1
|
Wang J, Nithianantham S, Chai SC, Jung YH, Yang L, Ong HW, Li Y, Zhang Y, Miller DJ, Chen T. Decoding the selective chemical modulation of CYP3A4. Nat Commun 2025; 16:3423. [PMID: 40210880 PMCID: PMC11985932 DOI: 10.1038/s41467-025-58749-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 04/01/2025] [Indexed: 04/12/2025] Open
Abstract
Drug-drug interactions associate with concurrent uses of multiple medications. Cytochrome P450 (CYP) 3A4 metabolizes a large portion of marketed drugs. To maintain the efficacy of drugs metabolized by CYP3A4, pan-CYP3A inhibitors such as ritonavir are often co-administered. Although selective CYP3A4 inhibitors have greater therapeutic benefits as they avoid inhibiting unintended CYPs and undesirable clinical consequences, the high homology between CYP3A4 and CYP3A5 has hampered the development of such selective inhibitors. Here, we report a series of selective CYP3A4 inhibitors with scaffolds identified by high-throughput screening. Structural, functional, and computational analyses reveal that the differential C-terminal loop conformations and two distinct ligand binding surfaces disfavor the binding of selective CYP3A4 inhibitors to CYP3A5. Structure-guided design of compounds validates the model and yields analogs that are selective for CYP3A4 versus other major CYPs. These findings demonstrate the feasibility to selectively inhibit CYP3A4 and provide guidance for designing better CYP3A4 selective inhibitors.
Collapse
Affiliation(s)
- Jingheng Wang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stanley Nithianantham
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sergio C Chai
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Young-Hwan Jung
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lei Yang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Han Wee Ong
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yong Li
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yifan Zhang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Darcie J Miller
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
2
|
Hsu MH, Johnson EF. Differential Effects of Clotrimazole on X-Ray Crystal Structures of Human Cytochromes P450 3A5 and 3A4. Drug Metab Dispos 2023; 51:1642-1650. [PMID: 37770228 PMCID: PMC10658909 DOI: 10.1124/dmd.123.001464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023] Open
Abstract
Cytochromes P450 CYP3A5 and CYP3A4 exhibit differential plasticity that underlies differences in drug metabolism and drug-drug interactions. To extend previous studies, CYP3A4 and CYP3A5 were cocrystallized with clotrimazole, a compact ligand that binds to the heme iron in the catalytic center of the active site. Binding studies indicate that clotrimazole exhibits tight binding to CYP3A5 with a binding affinity (Kd) of <0.01 μM like that of CYP3A4. A single clotrimazole is bound to the heme iron in CYP3A4 that triggers expansion of active site cavity that reflects a loss of aromatic interactions between phenylalanine sidechains in the distal active site and increased conformational entropy for the F-F' connector due to reorientation of Phe-304 to accommodate clotrimazole. In contrast to CYP3A4, the CYP3A5 Phe-304 exhibits an induced fit along with Phe-213 to form edge-to-face aromatic interactions with heme-bound clotrimazole. These aromatic interactions between aromatic amino acids propagate by induced fits with a second clotrimazole residing in the distal active site and a third clotrimazole bound in an expanded entrance channel as well as between the three clotrimazoles. The large, expanded entrance channel surrounded by the C-terminal loop and the F' and A' helices in CYP3A5 suggests conformational selection for the binding of clotrimazole due to its large girth, which may also cause the entrance channel to remain open after the binding of the first clotrimazole to the heme iron. The additional binding sites suggest a path for sequential binding of one molecule to reach and bind to the heme iron. SIGNIFICANCE STATEMENT: Clotrimazole binds to the heme iron of CYP3A5 and CYP3A4. In CYP3A5, two clotrimazoles also bind in the distal active site and in an expanded entrance channel. Aromatic interactions between clotrimazoles and phenylalanine sidechains including Phe-304 indicate induced fits for each clotrimazole. In contrast to CYP3A5, displacement of the CYP3A4 Phe-304 rotamer by clotrimazole leads to extensive disruption of phenylalanine interactions that limit the space above the heme, to an expanded active site cavity, and to increased CYP3A4 conformational heterogeneity.
