1
|
R MNF, M C, R S, S P. Toxicity optimization of green zinc oxide quantum dots in zebrafish using Box-Behnken design: a novel approach for safer nanoparticle synthesis. Drug Chem Toxicol 2025; 48:367-380. [PMID: 39434256 DOI: 10.1080/01480545.2024.2417960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/16/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024]
Abstract
Zinc oxide quantum dots, also known as ZnO QDs, are highly desirable due to their numerous favorable characteristics, such as their beneficial photoluminescence, solubility in water, along with sunlight absorption. They are well-suited for use in biomedical applications, drugs, and bioimaging. However, study on the in-vivo toxicology of these QDs is needed before they can be used in humans. Zebrafish (Danio rerio) are cheap, fast-growing, and similar to humans, which makes them ideal as in vivo model for studying the toxicity of nanomaterials. The toxicity investigations involving zinc oxide QDs (ZnO QDs) and zinc oxide bionanocomposite (ZnO BC) in zebrafish that were concentration-dependent are evaluated, and the Box-Behnken design (BBD) was utilized to optimize the results. To determine the proper dosage, a study on cell line as well as hemocompatibility was carried out prior to testing the toxic effects of ZnO QDs along with ZnO BC upon zebrafish. When administered at 2.5 μg/l of ZnO BC and 2 μg/l of ZnO QDs, neither ZnO BC nor ZnO QDs appeared to be toxic to embryos during hatching and development. The testing of larval behavior in visible light revealed a dose-dependent decrease in both the total diving distance as well as speed. Nevertheless, at ZnO BC and ZnO QDs levels >250 μg/l and >200 μg/l, respectively, notable effects were seen in zebrafish embryos. Hence, ZnO QDs and BC at low concentrations were notably nontoxic. In order to guarantee the safety of nanomaterials in bio applications, this research supports upcoming in-vivo imaging investigations on their harmful effects.
Collapse
Affiliation(s)
- Mary Nancy Flora R
- Department of Chemical Engineering, Arunai Engineering College, Tiruvannamalai, India
| | - Chamundeeswari M
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai, India
| | - Selvaraj R
- Department of Biotechnology, Arunai Engineering College, Tiruvannamalai, India
| | - Palani S
- Department of Biotechnology, Arunai Engineering College, Tiruvannamalai, India
| |
Collapse
|
2
|
Cp S, V A, Tm MK, S M, K B, Singh ISB, Puthumana J. BIF-induced ROS-mediated cytotoxicity and genotoxicity in embryonic cell culture of Daphnia magna. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 280:107285. [PMID: 39961200 DOI: 10.1016/j.aquatox.2025.107285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/01/2025] [Accepted: 02/08/2025] [Indexed: 02/26/2025]
Abstract
Bifenthrin (BIF) is a widely used synthetic pyrethroid insecticide that poses significant risks to the environment, particularly to aquatic ecosystems. In the present study, the cytotoxic and genotoxic effects of BIF on Daphnia magna cells were evaluated using in vitro methods. To achieve this, we developed a novel embryonic cell culture system from D.magna using Modified Schneider's Insect Medium (MSIM), which demonstrated remarkable viability for over two months. The lethal concentration 50 (LC50) values of BIF were determined using this cell culture system through XTT (2,3-bis-(2‑methoxy-4-nitro-5-sulphenyl)-(2H)-tetrazolium-5-carboxanilide)assays, yielding values of 7.4 µg/mL and 4.3 µg/mL for 24 h and 48 h exposures, respectively. A fluorometric intracellular reactive oxygen species (ROS) assay was employed to measure ROS production, revealing that BIF exposure induced oxidative stress in a dose-dependent manner. The activities of Glutathione peroxidase (GPx), glutathione (GSH), and glutathione-S-transferase (GST) were significantly reduced, indicating oxidative damage. Co-treatment with N-acetylcysteine(NAC) mitigated these effects, restoring antioxidant enzyme activity and reducing (ROS) levels. Gene expression analysis via quantitative real-time PCR (qPCR) showed upregulation of stress-related genes (hsp70, hsp90) and antioxidant genes (Mn/ZnSod, cat) following exposure to LC50 concentrations of BIF. However, prolonged exposure led to a downregulation of these genes, suggesting cumulative effects over time. The comet assay confirmed that BIF caused genotoxicity, as evidenced by significant increases in comet and tail lengths. Co-treatment with NAC effectively mitigated these genotoxic effects. This study highlighted the cytotoxic and genotoxic potential of BIF in aquatic organisms and suggested the need for environmentally friendly pest control strategies. Also, the findings confirmed the reliability of D. magna embryonic cell cultures for assessing the toxicological effects of environmental pollutants, offering new possibilities for in vitro toxicity testing at cellular and molecular levels.
