1
|
Dali R, Langlet F. Tanycytes in the nexus of hypothalamic inflammation, appetite control, and obesity. Physiol Behav 2025; 296:114917. [PMID: 40222438 DOI: 10.1016/j.physbeh.2025.114917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/16/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
Hypothalamic inflammation has been identified as a critical factor driving the development of obesity and associated metabolic disorders. This inflammation-related disruption of energy balance relies on alterations in metabolic cues sensing and hypothalamic cellular functions, together leading to overeating and weight gain. Within the hypothalamic cellular networks controlling energy balance, recent studies have highlighted the significance of glial dysfunction in these processes, suggesting that these cells could provide new avenues for weight loss therapies. Glia rapidly activates following the consumption of a high-fat diet, even after a very short exposure, and contributes to the disruption of the entire system through inflammatory crosstalk. This review explores recent progress in understanding the molecular interactions between glial cells and neurons in hypothalamic inflammation related to obesity, diabetes, and associated complications. Notably, it highlights specialized ependymal cells called tanycytes, whose role is still underestimated in hypothalamic inflammation, and examines the potential for targeting this cell type as a treatment strategy for metabolic disorders.
Collapse
Affiliation(s)
- Rafik Dali
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Fanny Langlet
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
2
|
Asimakidou E, Saipuljumri EN, Lo CH, Zeng J. Role of metabolic dysfunction and inflammation along the liver-brain axis in animal models with obesity-induced neurodegeneration. Neural Regen Res 2025; 20:1069-1076. [PMID: 38989938 PMCID: PMC11438328 DOI: 10.4103/nrr.nrr-d-23-01770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/26/2024] [Indexed: 07/12/2024] Open
Abstract
The interaction between metabolic dysfunction and inflammation is central to the development of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Obesity-related conditions like type 2 diabetes and non-alcoholic fatty liver disease exacerbate this relationship. Peripheral lipid accumulation, particularly in the liver, initiates a cascade of inflammatory processes that extend to the brain, influencing critical metabolic regulatory regions. Ceramide and palmitate, key lipid components, along with lipid transporters lipocalin-2 and apolipoprotein E, contribute to neuroinflammation by disrupting blood-brain barrier integrity and promoting gliosis. Peripheral insulin resistance further exacerbates brain insulin resistance and neuroinflammation. Preclinical interventions targeting peripheral lipid metabolism and insulin signaling pathways have shown promise in reducing neuroinflammation in animal models. However, translating these findings to clinical practice requires further investigation into human subjects. In conclusion, metabolic dysfunction, peripheral inflammation, and insulin resistance are integral to neuroinflammation and neurodegeneration. Understanding these complex mechanisms holds potential for identifying novel therapeutic targets and improving outcomes for neurodegenerative diseases.
Collapse
Affiliation(s)
- Evridiki Asimakidou
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Eka Norfaishanty Saipuljumri
- School of Applied Science, Republic Polytechnic, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Chih Hung Lo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jialiu Zeng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
3
|
Ubaldo-Reyes LM, Espitia-Bautista E, Barajas-Martínez A, Martínez-Tapia R, Rodríguez-Mata V, Noriega-Navarro R, Escalona R, Castillo-Hernández J, Pérez-Torres A, Navarro L. High-Fat Diet-Induced Blood-Brain Barrier Dysfunction: Impact on Allodynia and Motor Coordination in Rats. Int J Mol Sci 2024; 25:11218. [PMID: 39457000 PMCID: PMC11508281 DOI: 10.3390/ijms252011218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
The associations among increased pain sensitivity, obesity, and systemic inflammation have not been described as related to BBB dysfunctions. To analyze the metabolic, behavioral, and inflammatory effects of a high-fat diet (HFD) and ultrastructural modifications in brain regions, we used an in vivo experimental model. Adult male Wistar rats were randomly assigned to one of two conditions, an ad libitum control group or an HFD (60%)-fed group, for eight weeks. At the end of the protocol, glucose and insulin tolerance tests were performed. Additionally, we analyzed the response to a normally innocuous mechanical stimulus and changes in motor coordination. At the end of the protocol, HFD-fed rats presented increased HOMA-IR and metabolic syndrome (MetS) prevalence. HFD-fed rats also developed an increased nociceptive response to mechanical stimuli and neurological injury, resulting in impaired motor function. Hypothalamus and cerebellum neurons from HFD-fed rats presented with nuclear swelling, an absence of nucleoli, and karyolysis. These results reveal that HFD consumption affects vital brain structures such as the cerebellum, hippocampus, and hypothalamus. This, in turn, could be producing neuronal damage, impairing cellular communication, and consequently altering motricity and pain sensitivity. Although direct evidence of a causal link between BBB dysfunction and sensory-motor changes was not observed, understanding the association uncovered in this study could lead to targeted therapeutic strategies.
