in Wistar rats. METHODS Livers were isolated, preserved for 24 h and flushed immediately before ex vivo reperfusion with either RLS or PEG35-enriched RLS. Liver injury, graft function, energy balance, autophagy, oxidative stress as well as inflammatory response were assessed. RESULTS Flushing hepatic grafts with PEG35-enriched RLS resulted in decreased transaminase levels after cold ischemia. The improved graft function was evidenced by increased bile flow, enhanced BSP clearance, and reduced vascular resistance in these flushed grafts. Phospho-AMPK protein expression, as well as LC3B gene and protein expression were significantly increased compared to those unflushed and flushed only with RLS. PEG35-enriched RLS also maintained the oxidative state, as indicated by reduced activities of antioxidant enzymes and decreased MDA concentration. Additionally, this graft rinse solution down-regulated the inflammatory response by inhibiting the expression of genes involved in the HMGB-1/NF-κB/TNF-α signaling pathway. CONCLUSION These data strongly suggest that rinsing liver grafts with PEG35-enriched RLS prior to reperfusion represents a simple and cost-effective strategy to enhance liver functional recovery after cold IR injury. This approach could serve as a viable alternative to RLS in clinical applications, highlighting the need for further research to explore its broader implications.
Collapse
Affiliation(s)
- Ikram Ben Jeddou
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Mohamed Amine Zaouali
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Monastir, Tunisia.
| | - Roua Chaabani
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Sameh Belgacem
- Laboratory of Medical and Molecular Parasitology‑Mycology LP3M (LR12ES08), Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Amira Cherif
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Hassen Ben Abdennebi
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| |
Collapse
|
3
|
Rosello AP, Chullo G, Pera M, Bataller R, Fundora-Suárez Y, Adam R, Carbonell T, Catafau JR. Danger Biomarkers in Perfusates From Fatty Liver Grafts Subjected to Cold Storage Preservation in Different Preservation Solutions. Transplant Proc 2025; 57:37-42. [PMID: 39757056 DOI: 10.1016/j.transproceed.2024.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 08/26/2024] [Accepted: 11/05/2024] [Indexed: 01/07/2025]
Abstract
Static cold storage remains the traditional standard for liver graft preservation prior to transplantation in both clinical and experimental settings. The use of polyethylene glycol 35 solutions, such as Institut Georges Lopez-2 (IGL2) preservation solution, for protecting against mitochondrial damage during cold static preservation necessitates combination with hypothermic oxygenated perfusion to enhance liver graft performance. This study presents a preliminary comparative evaluation of "danger signals" indicating hepatocellular injury (transaminases, lactate content), mitochondrial damage (glutamate dehydrogenase release), and cytokine release in liver perfusates from suboptimal grafts (fatty livers) subjected to 24-hour cold storage. We refined an original IGL2 solution, referred to as IGL2-M solution, which was compared to Histidine-Tryptophan-Ketoglutarate preservation solution used as a control. The IGL2-M solution demonstrated superior efficacy in preventing hepatocellular and mitochondrial damage in vulnerable steatotic grafts against ischemia-reperfusion injury. The IGL2-M solution better preserved the quality of fatty liver grafts compared to the Histidine-Tryptophan-Ketoglutarate solution, as evidenced by fewer danger signals after 24 hours of cold static preservation. Further investigations are warranted to explore these findings in greater depth.
Collapse
Affiliation(s)
- Arnau Panisello Rosello
- Experimental Pathology Department, Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-CSIC, Barcelona, Spain; Steatohepatitis and Liver Transplant, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), CIBER ehd, Barcelona, Spain.