Collapse
Affiliation(s)
- Sreevidya Cp
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin-16, Kerala, India
| | - Ajitha V
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin-16, Kerala, India
| | - Manoj Kumar Tm
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin-16, Kerala, India
| | - Manomi S
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin-16, Kerala, India
| | - Bhavya K
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, CUSAT, Kochi, Kerala 682016, India; Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - I S Bright Singh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin-16, Kerala, India
| | - Jayesh Puthumana
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin-16, Kerala, India.
| |
Collapse
|
3
|
Gökmen GG, Mirsafi FS, Leißner T, Akan T, Mishra YK, Kışla D. Zinc oxide nanomaterials: Safeguarding food quality and sustainability. Compr Rev Food Sci Food Saf 2024; 23:e70051. [PMID: 39530622 DOI: 10.1111/1541-4337.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/17/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
In this era, where food safety and sustainability are paramount concerns, the utilization of zinc oxide (ZnO) nanoparticles (NPs) is a promising solution to enhance the safety, quality, and sustainability of food products. ZnO NPs in the food industry have evolved significantly over time, reflecting advancements in synthesizing methods, antimicrobial activities, and risk assessment considerations for human health and the environment. This comprehensive review delves into the historical trajectory, current applications, and prospects of ZnO NPs in food-related contexts. Synthesizing methods, ranging from solvothermal and solgel techniques to laser ablation and microfluidic reactors, have facilitated the production of ZnO NPs with tailored properties suited for diverse food applications. The remarkable antimicrobial activity of ZnO NPs against a wide spectrum of pathogens has garnered attention for their potential to enhance food safety and extend shelf-life. Furthermore, comprehensive risk assessment methodologies have been employed to evaluate the potential impacts of ZnO NPs on human health and the environment, regarding toxicity, migration, and ecological implications. By navigating the intricate interplay between synthesis methods, antimicrobial efficacy, inhibitory mechanisms, and risk assessment protocols, by elucidating the multifaceted role of ZnO NPs in shaping the past, present, and future of the food industry, this review offers valuable insights and promising avenues for researchers, policymakers, and industry stakeholders to enhance food safety, quality, and sustainability.
Collapse
Affiliation(s)
- Gökhan Gurur Gökmen
- Department of Food Engineering, Faculty of Engineering, Ege University, Izmir, Bornova, Turkey
| | - Fatemeh Sadat Mirsafi
- Smart Materials, NanoSYD, Mads Clausen Institute, University of Southern Denmark, Sønderborg, Denmark
| | - Till Leißner
- Smart Materials, NanoSYD, Mads Clausen Institute, University of Southern Denmark, Sønderborg, Denmark
| | - Tamer Akan
- Department of Physics, Faculty of Science, Eskisehir Osmangazi University, Eskisehir, Odunpazarı, Turkey
| | - Yogendra Kumar Mishra
- Smart Materials, NanoSYD, Mads Clausen Institute, University of Southern Denmark, Sønderborg, Denmark
| | - Duygu Kışla
- Department of Food Engineering, Faculty of Engineering, Ege University, Izmir, Bornova, Turkey
| |
Collapse
|
4
|
Erol I, Hazman Ö, Acar F, Khamidov G. A new methacrylate-chitosan based blend and its ZnO containing nanocomposites: Investigation of thermal and biological properties. Int J Biol Macromol 2024; 281:136441. [PMID: 39482142 DOI: 10.1016/j.ijbiomac.2024.136441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024]
Abstract