Collapse
Affiliation(s)
- Mei-Hui Hsu
- Department of Molecular Medicine, Scripps Research, La Jolla, California
| | - Eric F Johnson
- Department of Molecular Medicine, Scripps Research, La Jolla, California
| |
Collapse
|
3
|
Al-saraireh YM, Alshammari FOFO, Abu-azzam OH, Al-dalain SM, Al-sarayra YM, Haddad M, Makeen H, Al-Qtaitat A, Almermesh M, Al-sarayreh SA. Targeting Cytochrome P450 Enzymes in Ovarian Cancers: New Approaches to Tumor-Selective Intervention. Biomedicines 2023; 11:2898. [PMID: 38001897 PMCID: PMC10669316 DOI: 10.3390/biomedicines11112898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Over the past decade, there have been significant developments in treatment for ovarian cancer, yet the lack of targeted therapy with few side effects still represents a major issue. The cytochrome P450 (CYP) enzyme family plays a vital role in the tumorigenesis process and metabolism of drugs and has a negative impact on therapy outcomes. Gaining more insight into CYP expression is crucial to understanding the pathophysiology of ovarian cancer since many isoforms are essential to the metabolism of xenobiotics and steroid hormones, which drive the disease's development. To the best of our knowledge, no review articles have documented the intratumoral expression of CYPs and their implications in ovarian cancer. Therefore, the purpose of this review is to provide a clear understanding of differential CYP expression in ovarian cancer and its implications for the prognosis of ovarian cancer patients, together with the effects of CYP polymorphisms on chemotherapy metabolism. Finally, we discuss opportunities to exploit metabolic CYP expression for the development of novel therapeutic methods to treat ovarian cancer.
Collapse
Affiliation(s)
- Yousef M. Al-saraireh
- Department of Pharmacology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan;
| | - Fatemah O. F. O. Alshammari
- Department of Medical Lab Technology, Faculty of Health Sciences, The Public Authority for Applied Education and Training, Shuwaikh 15432, Kuwait;
| | - Omar H. Abu-azzam
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan;
| | - Sa’ed M. Al-dalain
- Department of Pharmacology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan;
| | - Yahya M. Al-sarayra
- Al-Karak Governmental Hospital, Ministry of Health, P.O. Box 86, Al-Karak 11118, Jordan;
| | - Mansour Haddad
- Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan;
| | - Hafiz Makeen
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan P.O. Box 114, Saudi Arabia;
| | - Aiman Al-Qtaitat
- Department of Anatomy and Histology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan;
- Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Mohammad Almermesh
- Department of Pharmacology, College of Pharmacy, University of Hail, Hail 2440, Saudi Arabia;
| | - Sameeh A. Al-sarayreh
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan;
| |
Collapse
|
4
|
Sevrioukova IF. Interaction of CYP3A4 with caffeine: First insights into multiple substrate binding. J Biol Chem 2023; 299:105117. [PMID: 37524132 PMCID: PMC10470200 DOI: 10.1016/j.jbc.2023.105117] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023] Open
Abstract
Human cytochrome P450 3A4 (CYP3A4) is a major drug-metabolizing enzyme that shows extreme substrate promiscuity. Moreover, its large and malleable active site can simultaneously accommodate several substrate molecules of the same or different nature, which may lead to cooperative binding and allosteric behavior. Due to difficulty of crystallization of CYP3A4-substrate complexes, it remains unknown how multiple substrates can arrange in the active site. We determined crystal structures of CYP3A4 bound to three and six molecules of caffeine, a psychoactive alkaloid serving as a substrate and modulator of CYP3A4. In the ternary complex, one caffeine binds to the active site suitably for C8-hydroxylation, most preferable for CYP3A4. In the senary complex, three caffeine molecules stack parallel to the heme with the proximal ligand poised for 3-N-demethylation. However, the caffeine stack forms extensive hydrophobic interactions that could preclude product dissociation and multiple turnovers. In both complexes, caffeine is also bound in the substrate channel and on the outer surface known as a peripheral site. At all sites, aromatic stacking with the caffeine ring(s) is likely a dominant interaction, while direct and water-mediated polar contacts provide additional stabilization for the substrate-bound complexes. Protein-ligand interactions via the active site R212, intrachannel T224, and peripheral F219 were experimentally confirmed, and the latter two residues were identified as important for caffeine association. Collectively, the structural, spectral, and mutagenesis data provide valuable insights on the ligand binding mechanism and help better understand how purine-based pharmaceuticals and other aromatic compounds could interact with CYP3A4 and mediate drug-drug interactions.
Collapse
Affiliation(s)
- Irina F Sevrioukova
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA.
| |
Collapse
|
5
|
Liu J, Kandel SE, Lampe JN, Scott EE. Human cytochrome P450 3A7 binding four copies of its native substrate dehydroepiandrosterone 3-sulfate. J Biol Chem 2023; 299:104993. [PMID: 37392852 PMCID: PMC10388207 DOI: 10.1016/j.jbc.2023.104993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/05/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023] Open
Abstract
Human fetal cytochrome P450 3A7 (CYP3A7) is involved in both xenobiotic metabolism and the estriol biosynthetic pathway. Although much is understood about cytochrome P450 3A4 and its role in adult drug metabolism, CYP3A7 is poorly characterized in terms of its interactions with both categories of substrates. Herein, a crystallizable mutated form of CYP3A7 was saturated with its primary endogenous substrate dehydroepiandrosterone 3-sulfate (DHEA-S) to yield a 2.6 Å X-ray structure revealing the unexpected capacity to simultaneously bind four copies of DHEA-S. Two DHEA-S molecules are located in the active site proper, one in a ligand access channel, and one on the hydrophobic F'-G' surface normally embedded in the membrane. While neither DHEA-S binding nor metabolism exhibit cooperative kinetics, the current structure is consistent with cooperativity common to CYP3A enzymes. Overall, this information suggests that mechanism(s) of CYP3A7 interactions with steroidal substrates are complex.