| | - Gabriela Chullo
- Service of Hepato-Pancreatico-Biliary and Liver Transplantation, ICMDM, Hospital Clinic of Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), CIBERehd, University of Barcelona, Barcelona, Spain
| | - Miguel Pera
- Service of Hepato-Pancreatico-Biliary and Liver Transplantation, ICMDM, Hospital Clinic of Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), CIBERehd, University of Barcelona, Barcelona, Spain
| | - Ramon Bataller
- Service of Hepatology, ICMDM, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Yiliam Fundora-Suárez
- Service of Hepato-Pancreatico-Biliary and Liver Transplantation, ICMDM, Hospital Clinic of Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), CIBERehd, University of Barcelona, Barcelona, Spain
| | - Rene Adam
- Centre Hépato-Biliaire, AP-HP, Hôpital Paul Brousse, Paris, France
| | - Teresa Carbonell
- Department of Physiology, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Joan Rosello Catafau
- Experimental Pathology Department, Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-CSIC, Barcelona, Spain; Steatohepatitis and Liver Transplant, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), CIBER ehd, Barcelona, Spain
| |
Collapse
|
4
|
Bardallo RG, Chullo G, Alva N, Rosello-Catafau J, Fundora-Suárez Y, Carbonell T, Panisello-Rosello A. Mitigating Cold Ischemic Injury: HTK, UW and IGL-2 Solution's Role in Enhancing Antioxidant Defence and Reducing Inflammation in Steatotic Livers. Int J Mol Sci 2024; 25:9318. [PMID: 39273266 PMCID: PMC11394993 DOI: 10.3390/ijms25179318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Liver transplantation remains the only definitive treatment for end-stage liver diseases. However, the increasing prevalence of fatty liver disease among potential donors exacerbates the shortage of suitable organs. This study evaluates the efficacy of the preservation solution Institut Georges Lopez-2 (IGL-2) compared to Histidine-Tryptophan-Ketoglutarate (HTK) and University of Wisconsin (UW) preservation solutions in mitigating ischemia-reperfusion injury (IRI) in steatotic livers. Using Zucker Obese rat livers, we assessed the impact of 24-h static cold storage (SCS) with each solution on transaminase release, glutathione redox balance, antioxidant enzyme activity, lipoperoxidation, and inflammation markers. IGL-2 and UW solutions demonstrated reduced transaminase and lactate levels compared to HTK, indicating better preservation of liver integrity. IGL-2 maintained a higher reduced glutathione/oxidized glutathione (GSH/GSSG) ratio, suggesting more effective management of oxidative stress. Antioxidant enzyme activities catalase, superoxide dismutase, and glutathione peroxidase (CAT, SOD, GPX) were higher in IGL-2 preserved livers, contributing to decreased oxidative damage. Lipid peroxidation markers and inflammatory markers were lower in IGL-2 than in HTK, indicating reduced oxidative stress and inflammation. Additionally, improved mitochondrial function was observed in the IGL-2 group, correlating with reduced reactive oxygen species (ROS) production and lipid peroxidation. These findings suggest that IGL-2 offers superior preservation of liver viability, reduces oxidative stress, and minimizes inflammation compared to HTK and UW solutions. By maintaining a higher ratio of reduced glutathione and antioxidant enzyme activity, IGL-2 effectively mitigates the harmful effects of ischemia-reperfusion injury. The reduced lipid peroxidation and inflammation in the IGL-2 group further underscore its potential in improving liver transplant outcomes. These results highlight the importance of optimizing preservation solutions to enhance the viability and functionality of donor organs, potentially expanding the donor pool and improving the success rates of liver transplantation. Future research should focus on refining preservation techniques and exploring additional protective agents to further improve organ preservation and transplant outcomes.
Collapse
Affiliation(s)
- Raquel G Bardallo
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Gabriela Chullo
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain
| | - Norma Alva
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Joan Rosello-Catafau
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain
- Experimental Pathology Department, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain
| | - Yiliam Fundora-Suárez
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain
| | - Teresa Carbonell
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Arnau Panisello-Rosello
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain
- Experimental Pathology Department, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain
| |
Collapse
|
5
|
Abbas SH, Ceresa CDL, Pollok JM. Steatotic Donor Transplant Livers: Preservation Strategies to Mitigate against Ischaemia-Reperfusion Injury. Int J Mol Sci 2024; 25:4648. [PMID: 38731866 PMCID: PMC11083584 DOI: 10.3390/ijms25094648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Liver transplantation (LT) is the only definitive treatment for end-stage liver disease, yet the UK has seen a 400% increase in liver disease-related deaths since 1970, constrained further by a critical shortage of donor organs. This shortfall has necessitated the use of extended criteria donor organs, including those with evidence of steatosis. The impact of hepatic steatosis (HS) on graft viability remains a concern, particularly for donor livers with moderate to severe steatosis which are highly sensitive to the process of ischaemia-reperfusion injury (IRI) and static cold storage (SCS) leading to poor post-transplantation outcomes. This review explores the pathophysiological predisposition of steatotic livers to IRI, the limitations of SCS, and alternative preservation strategies, including novel organ preservation solutions (OPS) and normothermic machine perfusion (NMP), to mitigate IRI and improve outcomes for steatotic donor livers. By addressing these challenges, the liver transplant community can enhance the utilisation of steatotic donor livers which is crucial in the context of the global obesity crisis and the growing need to expand the donor pool.
Collapse
Affiliation(s)
- Syed Hussain Abbas
- Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX1 2JD, UK;
| | - Carlo Domenico Lorenzo Ceresa
- Department of Hepatopancreatobiliary and Liver Transplant Surgery, Royal Free Hospital, Pond Street, Hampstead, London NW3 2QG, UK;
| | - Joerg-Matthias Pollok
- Department of Hepatopancreatobiliary and Liver Transplant Surgery, Royal Free Hospital, Pond Street, Hampstead, London NW3 2QG, UK;
- Division of Surgery & Interventional Science, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
6
|
Chullo G, Panisello-Rosello A, Marquez N, Colmenero J, Brunet M, Pera M, Rosello-Catafau J, Bataller R, García-Valdecasas JC, Fundora Y. Focusing on Ischemic Reperfusion Injury in the New Era of Dynamic Machine Perfusion in Liver Transplantation. Int J Mol Sci 2024; 25:1117. [PMID: 38256190 PMCID: PMC10816079 DOI: 10.3390/ijms25021117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Liver transplantation is the most effective treatment for end-stage liver disease. Transplant indications have been progressively increasing, with a huge discrepancy between the supply and demand of optimal organs. In this context, the use of extended criteria donor grafts has gained importance, even though these grafts are more susceptible to ischemic reperfusion injury (IRI). Hepatic IRI is an inherent and inevitable consequence of all liver transplants; it involves ischemia-mediated cellular damage exacerbated upon reperfusion and its severity directly affects graft function and post-transplant complications. Strategies for organ preservation have been constantly improving since they first emerged. The current gold standard for preservation is perfusion solutions and static cold storage. However, novel approaches that allow extended preservation times, organ evaluation, and their treatment, which could increase the number of viable organs for transplantation, are currently under investigation. This review discusses the mechanisms associated with IRI, describes existing strategies for liver preservation, and emphasizes novel developments and challenges for effective organ preservation and optimization.
