1
|
Zhang M, Zhai Y, An X, Li Q, Zhang D, Zhou Y, Zhang S, Dai X, Li Z. DNA methylation regulates RNA m 6A modification through transcription factor SP1 during the development of porcine somatic cell nuclear transfer embryos. Cell Prolif 2024; 57:e13581. [PMID: 38095020 PMCID: PMC11056710 DOI: 10.1111/cpr.13581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 01/12/2024] Open
Abstract
Epigenetic modifications play critical roles during somatic cell nuclear transfer (SCNT) embryo development. Whether RNA N6-methyladenosine (m6A) affects the developmental competency of SCNT embryos remains unclear. Here, we showed that porcine bone marrow mesenchymal stem cells (pBMSCs) presented higher RNA m6A levels than those of porcine embryonic fibroblasts (pEFs). SCNT embryos derived from pBMSCs had higher RNA m6A levels, cleavage, and blastocyst rates than those from pEFs. Compared with pEFs, the promoter region of METTL14 presented a hypomethylation status in pBMSCs. Mechanistically, DNA methylation regulated METTL14 expression by affecting the accessibility of transcription factor SP1 binding, highlighting the role of the DNA methylation/SP1/METTL14 pathway in donor cells. Inhibiting the DNA methylation level in donor cells increased the RNA m6A level and improved the development efficiency of SCNT embryos. Overexpression of METTL14 significantly increased the RNA m6A level in donor cells and the development efficiency of SCNT embryos, whereas knockdown of METTL14 suggested the opposite result. Moreover, we revealed that RNA m6A-regulated TOP2B mRNA stability, translation level, and DNA damage during SCNT embryo development. Collectively, our results highlight the crosstalk between RNA m6A and DNA methylation, and the crucial role of RNA m6A during nuclear reprogramming in SCNT embryo development.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Yanhui Zhai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Xinglan An
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Qi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Daoyu Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Yongfeng Zhou
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Sheng Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Ziyi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationThe First Hospital of Jilin UniversityChangchunJilinChina
| |
Collapse
|
2
|
Park YS, Oh MG, Kim SH. iSCNT embryo culture system for restoration of Cervus nippon hortulorum, presumed to be sika deer in the Korean Peninsula. PLoS One 2024; 19:e0300754. [PMID: 38635543 PMCID: PMC11025863 DOI: 10.1371/journal.pone.0300754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/04/2024] [Indexed: 04/20/2024] Open
Abstract
Sika deer inhabiting South Korea became extinct when the last individual was captured on Jeju Island in Korea in 1920 owing to the Japanese seawater relief business, but it is believed that the same subspecies (Cervus nippon hortulorum) inhabits North Korea and the Russian Primorskaya state. In our study, mt-DNA was used to analyze the genetic resources of sika deer in the vicinity of the Korean Peninsula to restore the extinct species of continental deer on the Korean Peninsula. In addition, iSCNT was performed using cells to analyze the potential for restoration of extinct species. The somatic cells of sika deer came from tissues of individuals presumed to be Korean Peninsula sika deer inhabiting the neighboring areas of the Primorskaya state and North Korea. After sequencing 5 deer samples through mt-DNA isolation and PCR, BLAST analysis showed high matching rates for Cervus nippon hortulorum. This shows that the sika deer found near the Russian Primorsky Territory, inhabiting the region adjacent to the Korean Peninsula, can be classified as a subspecies of Cervus nippon hortulorum. The method for producing cloned embryos for species restoration confirmed that iSCNT-embryos developed smoothly when using porcine oocytes. In addition, the stimulation of endometrial cells and progesterone in the IVC system expanded the blastocyst cavity and enabled stable development of energy metabolism and morphological changes in the blastocyst. Our results confirmed that the individual presumed to be a continental deer in the Korean Peninsula had the same genotype as Cervus nippon hortulorum, and securing the individual's cell-line could restore the species through replication and produce a stable iSCNT embryo.