Collapse
Affiliation(s)
- Laura M. Ubaldo-Reyes
- Department of Anatomy, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Estefania Espitia-Bautista
- Laboratory of Molecular Neurophysiology, National Institute of Psychiatry Ramón de la Fuente, Mexico City 14370, Mexico;
| | - Antonio Barajas-Martínez
- Center for Complexity Science, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Ricardo Martínez-Tapia
- Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (R.M.-T.); (R.N.-N.); (L.N.)
| | - Verónica Rodríguez-Mata
- Department of Histology, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (V.R.-M.); (A.P.-T.)
| | - Roxana Noriega-Navarro
- Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (R.M.-T.); (R.N.-N.); (L.N.)
| | - Rene Escalona
- Laboratory of Embryology and Genetics, Departamento de Embriología y Genética, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Jesús Castillo-Hernández
- Multidisciplinary Academic Unit Middle Zone, Autonomous University of San Luis Potosí, San Luis Potosí 79615, Mexico;
| | - Armando Pérez-Torres
- Department of Histology, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (V.R.-M.); (A.P.-T.)
| | - Luz Navarro
- Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (R.M.-T.); (R.N.-N.); (L.N.)
| |
Collapse
|
4
|
Norazman SI, Mohd Zaffarin AS, Shuid AN, Hassan H, Soleiman IN, Kuan WS, Alias E. A Review of Animal Models for Studying Bone Health in Type-2 Diabetes Mellitus (T2DM) and Obesity. Int J Mol Sci 2024; 25:9399. [PMID: 39273348 PMCID: PMC11394783 DOI: 10.3390/ijms25179399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Preclinical research on diabetes and obesity has been carried out in various animal models over the years. These animal models are developed from genetic manipulation that affects their body metabolism, chemical-induced procedures, diet alteration/modifications, or combinations of the aforementioned approaches. The diabetic and obesity animal models have allowed researchers to not only study the pathological aspect of the diseases but also enable them to screen and explore potential therapeutic compounds. Besides several widely known complications such as macrovascular diseases, diabetic neuropathy, nephropathy and retinopathy, type 2 diabetes mellitus is also known to affect bone health. There is also evidence to suggest obesity affects bone health. Therefore, continuous research needs to be conducted to find a remedy or solution to this matter. Previous literature reported evidence of bone loss in animal models of diabetes and obesity. These findings, as highlighted in this review, further augment the suggestion of an inter-relationship between diabetes, obesity and bone loss.
Collapse
Affiliation(s)
- Saiful Iqbal Norazman
- The Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Anis Syauqina Mohd Zaffarin
- The Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Ahmad Nazrun Shuid
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA, Sg Buloh 47000, Malaysia
| | - Haniza Hassan
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Ima Nirwana Soleiman
- The Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Wong Sok Kuan
- The Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Ekram Alias
- The Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
5
|
Zhang S, Zhang Y, Wen Z, Yang Y, Bu T, Wei R, Chen Y, Ni Q. Jinkui Shenqi pills ameliorate diabetes by regulating hypothalamic insulin resistance and POMC/AgRP expression and activity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155297. [PMID: 38342019 DOI: 10.1016/j.phymed.2023.155297] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/10/2023] [Accepted: 12/16/2023] [Indexed: 02/13/2024]
Abstract
BACKGROUND Research on the imbalance of proopiomelanocortin (POMC)/agouti-related protein (AgRP) neurons in the hypothalamus holds potential insights into the pathophysiology of diabetes. Jinkui Shenqi pills (JSP), a prevalent traditional Chinese medicine, regulate hypothalamic function and treat diabetes. PURPOSE To investigate the hypoglycemic effect of JSP and explore the probable mechanism in treating diabetes. METHODS A type 2 diabetes mouse model was used to investigate the pharmacodynamics of JSP. The glucose-lowering efficacy of JSP was assessed through various metrics including body weight, food consumption, fasting blood glucose (FBG), serum insulin levels, and