Collapse
Affiliation(s)
- Gabriela Chullo
- Service of Digestive, Hepato-Pancreatico-Biliary and Liver Transplant Surgery, Institut Clínic de Malalties Digestives i Metabòliques (ICMDM), Hospital Clinic of Barcelona, 08036 Barcelona, Spain; (G.C.); (M.P.); (J.C.G.-V.)
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (J.C.); (M.B.); (R.B.)
| | - Arnau Panisello-Rosello
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (J.C.); (M.B.); (R.B.)
| | - Noel Marquez
- Hepato-Pancreatico-Biliary and Liver Transplant Surgery, Institut Clínic de Malalties Digestives i Metabòliques (ICMDM), Hospital Clinic of Barcelona, 08036 Barcelona, Spain;
| | - Jordi Colmenero
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (J.C.); (M.B.); (R.B.)
- Liver Transplant Unit, Service of Hepatology, Institut Clínic de Malalties Digestives i Metabòliques (ICMDM), Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades hepaticas y digestives (CIBERehd), University of Barcelona, 08036 Barcelona, Spain
| | - Merce Brunet
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (J.C.); (M.B.); (R.B.)
- Centro de Investigación Biomédica en Red de Enfermedades hepaticas y digestives (CIBERehd), University of Barcelona, 08036 Barcelona, Spain
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
| | - Miguel Pera
- Service of Digestive, Hepato-Pancreatico-Biliary and Liver Transplant Surgery, Institut Clínic de Malalties Digestives i Metabòliques (ICMDM), Hospital Clinic of Barcelona, 08036 Barcelona, Spain; (G.C.); (M.P.); (J.C.G.-V.)
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (J.C.); (M.B.); (R.B.)
| | - Joan Rosello-Catafau
- Experimental Pathology, Institut d’Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (IBB-CSIC), 08036 Barcelona, Spain;
| | - Ramon Bataller
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (J.C.); (M.B.); (R.B.)
- Liver Transplant Unit, Service of Hepatology, Institut Clínic de Malalties Digestives i Metabòliques (ICMDM), Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades hepaticas y digestives (CIBERehd), University of Barcelona, 08036 Barcelona, Spain
| | - Juan Carlos García-Valdecasas
- Service of Digestive, Hepato-Pancreatico-Biliary and Liver Transplant Surgery, Institut Clínic de Malalties Digestives i Metabòliques (ICMDM), Hospital Clinic of Barcelona, 08036 Barcelona, Spain; (G.C.); (M.P.); (J.C.G.-V.)
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (J.C.); (M.B.); (R.B.)
| | - Yiliam Fundora
- Service of Digestive, Hepato-Pancreatico-Biliary and Liver Transplant Surgery, Institut Clínic de Malalties Digestives i Metabòliques (ICMDM), Hospital Clinic of Barcelona, 08036 Barcelona, Spain; (G.C.); (M.P.); (J.C.G.-V.)
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (J.C.); (M.B.); (R.B.)
| |
Collapse
|
7
|
Muller X, Rossignol G, Couillerot J, Breton A, Hervieu V, Lesurtel M, Mohkam K, Mabrut JY. A Single Preservation Solution for Static Cold Storage and Hypothermic Oxygenated Perfusion of Marginal Liver Grafts: A Preclinical Study. Transplantation 2024; 108:175-183. [PMID: 37410580 DOI: 10.1097/tp.0000000000004714] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
BACKGROUND Hypothermic oxygenated perfusion (HOPE) improves outcomes of marginal liver grafts. However, to date, no preservation solution exists for both static cold storage (SCS) and HOPE. METHODS After 30 min of asystolic warm ischemia, porcine livers underwent 6 h of SCS followed by 2 h of HOPE. Liver grafts were either preserved with a single preservation solution (IGL2) designed for SCS and HOPE (IGL2-Machine Perfusion Solution [MPS] group, n = 6) or with the gold-standard University of Wisconsin designed for for SCS and Belzer MPS designed for HOPE (MPS group, n = 5). All liver grafts underwent warm reperfusion with whole autologous blood for 2 h, and surrogate markers of hepatic ischemia-reperfusion injury (IRI) were assessed in the hepatocyte, cholangiocyte, vascular, and immunological compartments. RESULTS After 2 h of warm reperfusion, livers in the IGL2-MPS group showed no significant differences in transaminase release (aspartate aminotransferase: 65.58 versus 104.9 UI/L/100 g liver; P = 0.178), lactate clearance, and histological IRI compared with livers in the MPS group. There were no significant differences in biliary acid composition, bile production, and histological biliary IRI. Mitochondrial and endothelial damage was also not significantly different and resulted in similar hepatic inflammasome activation. CONCLUSIONS This preclinical study shows that a novel IGL2 allows for the safe preservation of marginal liver grafts with SCS and HOPE. Hepatic IRI was comparable with the current gold standard of combining 2 different preservation solutions (University of Wisconsin + Belzer MPS). These data pave the way for a phase I first-in-human study and it is a first step toward tailored preservation solutions for machine perfusion of liver grafts.