Collapse
Affiliation(s)
- Jinghan Liu
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Sylvie E Kandel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA
| | - Jed N Lampe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA
| | - Emily E Scott
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Departments of Pharmacology, Biological Chemistry and Programs in Chemical Biology and Biophysics, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
6
|
Cronin JM, Yu AM. Recombinant Technologies Facilitate Drug Metabolism, Pharmacokinetics, and General Biomedical Research. Drug Metab Dispos 2023; 51:685-699. [PMID: 36948592 PMCID: PMC10197202 DOI: 10.1124/dmd.122.001008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/24/2023] Open
Abstract
The development of safe and effective medications requires a profound understanding of their pharmacokinetic (PK) and pharmacodynamic properties. PK studies have been built through investigation of enzymes and transporters that drive drug absorption, distribution, metabolism, and excretion (ADME). Like many other disciplines, the study of ADME gene products and their functions has been revolutionized through the invention and widespread adoption of recombinant DNA technologies. Recombinant DNA technologies use expression vectors such as plasmids to achieve heterologous expression of a desired transgene in a specified host organism. This has enabled the purification of recombinant ADME gene products for functional and structural characterization, allowing investigators to elucidate their roles in drug metabolism and disposition. This strategy has also been used to offer recombinant or bioengineered RNA (BioRNA) agents to investigate the posttranscriptional regulation of ADME genes. Conventional research with small noncoding RNAs such as microRNAs (miRNAs) and small interfering RNAs has been dependent on synthetic RNA analogs that are known to carry a range of chemical modifications expected to improve stability and PK properties. Indeed, a novel transfer RNA fused pre-miRNA carrier-based bioengineering platform technology has been established to offer consistent and high-yield production of unparalleled BioRNA molecules from Escherichia coli fermentation. These BioRNAs are produced and processed inside living cells to better recapitulate the properties of natural RNAs, representing superior research tools to investigate regulatory mechanisms behind ADME. SIGNIFICANCE STATEMENT: This review article summarizes recombinant DNA technologies that have been an incredible boon in the study of drug metabolism and PK, providing investigators with powerful tools to express nearly any ADME gene products for functional and structural studies. It further overviews novel recombinant RNA technologies and discusses the utilities of bioengineered RNA agents for the investigation of ADME gene regulation and general biomedical research.
Collapse
Affiliation(s)
- Joseph M Cronin
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA (J.M.C., A.-M.Y.)
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA (J.M.C., A.-M.Y.)
| |
Collapse
|
7
|
Hvizdak M, Kandel SE, Work HM, Gracey EG, McCullough RL, Lampe JN. Per- and polyfluoroalkyl substances (PFAS) inhibit cytochrome P450 CYP3A7 through direct coordination to the heme iron and water displacement. J Inorg Biochem 2023; 240:112120. [PMID: 36638633 PMCID: PMC10016736 DOI: 10.1016/j.jinorgbio.2023.112120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/17/2022] [Accepted: 01/01/2023] [Indexed: 01/05/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a chemical class of highly stable, fluorinated compounds popular for use in a variety of consumer products. PFAS environmental persistence in drinking water contributes to acute exposure in humans and subsequent bioaccumulation of the compounds in the liver and lung tissue. Prenatal PFAS exposure has been associated with lowered birth weight, premature birth, and developmental defects including cranio-facial abnormalities. The cytochrome P450 enzyme CYP3A7 is responsible for facilitating a variety of reactions essential for proper fetal development in humans. In addition to drug metabolism, CYP3A7 is responsible for metabolizing endogenous ligands in the developing human liver, including the steroid precursor dehydroepiandrosterone 3-sulfate (DHEA-S), essential for estriol synthesis during pregnancy, along with the morphogen all-trans-retinoic acid (atRA). Interference with estriol synthesis during pregnancy, as well as atRA clearance, is known to result in similar effects associated with prenatal PFAS exposure including lowered birth weight, premature birth, and developmental defects. We hypothesized that PFAS compounds bind to the CYP3A7 enzyme resulting in its inhibition. We implemented a series of binding studies using spectral characterization of six PFAS compounds (PFOA, PFOS, GenX, PFNA, PFNS, and PFHxS), and evaluated their interactions with recombinant CYP3A7. In addition, we screened PFAS for their ability to inhibit CYP3A7 oxidative activity using dibenzylfluorescein, a fluorescent probe, and DHEA-S, an endogenous substrate of CYP3A7. Our data demonstrate that of the six PFAS tested, PFOA, PFOS, PFNA, and PFHxS bind to and inhibit CYP3A7.