an oral glucose tolerance test (OGTT). To elucidate the modulatory effects of JSP on hypothalamic mechanisms, we quantified the expression and activity of POMC and AgRP and assessed the insulin-mediated phosphoinositide 3-kinase (PI3K)/protein kinase A (AKT)/forkhead box O1 (FOXO1) pathway in diabetic mice via western blotting and immunohistochemistry. Additionally, primary hypothalamic neurons were exposed to high glucose and palmitic acid levels to induce insulin resistance, and the influence of JSP on POMC/AgRP protein expression and activation was evaluated by PI3K protein inhibition using western blotting and immunofluorescence. RESULTS Medium- and high-dose JSP treatment effectively inhibited appetite, resulting in a steady declining trend in body weight, FBG, and OGTT results in diabetic mice (p < 0.05). These JSP groups also had significantly increased insulin levels (p < 0.05). Importantly, the medium-dose group exhibited notable protection of hypothalamic neuronal and synaptic structures, leading to augmentation of dendritic length and branching (p < 0.05). Furthermore, low-, medium-, and high-dose JSP groups exhibited increased phosphorylated (p) INSR, PI3K, pPI3K, AKT, and pAKT expression, as well as decreased FOXO1 and increased pFOXO1 expression, indicating improved hypothalamic insulin resistance in diabetic mice (p < 0.05). Treatment with 10% JSP-enriched serum produced a marked elevation of both expression and activation of POMC (p < 0.05), with a concurrent reduction in AgRP expression and activation within primary hypothalamic neurons (p < 0.05). Intriguingly, these effects could be attributed to the regulatory dynamics of PI3K activity. CONCLUSION Our findings suggest that JSP can ameliorate diabetes by regulating POMC/AgRP expression and activity. The insulin-mediated PI3K/AKT/FOXO1 pathway plays an important regulatory role in this intricate process.
Collapse
Affiliation(s)
- Shan Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yueying Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Zhige Wen
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yanan Yang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Tianjie Bu
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Ruoyu Wei
- Department of Traditional Chinese Medicine, The Fifth Hospital of Xingtai, Hebei, 054000, China
| | - Yupeng Chen
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Qing Ni
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
6
|
Vesga-Jiménez DJ, Martin C, Barreto GE, Aristizábal-Pachón AF, Pinzón A, González J. Fatty Acids: An Insight into the Pathogenesis of Neurodegenerative Diseases and Therapeutic Potential. Int J Mol Sci 2022; 23:2577. [PMID: 35269720 PMCID: PMC8910658 DOI: 10.3390/ijms23052577] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/12/2022] [Accepted: 01/20/2022] [Indexed: 12/13/2022] Open
Abstract
One of the most common lipids in the human body is palmitic acid (PA), a saturated fatty acid with essential functions in brain cells. PA is used by cells as an energy source, besides being a precursor of signaling molecules and protein tilting across the membrane. Although PA plays physiological functions in the brain, its excessive accumulation leads to detrimental effects on brain cells, causing lipotoxicity. This mechanism involves the activation of toll-like receptors (TLR) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways, with the consequent release of pro-inflammatory cytokines, increased production of reactive oxygen species (ROS), endoplasmic reticulum (ER) stress, and autophagy impairment. Importantly, some of the cellular changes induced by PA lead to an augmented susceptibility to the development of Alzheimer's and Parkinson´s diseases. Considering the complexity of the response to PA and the intrinsic differences of the brain, in this review, we provide an overview of the molecular and cellular effects of PA on different brain cells and their possible relationships with neurodegenerative diseases (NDs). Furthermore, we propose the use of other fatty acids, such as oleic acid or linoleic acid, as potential therapeutic approaches against NDs, as these fatty acids can counteract PA's negative effects on cells.
Collapse
Affiliation(s)
- Diego Julián Vesga-Jiménez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogota 110231, Colombia; (D.J.V.-J.); (A.F.A.-P.)