Collapse
Affiliation(s)
- Xavier Muller
- Department of General Surgery and Liver Transplantation, Croix Rousse University Hospital, Hospices Civils de Lyon, University of Lyon I, Lyon, France
- Hepatology Institute of Lyon, INSERM U1052, Lyon, France
- Ecole Doctorale 340, Biologie Moléculaire et Intégrative, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Guillaume Rossignol
- Department of General Surgery and Liver Transplantation, Croix Rousse University Hospital, Hospices Civils de Lyon, University of Lyon I, Lyon, France
- Hepatology Institute of Lyon, INSERM U1052, Lyon, France
- Ecole Doctorale 340, Biologie Moléculaire et Intégrative, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Joris Couillerot
- Department of General Surgery and Liver Transplantation, Croix Rousse University Hospital, Hospices Civils de Lyon, University of Lyon I, Lyon, France
- Hepatology Institute of Lyon, INSERM U1052, Lyon, France
| | - Antoine Breton
- Department of General Surgery and Liver Transplantation, Croix Rousse University Hospital, Hospices Civils de Lyon, University of Lyon I, Lyon, France
- Hepatology Institute of Lyon, INSERM U1052, Lyon, France
| | - Valérie Hervieu
- Department of Pathology, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Villeurbanne, Lyon, France
| | - Mickaël Lesurtel
- Department of General Surgery and Liver Transplantation, Croix Rousse University Hospital, Hospices Civils de Lyon, University of Lyon I, Lyon, France
| | - Kayvan Mohkam
- Department of General Surgery and Liver Transplantation, Croix Rousse University Hospital, Hospices Civils de Lyon, University of Lyon I, Lyon, France
- Hepatology Institute of Lyon, INSERM U1052, Lyon, France
| | - Jean-Yves Mabrut
- Department of General Surgery and Liver Transplantation, Croix Rousse University Hospital, Hospices Civils de Lyon, University of Lyon I, Lyon, France
- Hepatology Institute of Lyon, INSERM U1052, Lyon, France
| |
Collapse
|
8
|
Patrono D, De Stefano N, Vissio E, Apostu AL, Petronio N, Vitelli G, Catalano G, Rizza G, Catalano S, Colli F, Chiusa L, Romagnoli R. How to Preserve Steatotic Liver Grafts for Transplantation. J Clin Med 2023; 12:3982. [PMID: 37373676 DOI: 10.3390/jcm12123982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Liver allograft steatosis is a significant risk factor for postoperative graft dysfunction and has been associated with inferior patient and graft survival, particularly in the case of moderate or severe macrovesicular steatosis. In recent years, the increasing incidence of obesity and fatty liver disease in the population has led to a higher proportion of steatotic liver grafts being used for transplantation, making the optimization of their preservation an urgent necessity. This review discusses the mechanisms behind the increased susceptibility of fatty livers to ischemia-reperfusion injury and provides an overview of the available strategies to improve their utilization for transplantation, with a focus on preclinical and clinical evidence supporting donor interventions, novel preservation solutions, and machine perfusion techniques.
Collapse
Affiliation(s)
- Damiano Patrono
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Nicola De Stefano
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Elena Vissio
- Department of Pathology, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Ana Lavinia Apostu
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Nicoletta Petronio
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Giovanni Vitelli
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Giorgia Catalano
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Giorgia Rizza
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Silvia Catalano
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Fabio Colli
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Luigi Chiusa
- Department of Pathology, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Renato Romagnoli
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| |
Collapse
|
9
|
Abstract
The past decade has been the foreground for a radical revolution in the field of preservation in abdominal organ transplantation. Perfusion has increasingly replaced static cold storage as the preferred and even gold standard preservation method for marginal-quality organs. Perfusion is dynamic and offers several advantages in comparison with static cold storage. These include the ability to provide a continuous supply of new metabolic substrates, clear metabolic waste products, and perform some degree of organ viability assessment before actual transplantation in the recipient. At the same time, the ongoing importance of static cold storage cannot be overlooked, in particular when it comes to logistical and technical convenience and cost, not to mention the fact that it continues to work well for the majority of transplant allografts. The present review article provides an overview of the fundamental concepts of organ preservation, providing a brief history of static cold preservation and description of the principles behind and basic components of cold preservation solutions. An evaluation of current evidence supporting the use of different preservation solutions in abdominal organ transplantation is provided. As well, the range of solutions used for machine perfusion of abdominal organs is described, as are variations in their compositions related to changing metabolic needs paralleling the raising of the temperature of the perfusate from hypothermic to normothermic range. Finally, appraisal of new preservation solutions that are on the horizon is provided.