Biobased materials are an important step towards a sustainable future. The need for these materials, which stand out in terms of their environmental and economic benefits, is increasing daily. This study includes the production of new bio based nanocomposites containing a blend of biopolymer chitosan (CS) and synthetic polymethacrylate derivative poly(2-oxo-2-(3,4,5-trifluoroanilino)ethyl-2-methylprop-2-enoate)(POTFAMA) and biosynthesized zinc oxide nanoparticles (ZnO NPs) by hydrothermal method. POTFAMA, POTFAMA-CS blend, and POTFAMA-CS/ZnO nanocomposites were characterized by FTIR, XRD, SEM, EDX, and TEM techniques. The thermal properties of the materials were determined by TGA and DSC. While POTFAMA reduced the thermal stability of CS, ZnO NPs incorporated into POTFAMA-CS blend increased the thermal stability. POTFAMA-CS blend had a single glass transition temperature (Tg) value at 116 °C. The Tg of CS, which was 93 °C, increased by 23 °C after blending with POTFAMA, and by 34 °C with the incorporation of 7 % ZnO NPs. The biological properties of the prepared materials have been meticulously investigated. The inhibition zone of CS against C. albicans was 10.66 ± 1.19 mm, while that of the POTFAMA-CS blend was 13.70 ± 1.54 mm. After standard BHT at a concentration of 120 μg/mL, the highest DPPH inhibition percentages belonged to POTFAMA (60.56 %) and POTFAMA-CS (52.99 %). It was detected that the wound closure rates of POTFAMA (17.51 ± 0.75 %) and POTFAMA-CS (15.51 ± 2.52 %) were better than the characteristics of CS wound closure (13.61 ± 2.01 %). The results suggest that POTFAMA-CS may be a good alternative as a wound-healing agent. Furthermore, nanocomposites containing 5 % and 7 % ZnO NPs can be an alternative material in healthcare due to their higher antimicrobial activity.
Collapse
Affiliation(s)
- Ibrahim Erol
- Afyon Kocatepe University, Faculty of Science and Arts, Department of Chemistry, 03200 Afyonkarahisar, Türkiye; Samarkand State University, Institute of Biochemistry, Department of Polymer Chemistry and Chemical Technology, University blvd-15, Samarkand, Uzbekistan.
| | - Ömer Hazman
- Afyon Kocatepe University, Faculty of Science and Arts, Department of Chemistry, 03200 Afyonkarahisar, Türkiye; Samarkand State University, Institute of Biochemistry, Department of Organic Synthesis and Bioorganic Chemistry, University blvd-15, Samarkand, Uzbekistan
| | - Feyza Acar
- Afyon Kocatepe University, Faculty of Science and Arts, Department of Chemistry, 03200 Afyonkarahisar, Türkiye
| | - Gofur Khamidov
- Samarkand State University, Institute of Biochemistry, Department of Organic Synthesis and Bioorganic Chemistry, University blvd-15, Samarkand, Uzbekistan
| |
Collapse
|
5
|
Son NN, Thanh VM, Huong NT. Synthesis of F127-GA@ZnO nanogel as a cisplatin drug delivery pH-sensitive system. RSC Adv 2024; 14:35005-35020. [PMID: 39497764 PMCID: PMC11533520 DOI: 10.1039/d4ra06514j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/26/2024] [Indexed: 11/07/2024] Open
Abstract
In this study, a novel drug delivery system based on zinc oxide nanoparticles (ZnO NPs) was developed for the enhanced delivery of cisplatin (CPT) to improve cancer treatment. The ZnO NPs were synthesized from guava leaf extract and then surface-functionalized with gallic acid (GA) to improve their biocompatibility and drug loading capacity. Pluronic F127, a biocompatible polymer, was then conjugated to the GA-modified ZnO NPs to further enhance their stability and cellular uptake. The resulting NPs were characterized by various techniques, including FT-IR, UV-Vis, SEM, TEM, 1H NMR, and DLS. The drug loading and release profiles of CPT from the NPs were investigated, showing high CPT loading capacity and pH-dependent release behavior. The in vitro cytotoxicity of the NPs was evaluated against various cancer cell lines, demonstrating enhanced cytotoxicity compared to free CPT. Overall, this study highlights the potential of GA and Pluronic-modified ZnO NPs as a promising drug delivery system for enhanced CPT delivery and improved cancer therapy.