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA;
| | - Cynthia Martin
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA;
| | - George E. Barreto
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland;
- Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Andrés Felipe Aristizábal-Pachón
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogota 110231, Colombia; (D.J.V.-J.); (A.F.A.-P.)
| | - Andrés Pinzón
- Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Bogota 111321, Colombia;
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogota 110231, Colombia; (D.J.V.-J.); (A.F.A.-P.)
| |
Collapse
|
7
|
Colleluori G, Galli C, Severi I, Perugini J, Giordano A. Early Life Stress, Brain Development, and Obesity Risk: Is Oxytocin the Missing Link? Cells 2022; 11:cells11040623. [PMID: 35203274 PMCID: PMC8870435 DOI: 10.3390/cells11040623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
Obesity disease results from a dysfunctional modulation of the energy balance whose master regulator is the central nervous system. The neural circuitries involved in such function complete their maturation during early postnatal periods, when the brain is highly plastic and profoundly influenced by the environment. This phenomenon is considered as an evolutionary strategy, whereby metabolic functions are adjusted to environmental cues, such as food availability and maternal care. In this timeframe, adverse stimuli may program the body metabolism to maximize energy storage abilities to cope with hostile conditions. Consistently, the prevalence of obesity is higher among individuals who experienced early life stress (ELS). Oxytocin, a hypothalamic neurohormone, regulates the energy balance and modulates social, emotional, and eating behaviors, exerting both central and peripheral actions. Oxytocin closely cooperates with leptin in regulating energy homeostasis. Both oxytocin and leptin impact the neurodevelopment during critical periods and are affected by ELS and obesity. In this review article, we report evidence from the literature describing the effect of postnatal ELS (specifically, disorganized/inconstant maternal care) on the vulnerability to obesity with a focus on the role of oxytocin. We emphasize the existing research gaps and highlight promising directions worthy of exploration. Based on the available data, alterations in the oxytocin system may in part mediate the ELS-induced susceptibility to obesity.
Collapse
Affiliation(s)
- Georgia Colleluori
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Via Tronto 10/A, 60020 Ancona, Italy; (G.C.); (C.G.); (I.S.); (J.P.)
| | - Chiara Galli
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Via Tronto 10/A, 60020 Ancona, Italy; (G.C.); (C.G.); (I.S.); (J.P.)
| | - Ilenia Severi
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Via Tronto 10/A, 60020 Ancona, Italy; (G.C.); (C.G.); (I.S.); (J.P.)
| | - Jessica Perugini
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Via Tronto 10/A, 60020 Ancona, Italy; (G.C.); (C.G.); (I.S.); (J.P.)
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Via Tronto 10/A, 60020 Ancona, Italy; (G.C.); (C.G.); (I.S.); (J.P.)
- Center of Obesity, Marche Polytechnic University-United Hospitals, 60020 Ancona, Italy
- Correspondence: ; Tel.: +39-071-220-6086; Fax: +39-071-220-6087
| |
Collapse
|
8
|
Clayton RW, Lovell-Badge R, Galichet C. The Properties and Functions of Glial Cell Types of the Hypothalamic Median Eminence. Front Endocrinol (Lausanne) 2022; 13:953995. [PMID: 35966104 PMCID: PMC9363565 DOI: 10.3389/fendo.2022.953995] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
The median eminence (ME) is part of the neuroendocrine system (NES) that functions as a crucial interface between the hypothalamus and pituitary gland. The ME contains many non-neuronal cell types, including oligodendrocytes, oligodendrocyte precursor cells (OPCs), tanycytes, astrocytes, pericytes, microglia and other immune cells, which may be involved in the regulation of NES function. For example, in mice, ablation of tanycytes (a special class of ependymal glia with stem cell-like functions) results in weight gain, feeding, insulin insensitivity and increased visceral adipose, consistent with the demonstrated ability of these cells to sense and transport both glucose and leptin, and to differentiate into neurons that control feeding and metabolism in the hypothalamus. To give a further example, OPCs in the ME of mice have been shown to rapidly respond to dietary signals, in turn controlling composition of the extracellular matrix in the ME, derived from oligodendrocyte-lineage cells, which may contribute to the previously described role of these cells in actively maintaining leptin-receptor-expressing dendrites in the ME. In this review, we explore and discuss recent advances such as these, that have developed our understanding of how the various cell types of the ME contribute to its function in the NES as the interface between the hypothalamus and pituitary gland. We also highlight avenues of future research which promise to uncover additional functions of the ME and the glia, stem and progenitor cells it contains.
Collapse
|