Collapse
|
10
|
Wu YC, Yao Y, Tao LS, Wang SX, Hu Y, Li LY, Hu S, Meng X, Yang DS, Li H, Xu T. The role of acetaldehyde dehydrogenase 2 in the pathogenesis of liver diseases. Cell Signal 2023; 102:110550. [PMID: 36464104 DOI: 10.1016/j.cellsig.2022.110550] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/12/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022]
Abstract
Common liver tissue damage is mainly due to the accumulation of toxic aldehydes in lipid peroxidation under oxidative stress. Cumulative toxic aldehydes in the liver can be effectively metabolized by acetaldehyde dehydrogenase 2 (ALDH2), thereby alleviating various liver diseases. Notably, gene mutation of ALDH2 leads to impaired ALDH2 enzyme activity, thus aggravating the progress of liver diseases. However, the relationship and specific mechanism between ALDH2 and liver diseases are not clear. Consequently, the review explains the relationship between ALDH2 and liver diseases such as alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), liver fibrosis and hepatocellular carcinoma (HCC). In addition, this review also discusses ALDH2 as a potential therapeutic target for various liver diseases,and focuses on summarizing the regulatory mechanism of ALDH2 in these liver diseases.
Collapse
Affiliation(s)
- Yin-Cui Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Yan Yao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Liang-Song Tao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Shu-Xian Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Ying Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Liang-Yun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Shuang Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Xiang Meng
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Da-Shuai Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - He Li
- The Second Hospital of Anhui Medical University, Hefei, Anhui Province 230001, China.
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, China.
| |
Collapse
|
11
|
Panconesi R, Widmer J, Carvalho MF, Eden J, Dondossola D, Dutkowski P, Schlegel A. Mitochondria and ischemia reperfusion injury. Curr Opin Organ Transplant 2022; 27:434-445. [PMID: 35950880 DOI: 10.1097/mot.0000000000001015] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW This review describes the role of mitochondria in ischemia-reperfusion-injury (IRI). RECENT FINDINGS Mitochondria are the power-house of our cells and play a key role for the success of organ transplantation. With their respiratory chain, mitochondria are the main energy producers, to fuel metabolic processes, control cellular signalling and provide electrochemical integrity. The mitochondrial metabolism is however severely disturbed when ischemia occurs. Cellular energy depletes rapidly and various metabolites, including Succinate accumulate. At reperfusion, reactive oxygen species are immediately released from complex-I and initiate the IRI-cascade of inflammation. Prior to the development of novel therapies, the underlying mechanisms should be explored to target the best possible mitochondrial compound. A clinically relevant treatment should recharge energy and reduce Succinate accumulation before organ implantation. While many interventions focus instead on a specific molecule, which may inhibit downstream IRI-inflammation, mitochondrial protection can be directly achieved through hypothermic oxygenated perfusion (HOPE) before transplantation. SUMMARY Mitochondria are attractive targets for novel molecules to limit IRI-associated inflammation. Although dynamic preservation techniques could serve as delivery tool for new therapeutic interventions, their own inherent mechanism should not only be studied, but considered as key treatment to reduce mitochondrial injury, as seen with the HOPE-approach.