Collapse
Affiliation(s)
- Yong-Su Park
- National Institute of Ecology, Research Center for Endangered Species, Seocheon-gun, Chungcheongnam-do, Korea
| | - Min-Gee Oh
- General Graduate School of Animal life convergence science, Hankyong National University, Ansung, Gyeonggi-do, Republic of Korea
| | - Sang-Hwan Kim
- General Graduate School of Animal life convergence science, Hankyong National University, Ansung, Gyeonggi-do, Republic of Korea
- School of Animal Life Convergence Science, Hankyong National University, Ansung, Gyeonggi-do, Republic of Korea
- Institute of Applied Humanimal Science, Hankyong National University, Unsung, Ansung, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
Zhao B, Li H, Zhang H, Ren S, Li Y, Wang X, Lan X, Qiao H, Ma H, Zhang Y, Wang Y. The effect of L-carnitine supplementation during in vitro maturation on oocyte maturation and somatic cloned embryo development. Reprod Biol 2024; 24:100853. [PMID: 38367331 DOI: 10.1016/j.repbio.2023.100853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 02/19/2024]
Abstract
The quality of the recipient cytoplasm was reported as a crucial factor in maintaining the vitality of SCNT embryos and SCNT efficiency for dairy cows. Compared with oocytes matured in vivo, oocytes matured in vitro showed abnormal accumulation and metabolism of cytoplasmic lipids. L-carnitine treatment was found to control fatty acid transport into the mitochondrial β-oxidation pathway, which improved the process of lipid metabolism. The results of this study show that 0.5 mg/ml L-carnitine significantly reduced the cytoplasmic lipid content relative to control. No significant difference was observed in the rate of oocyte nuclear maturation, but the in vitro developmental competence of SCNT embryos was improved in terms of increased blastocyst production and lower apoptotic index in the L-carnitine treatment group. In addition, the pregnancy rate with SCNT embryos in the treatment group was significantly higher than in the control group. In conclusion, the present study demonstrated that adding L-carnitine to the maturation culture medium could improve the developmental competence of SCNT embryos both in vitro and in vivo by reducing the lipid content of the recipient cytoplasm.
Collapse
Affiliation(s)
- Baobao Zhao
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Heqiang Li
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Han Zhang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Subi Ren
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuelin Li
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoyan Wang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinrui Lan
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hailian Qiao
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huiming Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, Ningxia Medical University, Yinchuan 750004, China
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yongsheng Wang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
Kotarska K, Gąsior Ł, Rudnicka J, Polański Z. Long-run real-time PCR analysis of repetitive nuclear elements as a novel tool for DNA damage quantification in single cells: an approach validated on mouse oocytes and fibroblasts. J Appl Genet 2024; 65:181-190. [PMID: 38110826 PMCID: PMC10789673 DOI: 10.1007/s13353-023-00817-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/17/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023]
Abstract
Since DNA damage is of great importance in various biological processes, its rate is frequently assessed both in research studies and in medical diagnostics. The most precise methods of quantifying DNA damage are based on real-time PCR. However, in the conventional version, they require a large amount of genetic material and therefore their usefulness is limited to multicellular samples. Here, we present a novel approach to long-run real-time PCR-based DNA-damage quantification (L1-LORD-Q), which consists in amplification of long interspersed nuclear elements (L1) and allows for analysis of single-cell genomes. The L1-LORD-Q was compared with alternative methods of measuring DNA breaks (Bioanalyzer system, γ-H2AX foci staining), which confirmed its accuracy. Furthermore, it was demonstrated that the L1-LORD-Q is sensitive enough to distinguish between different levels of UV-induced DNA damage. The method was validated on mouse oocytes and fibroblasts, but the general idea is universal and can be applied to various types of cells and species.
Collapse
Affiliation(s)
- Katarzyna Kotarska
- Laboratory of Genetics and Evolution, Institute of Zoology and Biomedical Research, Department of Biology, Jagiellonian University, Kraków, Poland.
| | - Łukasz Gąsior
- Laboratory of Neurobiology of Trace Elements, Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Joanna Rudnicka
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Zbigniew Polański
- Laboratory of Genetics and Evolution, Institute of Zoology and Biomedical Research, Department of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
5
|
He SY, Liu RP, Wang CR, Wang XQ, Wang J, Xu YN, Kim NH, Han DW, Li YH. Improving the developmental competences of porcine parthenogenetic embryos by Notoginsenoside R1-induced enhancement of mitochondrial activity and alleviation of proapoptotic events. Reprod Domest Anim 2023; 58:1583-1594. [PMID: 37696770 DOI: 10.1111/rda.14474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/08/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023]
Abstract
Notoginsenoside R1 (NGR1), derived from the Panax notoginseng root and rhizome, exhibits diverse pharmacological influences on the brain, neurons, and osteoblasts, such as antioxidant effects, mitochondrial function protection, energy metabolism regulation, and inhibition of oxygen radicals, apoptosis, and cellular autophagy. However, its effect on early porcine embryonic development remains unclear. Therefore, we investigated NGR1's effects on blastocyst quality, reactive oxygen species (ROS) levels, glutathione (GSH) levels, mitochondrial function, and embryonic development-related gene expression in porcine embryos by introducing NGR1 during the in vitro culture (IVC) of early porcine embryos. Our results indicate that an addition of 1 μM NGR1 significantly increased glutathione (GSH) levels, blastocyst formation rate, and total cell number and proliferation capacity; decreased ROS levels and apoptosis rates in orphan-activated porcine embryos; and improved intracellular mitochondrial distribution, enhanced membrane potential, and reduced autophagy. In addition, pluripotency-related factor levels were elevated (NANOG and octamer-binding transcription factor 4 [OCT4]), antioxidant-related genes were upregulated (nuclear factor-erythroid 2-related factor 2 [NRF2]), and apoptosis- (caspase 3 [CAS3]) and autophagy-related genes (light chain 3 [LC3B]) were downregulated. These results indicate that NGR1 can enhance early porcine embryonic development by protecting mitochondrial function.