Collapse
Affiliation(s)
- Michaela Hvizdak
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Sylvie E Kandel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Hannah M Work
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Emily G Gracey
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Rebecca L McCullough
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Jed N Lampe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America; Structural Biology and Biochemistry Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America.
| |
Collapse
|
8
|
Klyushova LS, Perepechaeva ML, Grishanova AY. The Role of CYP3A in Health and Disease. Biomedicines 2022; 10:2686. [PMID: 36359206 PMCID: PMC9687714 DOI: 10.3390/biomedicines10112686] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
CYP3A is an enzyme subfamily in the cytochrome P450 (CYP) superfamily and includes isoforms CYP3A4, CYP3A5, CYP3A7, and CYP3A43. CYP3A enzymes are indiscriminate toward substrates and are unique in that these enzymes metabolize both endogenous compounds and diverse xenobiotics (including drugs); almost the only common characteristic of these compounds is lipophilicity and a relatively large molecular weight. CYP3A enzymes are widely expressed in human organs and tissues, and consequences of these enzymes' activities play a major role both in normal regulation of physiological levels of endogenous compounds and in various pathological conditions. This review addresses these aspects of regulation of CYP3A enzymes under physiological conditions and their involvement in the initiation and progression of diseases.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, 630117 Novosibirsk, Russia
| | | |
Collapse
|
9
|
Kabir M, Padilha EC, Shah P, Huang R, Sakamuru S, Gonzalez E, Ye L, Hu X, Henderson MJ, Xia M, Xu X. Identification of Selective CYP3A7 and CYP3A4 Substrates and Inhibitors Using a High-Throughput Screening Platform. Front Pharmacol 2022; 13:899536. [PMID: 35847040 PMCID: PMC9283723 DOI: 10.3389/fphar.2022.899536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/27/2022] [Indexed: 11/26/2022] Open
Abstract
Cytochrome P450 (CYP) 3A7 is one of the major xenobiotic metabolizing enzymes in human embryonic, fetal, and newborn liver. CYP3A7 expression has also been observed in a subset of the adult population, including pregnant women, as well as in various cancer patients. The characterization of CYP3A7 is not as extensive as other CYPs, and health authorities have yet to provide guidance towards DDI assessment. To identify potential CYP3A7-specific molecules, we used a P450-Glo CYP3A7 enzyme assay to screen a library of ∼5,000 compounds, including FDA-approved drugs and drug-like molecules, and compared these screening data with that from a P450-Glo CYP3A4 assay. Additionally, a subset of 1,000 randomly selected compounds were tested in a metabolic stability assay. By combining the data from the qHTS P450-Glo and metabolic stability assays, we identified several chemical features important for CYP3A7 selectivity. Halometasone was chosen for further evaluation as a potential CYP3A7-selective inhibitor using molecular docking. From the metabolic stability assay, we identified twenty-two CYP3A7-selective substrates over CYP3A4 in supersome setting. Our data shows that CYP3A7 has ligand promiscuity, much like CYP3A4. Furthermore, we have established a large, high-quality dataset that can be used in predictive modeling for future drug metabolism and interaction studies.
Collapse
Affiliation(s)
- Md Kabir
- Division of Pre-Clinical Innovation, National Center for Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, United States
- Department of Pharmacology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Elias C. Padilha
- Division of Pre-Clinical Innovation, National Center for Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, United States
| | - Pranav Shah
- Division of Pre-Clinical Innovation, National Center for Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, United States
| | - Ruili Huang
- Division of Pre-Clinical Innovation, National Center for Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, United States
| | - Srilatha Sakamuru
- Division of Pre-Clinical Innovation, National Center for Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, United States
| | - Eric Gonzalez
- Division of Pre-Clinical Innovation, National Center for Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, United States
- Novartis Institutes for BioMedical Research, Cambridge, MA, United States
| | - Lin Ye
- Division of Pre-Clinical Innovation, National Center for Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, United States
| | - Xin Hu
- Division of Pre-Clinical Innovation, National Center for Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, United States
| | - Mark J. Henderson
- Division of Pre-Clinical Innovation, National Center for Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, United States
| | - Menghang Xia
- Division of Pre-Clinical Innovation, National Center for Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, United States
- *Correspondence: Menghang Xia, ; Xin Xu,
| | - Xin Xu
- Division of Pre-Clinical Innovation, National Center for Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, United States
- *Correspondence: Menghang Xia, ; Xin Xu,
| |
Collapse
|