Collapse
Affiliation(s)
- Rebecca Panconesi
- General Surgery 2U-Liver Transplant Unit, Department of Surgery, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy
| | - Jeannette Widmer
- Swiss HPB and Transplant Center, Department of Visceral Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | | | - Janina Eden
- Swiss HPB and Transplant Center, Department of Visceral Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Daniele Dondossola
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Center for Preclinical Research, Milan, Italy
| | - Philipp Dutkowski
- Swiss HPB and Transplant Center, Department of Visceral Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Andrea Schlegel
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy
- Swiss HPB and Transplant Center, Department of Visceral Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Center for Preclinical Research, Milan, Italy
| |
Collapse
|
12
|
Bardallo RG, da Silva RT, Carbonell T, Palmeira C, Folch-Puy E, Roselló-Catafau J, Adam R, Panisello-Rosello A. Liver Graft Hypothermic Static and Oxygenated Perfusion (HOPE) Strategies: A Mitochondrial Crossroads. Int J Mol Sci 2022; 23:5742. [PMID: 35628554 PMCID: PMC9143961 DOI: 10.3390/ijms23105742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/06/2022] [Accepted: 05/18/2022] [Indexed: 12/14/2022] Open
Abstract
Marginal liver grafts, such as steatotic livers and those from cardiac death donors, are highly vulnerable to ischemia-reperfusion injury that occurs in the complex route of the graft from "harvest to revascularization". Recently, several preservation methods have been developed to preserve liver grafts based on hypothermic static preservation and hypothermic oxygenated perfusion (HOPE) strategies, either combined or alone. However, their effects on mitochondrial functions and their relevance have not yet been fully investigated, especially if different preservation solutions/effluents are used. Ischemic liver graft damage is caused by oxygen deprivation conditions during cold storage that provoke alterations in mitochondrial integrity and function and energy metabolism breakdown. This review deals with the relevance of mitochondrial machinery in cold static preservation and how the mitochondrial respiration function through the accumulation of succinate at the end of cold ischemia is modulated by different preservation solutions such as IGL-2, HTK, and UW (gold-standard reference). IGL-2 increases mitochondrial integrity and function (ALDH2) when compared to UW and HTK. This mitochondrial protection by IGL-2 also extends to protective HOPE strategies when used as an effluent instead of Belzer MP. The transient oxygenation in HOPE sustains the mitochondrial machinery at basal levels and prevents, in part, the accumulation of energy metabolites such as succinate in contrast to those that occur in cold static preservation conditions. Additionally, several additives for combating oxygen deprivation and graft energy metabolism breakdown during hypothermic static preservation such as oxygen carriers, ozone, AMPK inducers, and mitochondrial UCP2 inhibitors, and whether they are or not to be combined with HOPE, are presented and discussed. Finally, we affirm that IGL-2 solution is suitable for protecting graft mitochondrial machinery and simplifying the complex logistics in clinical transplantation where traditional (static preservation) and innovative (HOPE) strategies may be combined. New mitochondrial markers are presented and discussed. The final goal is to take advantage of marginal livers to increase the pool of suitable organs and thereby shorten patient waiting lists at transplantation clinics.
Collapse
Affiliation(s)
- Raquel G. Bardallo
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain; (R.G.B.); (T.C.)
| | - Rui T. da Silva
- Center for Neuroscience and Cell Biology, Universidade Coimbra, 3000-370 Coimbra, Portugal; (R.T.d.S.); (C.P.)
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC)-IDIBAPS, CIBEREHD, 08036 Barcelona, Catalonia, Spain; (E.F.-P.); (J.R.-C.)
| | - Teresa Carbonell
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain; (R.G.B.); (T.C.)
| | - Carlos Palmeira
- Center for Neuroscience and Cell Biology, Universidade Coimbra, 3000-370 Coimbra, Portugal; (R.T.d.S.); (C.P.)
| | - Emma Folch-Puy
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC)-IDIBAPS, CIBEREHD, 08036 Barcelona, Catalonia, Spain; (E.F.-P.); (J.R.-C.)
| | - Joan Roselló-Catafau
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC)-IDIBAPS, CIBEREHD, 08036 Barcelona, Catalonia, Spain; (E.F.-P.); (J.R.-C.)
| | - René Adam
- Centre Hépato-Biliaire, AP-PH, Hôpital Paul Brousse, 94800 Villejuif, France;
| | - Arnau Panisello-Rosello
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC)-IDIBAPS, CIBEREHD, 08036 Barcelona, Catalonia, Spain; (E.F.-P.); (J.R.-C.)
- Centre Hépato-Biliaire, AP-PH, Hôpital Paul Brousse, 94800 Villejuif, France;
| |
Collapse
|
13
|
Panisello-Roselló A, da Silva RT, Folch-Puy E, Carbonell T, Palmeira CM, Fondevila C, Roselló-Catafau J, Adam R. The Use of a Single, Novel Preservation Solution in Split Liver Transplantation and Hypothermic Oxygenated Machine Perfusion. Transplantation 2022; 106:e187-e188. [PMID: 35192583 DOI: 10.1097/tp.0000000000003984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Arnau Panisello-Roselló
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC-IDIBAPS, Barcelona, Spain
- AP-HP Hôpital Paul Brousse, UR, Chronothérapie, Cancers et Transplantation, Université Paris-Saclay, Villejuif, Paris, France
- Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - Rui T da Silva
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC-IDIBAPS, Barcelona, Spain
| | - Emma Folch-Puy
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC-IDIBAPS, Barcelona, Spain
- Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - Teresa Carbonell
- Department of Physiology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Carlos M Palmeira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal and Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | | | - Joan Roselló-Catafau
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC-IDIBAPS, Barcelona, Spain
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal and Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - René Adam
- AP-HP Hôpital Paul Brousse, UR, Chronothérapie, Cancers et Transplantation, Université Paris-Saclay, Villejuif, Paris, France
| |
Collapse
|
14
|
Shaping of Hepatic Ischemia/Reperfusion Events: The Crucial Role of Mitochondria. Cells 2022; 11:cells11040688. [PMID: 35203337 PMCID: PMC8870414 DOI: 10.3390/cells11040688] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/10/2022] Open
Abstract
Hepatic ischemia reperfusion injury (HIRI) is a major hurdle in many clinical scenarios, including liver resection and transplantation. Various studies and countless surgical events have led to the observation of a strong correlation between HIRI induced by liver transplantation and early allograft-dysfunction development. The detrimental impact of HIRI has driven the pursuit of new ways to alleviate its adverse effects. At the core of HIRI lies mitochondrial dysfunction. Various studies, from both animal models and in clinical settings, have clearly shown that mitochondrial function is severely hampered by HIRI and that its preservation or restoration is a key indicator of successful organ recovery. Several strategies have been thus implemented throughout the years, targeting mitochondrial function. This work briefly discusses some the most utilized approaches, ranging from surgical practices to pharmacological interventions and highlights how novel strategies can be investigated and implemented by intricately discussing the way mitochondrial function is affected by HIRI.