Collapse
Affiliation(s)
- Nguyen Ngoc Son
- Institute of Chemistry and Materials 17 Hoang Sam, Cau Giay Hanoi Vietnam
| | - Vu Minh Thanh
- Institute of Chemistry and Materials 17 Hoang Sam, Cau Giay Hanoi Vietnam
| | - Nguyen Thi Huong
- Institute of Chemistry and Materials 17 Hoang Sam, Cau Giay Hanoi Vietnam
| |
Collapse
|
6
|
Khamidov G, Hazman Ö, Erol I. Thermal and biological properties of novel sodium carboxymethylcellulose-PPFMA nanocomposites containing biosynthesized Ag-ZnO hybrid filler. Int J Biol Macromol 2024; 257:128447. [PMID: 38040162 DOI: 10.1016/j.ijbiomac.2023.128447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
The aim of this study was to produce new nanocomposites with antimicrobial, antioxidant and anticancer properties that can be used in biomedical research based on carboxymethyl cellulose (NaCMC) biopolymer. First, poly(2-oxo-2-(pentafluorophenoxy)ethyl-2-methylprop-2-enoate) (PPFMA) was synthesized and characterized by FTIR and NMR techniques. It was then blended with NaCMC by in situ/hydrothermal method to produce a semi-synthetic functional material. Changes in the FTIR data of the blend and the single Tg value from DSC confirmed the compatibility of the blend. To enhance the thermal and biological properties of the NaCMC-PPFMA blend, biosynthesized Ag-ZnONPs were hydrothermally incorporated into the blend at different weight ratios. The prepared materials were characterized by SEM, EDX, TEM, XRD and FTIR. The thermal stability of the materials was determined by thermogravimetric analysis (TGA), and glass transition temperatures (Tg) was determined by differential scanning calorimeter (DSC). The oxidant, antioxidant, antimicrobial, and cytotoxic properties of PPFMA, Ag-ZnONPs, PPFMA-NaCMC blend, and nanocomposites were investigated in detail. The total oxidant state (TOS) value of the NaCMC-PPFMA blend, which was 0.72 μmol equivalent H2O2/L, increased to 7.2-10.4 μmol equivalent H2O2/L with the addition of Ag-ZnONPs. Ag-ZnONPs decreased total antioxidant state (TAS) levels of the nanocomposites while increasing their oxidant activity. Therefore, an increase in the antimicrobial activity of the nanocomposites was observed. Adding Ag-ZnONPs to the NaCMC-PPFMA blend increased the thermal stability by 22 °C and the Tg value by 9 °C. Finally, the potential of Ag-ZnONPs containing nanocomposites in wound healing therapies was examined. The findings suggest that nanocomposites prepared by incorporating Ag-ZnONPs into the semi-synthetic NaCMC-PPFMA blend can be a source of bio-safe raw materials and can be used as potential wound healers.
Collapse
Affiliation(s)
- Gofur Khamidov
- Samarkand State University, Institute of Biochemistry, Department of Organic Synthesis and Bioorganic Chemistry, University blvd-15, Samarkand, Uzbekistan
| | - Ömer Hazman
- Samarkand State University, Institute of Biochemistry, Department of Organic Synthesis and Bioorganic Chemistry, University blvd-15, Samarkand, Uzbekistan; Afyon Kocatepe University, Faculty of Science and Arts, Department of Chemistry, 03200 Afyonkarahisar, Türkiye
| | - Ibrahim Erol
- Samarkand State University, Institute of Biochemistry, Department of Organic Synthesis and Bioorganic Chemistry, University blvd-15, Samarkand, Uzbekistan; Samarkand State University, Institute of Biochemistry, Department of Polymer Chemistry and Chemical Technology, University Blvd-15, Samarkand, Uzbekistan.