Collapse
|
15
|
Kuro A, Morimoto N, Hara T, Matsuoka Y, Fukui M, Hihara M, Kusumoto K, Kakudo N. Protection of rat artery grafts from tissue damage by voltage-applied supercooling. Med Mol Morphol 2022; 55:91-99. [DOI: 10.1007/s00795-021-00310-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/05/2021] [Indexed: 10/19/2022]
|
16
|
PEG35 as a Preconditioning Agent against Hypoxia/Reoxygenation Injury. Int J Mol Sci 2022; 23:ijms23031156. [PMID: 35163080 PMCID: PMC8834864 DOI: 10.3390/ijms23031156] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/22/2022] Open
Abstract
Pharmacological conditioning is a protective strategy against ischemia/reperfusion injury, which occurs during liver resection and transplantation. Polyethylene glycols have shown multiple benefits in cell and organ preservation, including antioxidant capacity, edema prevention and membrane stabilization. Recently, polyethylene glycol 35 kDa (PEG35) preconditioning resulted in decreased hepatic injury and protected the mitochondria in a rat model of cold ischemia. Thus, the study aimed to decipher the mechanisms underlying PEG35 preconditioning-induced protection against ischemia/reperfusion injury. A hypoxia/reoxygenation model using HepG2 cells was established to evaluate the effects of PEG35 preconditioning. Several parameters were assessed, including cell viability, mitochondrial membrane potential, ROS production, ATP levels, protein content and gene expression to investigate autophagy, mitochondrial biogenesis and dynamics. PEG35 preconditioning preserved the mitochondrial function by decreasing the excessive production of ROS and subsequent ATP depletion, as well as by recovering the membrane potential. Furthermore, PEG35 increased levels of autophagy-related proteins and the expression of genes involved in mitochondrial biogenesis and fusion. In conclusion, PEG35 preconditioning effectively ameliorates hepatic hypoxia/reoxygenation injury through the enhancement of autophagy and mitochondrial quality control. Therefore, PEG35 could be useful as a potential pharmacological tool for attenuating hepatic ischemia/reperfusion injury in clinical practice.
Collapse
|
17
|
Bardallo RG, Company-Marin I, Folch-Puy E, Roselló-Catafau J, Panisello-Rosello A, Carbonell T. PEG35 and Glutathione Improve Mitochondrial Function and Reduce Oxidative Stress in Cold Fatty Liver Graft Preservation. Antioxidants (Basel) 2022; 11:antiox11010158. [PMID: 35052662 PMCID: PMC8772919 DOI: 10.3390/antiox11010158] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 02/05/2023] Open
Abstract
The need to meet the demand for transplants entails the use of steatotic livers, more vulnerable to ischemia-reperfusion (IR) injury. Therefore, finding the optimal composition of static cold storage (SCS) preservation solutions is crucial. Given that ROS regulation is a therapeutic strategy for liver IR injury, we have added increasing concentrations of PEG35 and glutathione (GSH) to the preservation solutions (IGL-1 and IGL-2) and evaluated the possible protection against energy depletion and oxidative stress. Fatty livers from obese Zücker rats were isolated and randomly distributed in the control (Sham) preserved (24 h at 4 °C) in IGL-0 (without PEG35 and 3 mmol/L GSH), IGL-1 (1 g/L PEG35, and 3 mmol/L GSH), and IGL-2 (5 g/L PEG35 and 9 mmol/L GSH). Energy metabolites (ATP and succinate) and the expression of mitochondrial oxidative phosphorylation complexes (OXPHOS) were determined. Mitochondrial carrier uncoupling protein 2 (UCP2), PTEN-induced kinase 1 (PINK1), nuclear factor-erythroid 2 related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and the inflammasome (NLRP3) expressions were analyzed. As biomarkers of oxidative stress, protein oxidation (AOPP) and carbonylation (DNP derivatives), and lipid peroxidation (malondialdehyde (MDA)–thiobarbituric acid (TBA) adducts) were measured. In addition, the reduced and oxidized glutathione (GSH and GSSG) and enzymatic (Cu–Zn superoxide dismutase (SOD), CAT, GSH S-T, GSH-Px, and GSH-R) antioxidant capacities were determined. Our results showed that the cold preservation of fatty liver graft depleted ATP, accumulated succinate and increased oxidative stress. In contrast, the preservation with IGL-2 solution maintained ATP production, decreased succinate levels and increased OXPHOS complexes I and II, UCP2, and PINK-1 expression, therefore maintaining mitochondrial integrity. IGL-2 also protected against oxidative stress by increasing Nrf2 and HO-1 expression and GSH levels. Therefore, the presence of PEG35 in storage solutions may be a valuable option as an antioxidant agent for organ preservation in clinical transplantation.