| |
Collapse
|
7
|
Comprehensive study upon physicochemical properties of bio-ZnO NCs. Sci Rep 2023; 13:587. [PMID: 36631546 PMCID: PMC9834250 DOI: 10.1038/s41598-023-27564-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
In this study, for the first time, the comparison of commercially available chemical ZnO NCs and bio-ZnO NCs produced extracellularly by two different probiotic isolates (Latilactobacillus curvatus MEVP1 [OM736187] and Limosilactobacillus fermentum MEVP2 [OM736188]) were performed. All types of ZnO formulations were characterized by comprehensive interdisciplinary approach including various instrumental techniques in order to obtain nanocomposites with suitable properties for further applications, i.e. biomedical. Based on the X- ray diffraction analysis results, all tested nanoparticles exhibited the wurtzite structure with an average crystalline size distribution of 21.1 nm (CHEM_ZnO NCs), 13.2 nm (1C_ZnO NCs) and 12.9 nm (4a_ZnO NCs). The microscopy approach with use of broad range of detectors (SE, BF, HAADF) revealed the core-shell structure of bio-ZnO NCs, compared to the chemical one. The nanoparticles core of 1C and 4a_ZnO NCs are coated by the specific organic deposit coming from the metabolites produced by two probiotic strains, L. fermentum and L. curvatus. Vibrational infrared spectroscopy, photoluminescence (PL) and mass spectrometry (LDI-TOF-MS) have been used to monitor the ZnO NCs surface chemistry and allowed for better description of bio-NCs organic coating composition (amino acids residues). The characterized ZnO formulations were then assessed for their photocatalytic properties against methylene blue (MB). Both types of bio-ZnO NCs exhibited good photocatalytic activity, however, the effect of CHEM_ZnO NCs was more potent than bio-ZnO NCs. Finally, the colloidal stability of the tested nanoparticles were investigated based on the zeta potential (ZP) and hydrodynamic diameter measurements in dependence of the nanocomposites concentration and investigation time. During the biosynthesis of nano-ZnO, the increment of pH from 5.7 to around 8 were observed which suggested possible contribution of zinc aquacomplexes and carboxyl-rich compounds resulted in conversion of zinc tetrahydroxy ion complex to ZnO NCs. Overall results in present study suggest that used accessible source such us probiotic strains, L. fermentum and L. curvatus, for extracellular bio-ZnO NCs synthesis are of high interest. What is important, no significant differences between organic deposit (e.g. metabolites) produced by tested strains were noticed-both of them allowed to form the nanoparticles with natural origin coating. In comparison to chemical ZnO NCs, those synthetized via microbiological route are promising material with further biological potential once have shown high stability during 7 days.
Collapse
|
8
|
Railean V, Buszewska-Forajta M, Rodzik A, Gołębiowski A, Pomastowski P, Buszewski B. In Vivo Efficacy of Wound Healing under External (Bio)AgNCs Treatment: Localization Case Study in Liver and Blood Tissue. Int J Mol Sci 2022; 24:ijms24010434. [PMID: 36613874 PMCID: PMC9820314 DOI: 10.3390/ijms24010434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022] Open
Abstract
The present study reports on the in vivo application of (Bio)silver nanocomposite formulations (LBPC-AgNCs) on wound healing. Additionally, the present study emphasizes the limited uptake of silver by liver and blood tissues as well as the high viability of PBMCs following external LBPC-AgNCs treatment. The wound closure was monitored via stereoscopic microscope, a localization case study in liver and blood tissue was carried out by (Inductively Coupled Plasma-Mass Spectrometers (ICP/MS), and peripheral blood mononuclear cells (PMBC) viability was determined via flow cytometry technique. The silver formulation was applied externally on the site of the wound infection for a period of ten days. At the beginning of the experiment, a moderate decrease in body weight and atypical behavior was observed. However, during the last period of the experiment, no abnormal mouse behaviors were noticed. The wound-healing process took place in a gradual manner, presenting the regeneration effect at around 30% from the fourth day. From the seventh day, the wounds treated with the silver formulation showed 80% of the wound healing potential. The viability of PBMCs was found to be 97%, whereas the concentrations of silver in the liver and blood samples were determined to be 0.022 µg/g and 9.3 µg/g, respectively. Furthermore, the present report becomes a pilot study in transferring from in vitro to in vivo scale (e.g., medical field application) once LBPC-AgNCs have demonstrated a unique wound healing potential as well as a non-toxic effect on the liver and blood.
Collapse
Affiliation(s)
- Viorica Railean
- Department of Infectious, Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Gagarina 7, 87-100 Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland
- Correspondence: (V.R.); (P.P.)
| | - Magdalena Buszewska-Forajta
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 1 Lwowska St., 87-100 Torun, Poland
- Department of Plant Physiology, Genetics, and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-229 Olsztyn, Poland
| | - Agnieszka Rodzik
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun, Poland
| | - Adrian Gołębiowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland
- Correspondence: (V.R.); (P.P.)
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun, Poland
| |
Collapse
|
9
|
Development of Ag-ZnO/AgO Nanocomposites Effectives for Leishmania braziliensis Treatment. Pharmaceutics 2022; 14:pharmaceutics14122642. [PMID: 36559136 PMCID: PMC9785243 DOI: 10.3390/pharmaceutics14122642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Tegumentary leishmaniasis (TL) is caused by parasites of the genus Leishmania. Leishmania braziliensis (L.b) is one of the most clinically relevant pathogens that affects the skin and mucosa, causing single or multiple disfiguring and life-threatening injuries. Even so, the few treatment options for patients have significant toxicity, high dropout rates, high cost, and the emergence of resistant strains, which implies the need for studies to promote new and better treatments to combat the disease. Zinc oxide nanocrystals are microbicidal and immunomodulatory agents. Here, we develop new Ag-ZnO/xAgO nanocomposites (NCPs) with three different percentages of silver oxide (AgO) nanocrystals (x = 49%, 65%, and 68%) that could act as an option for tegumentary leishmaniasis treatment. Our findings showed that 65% and 68% of AgO inhibit the extra and intracellular replication of L.b. and present a high selectivity index. Ag-ZnO/65%AgO NCPs modulate activation, expression of surface receptors, and cytokine production by human peripheral blood mononuclear cells toward a proinflammatory phenotype. These results point to new Ag-ZnO/AgO nanocomposites as a promising option for L. braziliensis treatment.
Collapse
|
10
|
Matusoiu F, Negrea A, Nemes NS, Ianasi C, Ciopec M, Negrea P, Duteanu N, Ianasi P, Duda-Seiman D, Muntean D. Antimicrobial Perspectives of Active SiO 2Fe xO y/ZnO Composites. Pharmaceutics 2022; 14:2063. [PMID: 36297497 PMCID: PMC9610534 DOI: 10.3390/pharmaceutics14102063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 09/10/2023] Open
Abstract
The antibacterial activity of zinc oxide particles has received significant interest worldwide, especially through the implementation of technology to synthesize particles in the nanometer range. This study aimed to determine the antimicrobial efficacy of silica-based iron oxide matrix (SiO2FexOy) synthesized with various amounts of ZnO (SiO2FexOyZnO) against various pathogens. It is observed that, with the addition of ZnO to the system, the average size of the porosity of the material increases, showing increasingly effective antibacterial properties. Zinc-iron-silica oxide matrix composites were synthesized using the sol-gel method. The synthesized materials were investigated physicochemically to highlight their structural properties, through scanning electron microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), and Fourier-transform infrared spectroscopy (FT-IR). At the same time, surface area, pore size and total pore volume were determined for materials synthesized using the Brunauer-Emmett-Teller (BET) method. Although the material with 0.0001 g ZnO (600 m2/g) has the highest specific surface area, the best antimicrobial activity was obtained for the material with 1.0 g ZnO, when the average pore volume is the largest (~8 nm) for a specific surface of 306 m2/g. This indicates that the main role in the antibacterial effect has reactive oxygen species (ROS) generated by the ZnO that are located in the pores of the composite materials. The point of zero charge (pHpZc) is a very important parameter for the characterization of materials that indicate the acid-base behaviour. The pHpZc value varies between 4.9 and 6.3 and is influenced by the amount of ZnO with which the iron-silica oxide matrix is doped. From the antimicrobial studies carried out, it was found that for S. aureus the total antibacterial effect was obtained at the amount of 1.0 g ZnO. For Gram-negative bacteria, a total antibacterial effect was observed in S. flexneri (for the material with 0.1 g ZnO), followed by E. coli (for 1.0 g ZnO). For P. aeruginosa, the maximum inhibition rate obtained for the material with 1.0 g ZnO was approximately 49%.