Collapse
Affiliation(s)
- Raquel G. Bardallo
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain; (R.G.B.); (I.C.-M.)
| | - Idoia Company-Marin
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain; (R.G.B.); (I.C.-M.)
| | - Emma Folch-Puy
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona—Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain; (E.F.-P.); (J.R.-C.); (A.P.-R.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Joan Roselló-Catafau
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona—Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain; (E.F.-P.); (J.R.-C.); (A.P.-R.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Arnau Panisello-Rosello
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona—Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain; (E.F.-P.); (J.R.-C.); (A.P.-R.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Teresa Carbonell
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain; (R.G.B.); (I.C.-M.)
- Correspondence:
| |
Collapse
|
18
|
Bardallo RG, Panisello‐Roselló A, Sanchez‐Nuno S, Alva N, Roselló‐Catafau J, Carbonell T. Nrf2 and Oxidative Stress in liver Ischemia/Reperfusion Injury. FEBS J 2021; 289:5463-5479. [PMID: 34967991 DOI: 10.1111/febs.16336] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/18/2021] [Accepted: 12/29/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Raquel G. Bardallo
- Department of Cell Biology, Physiology and Immunology Universitat de Barcelona Spain
| | - Arnau Panisello‐Roselló
- Experimental Pathology Department Institute of Biomedical Research of Barcelona (IIBB) CSIC‐IDIBAPS Barcelona Spain
| | - Sergio Sanchez‐Nuno
- Department of Cell Biology, Physiology and Immunology Universitat de Barcelona Spain
| | - Norma Alva
- Department of Cell Biology, Physiology and Immunology Universitat de Barcelona Spain
| | - Joan Roselló‐Catafau
- Experimental Pathology Department Institute of Biomedical Research of Barcelona (IIBB) CSIC‐IDIBAPS Barcelona Spain
| | - Teresa Carbonell
- Department of Cell Biology, Physiology and Immunology Universitat de Barcelona Spain
| |
Collapse
|
19
|
Da Silva RT, Bardallo RG, Folch-Puy E, Carbonell T, Palmeira CM, Fondevila C, Adam R, Roselló-Catafau J, Panisello-Roselló A. IGL-2 as a Unique Solution for Cold Static Preservation and Machine Perfusion in Liver and Mitochondrial Protection. Transplant Proc 2021; 54:73-76. [PMID: 34893354 DOI: 10.1016/j.transproceed.2021.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/04/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023]
Abstract
Hypothermic static cold storage and machine perfusion strategies remain the clinical standard of care for liver graft preservation. Recently, the protection of the mitochondrial function and the energetic levels derived from it has emerged as one of the key points for organ preservation. However, the complex interactions between liver mitochondrial protection and its relation with the use of solutions/perfusates has been poorly investigated. The use of an alternative IGL-2 solution to Belzer MPS one for hypothermic oxygenated perfusion (HOPE), as well as in static cold storage, introduce a new kind of perfusate to be used for liver grafts subjected to HOPE strategies, either alone or in combination with hypothermic static preservation strategies. IGL-2 not only protected mitochondrial integrity, but also avoided the mixture of different solutions/perfusates reducing. Thus, the operational logistics and times prior to transplantation, a critical factor when suboptimal organs such as donation after circulatory death or steatotic ones, are used for transplantation. The future challenges in graft preservation will go through (1) the improvement of the mitochondrial status and its energetic status during the ischemia and (2) the development of strategies to reduce ischemic times at low temperatures, which should translate in a better transplantation outcome.
Collapse
Affiliation(s)
- Rui Teixeira Da Silva
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Catalonia, Spain
| | - Raquel G Bardallo
- Department of Physiology, Faculty of Biology, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Emma Folch-Puy
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Catalonia, Spain
| | - Teresa Carbonell
- Department of Physiology, Faculty of Biology, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Carlos M Palmeira
- Department of Life Sciences, University of Coimbra, Portugal and Center for Neurosciences and Cell Biology, University of Coimbra, Portugal
| | | | - René Adam
- AP-HP Hôpital Paul Brousse, (AR) Chronothérapie, Cancers et Transplantation, Université Par-is-Saclay, Paris, France
| | - Joan Roselló-Catafau
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Catalonia, Spain
| | - Arnau Panisello-Roselló
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Catalonia, Spain.
| |
Collapse
|