Collapse
Affiliation(s)
- Florin Matusoiu
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Victoriei Square, No. 2, 300006 Timişoara, Romania or
| | - Adina Negrea
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Victoriei Square, No. 2, 300006 Timişoara, Romania or
| | - Nicoleta Sorina Nemes
- Renewable Energy Research Institute-ICER, Politehnica University Timisoara, 138 Gavril Musicescu Street, 300501 Timişoara, Romania
| | - Catalin Ianasi
- “Coriolan Drăgulescu” Institute of Chemistry, Bv. Mihai Viteazul, No. 24, 300223 Timişoara, Romania
| | - Mihaela Ciopec
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Victoriei Square, No. 2, 300006 Timişoara, Romania or
| | - Petru Negrea
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Victoriei Square, No. 2, 300006 Timişoara, Romania or
| | - Narcis Duteanu
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Victoriei Square, No. 2, 300006 Timişoara, Romania or
| | - Paula Ianasi
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 144th Dr. A. P. Podeanu Street, 300569 Timişoara, Romania
| | - Daniel Duda-Seiman
- Department of Cardiology, “Victor Babeş” University of Medicine and Pharmacy Timişoara, 2 Piata Eftimie Murgu, 300041 Timişoara, Romania
| | - Delia Muntean
- Multidisciplinary Research Centre on Antimicrobial Resistance, Department of Microbiology, “Victor Babeş” University of Medicine and Pharmacy Timişoara, 2 Eftimie Murgu Square, 300041 Timişoara, Romania
| |
Collapse
|
11
|
Novel Hydrophobic Nanostructured Antibacterial Coatings for Metallic Surface Protection. COATINGS 2022. [DOI: 10.3390/coatings12020253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A simple and cost-efficient method to modify different surfaces in order to improve their bioactivity, corrosion and wear resistance proved to be sol-gel coatings. The silane layers have been shown to be effective in the protection of steel, aluminum or magnesium alloys and copper and copper alloys. Moreover, it has been found that the adding of different inorganic nanoparticles into silica films leads to increasing their performance regarding corrosion protection. In this study, we fabricated, a simple sol-gel method, transparent mono- and bi-layered hydrophobic coatings with simultaneous antibacterial, hydrophobic and anti-corrosive properties for the protection of metallic surfaces against the action of air pollutants or from biological attacks of pathogens. The first layer (the base) of the coating contains silver (Ag) or zinc oxide (ZnO) nanoparticles with an antibacterial effect. The second layer includes zinc oxide nanoparticles with flower-like morphology to increase the hydrophobicity of the coating and to improve corrosion-resistant properties. The second layer of the coating contains a fluorinated silica derivative, 1H,1H,2H,2H-perfluorooctyl triethoxysilane (PFOTES), which contributes to the hydrophobic properties of the final coating by means of its hydrophobic groups. The mono- and bi-layered coatings with micro/nano rough structures have been applied by brushing on various substrates, including metallic surfaces (copper, brass and mild steel) and glass (microscope slides). The as-prepared coatings showed improved hydrophobic properties (water CA > 90°) when compared with the untreated substrates while maintaining the transparent aspect. The corrosion resistance tests revealed significantly lower values of the corrosion rates recorded for all the protected metallic surfaces, with the lowest values being measured for the bi-layered coatings containing ZnO particles, both in the first and in the second layers of the coating. Considering the antibacterial activity, the most effective were the AOAg-II and AOZnO-II coatings, which exhibited the highest reduction of microbial growth.
Collapse
|