Collapse
Affiliation(s)
- Sheng-Yan He
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Rong-Ping Liu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Chao-Rui Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Xin-Qin Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Jing Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Yong-Nan Xu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Nam-Hyung Kim
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Dong-Wook Han
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Ying-Hua Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| |
Collapse
|
6
|
Popova J, Bets V, Kozhevnikova E. Perspectives in Genome-Editing Techniques for Livestock. Animals (Basel) 2023; 13:2580. [PMID: 37627370 PMCID: PMC10452040 DOI: 10.3390/ani13162580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Genome editing of farm animals has undeniable practical applications. It helps to improve production traits, enhances the economic value of livestock, and increases disease resistance. Gene-modified animals are also used for biomedical research and drug production and demonstrate the potential to be used as xenograft donors for humans. The recent discovery of site-specific nucleases that allow precision genome editing of a single-cell embryo (or embryonic stem cells) and the development of new embryological delivery manipulations have revolutionized the transgenesis field. These relatively new approaches have already proven to be efficient and reliable for genome engineering and have wide potential for use in agriculture. A number of advanced methodologies have been tested in laboratory models and might be considered for application in livestock animals. At the same time, these methods must meet the requirements of safety, efficiency and availability of their application for a wide range of farm animals. This review aims at covering a brief history of livestock animal genome engineering and outlines possible future directions to design optimal and cost-effective tools for transgenesis in farm species.
Collapse
Affiliation(s)
- Julia Popova
- Laboratory of Bioengineering, Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia; (J.P.); (V.B.)
| | - Victoria Bets
- Laboratory of Bioengineering, Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia; (J.P.); (V.B.)
- Center of Technological Excellence, Novosibirsk State Technical University, 630073 Novosibirsk, Russia
| | - Elena Kozhevnikova
- Laboratory of Bioengineering, Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia; (J.P.); (V.B.)
- Laboratory of Experimental Models of Cognitive and Emotional Disorders, Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia
| |
Collapse
|
7
|
Umair M, Scheeren VFDC, Beitsma MM, Colleoni S, Galli C, Lazzari G, de Ruijter-Villani M, Stout TAE, Claes A. In Vitro-Produced Equine Blastocysts Exhibit Greater Dispersal and Intermingling of Inner Cell Mass Cells than In Vivo Embryos. Int J Mol Sci 2023; 24:ijms24119619. [PMID: 37298570 DOI: 10.3390/ijms24119619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
In vitro production (IVP) of equine embryos is increasingly popular in clinical practice but suffers from higher incidences of early embryonic loss and monozygotic twin development than transfer of in vivo derived (IVD) embryos. Early embryo development is classically characterized by two cell fate decisions: (1) first, trophectoderm (TE) cells differentiate from inner cell mass (ICM); (2) second, the ICM segregates into epiblast (EPI) and primitive endoderm (PE). This study examined the influence of embryo type (IVD versus IVP), developmental stage or speed, and culture environment (in vitro versus in vivo) on the expression of the cell lineage markers, CDX-2 (TE), SOX-2 (EPI) and GATA-6 (PE). The numbers and distribution of cells expressing the three lineage markers were evaluated in day 7 IVD early blastocysts (n = 3) and blastocysts (n = 3), and in IVP embryos first identified as blastocysts after 7 (fast development, n = 5) or 9 (slow development, n = 9) days. Furthermore, day 7 IVP blastocysts were examined after additional culture for 2 days either in vitro (n = 5) or in vivo (after transfer into recipient mares, n = 3). In IVD early blastocysts, SOX-2 positive cells were encircled by GATA-6 positive cells in the ICM, with SOX-2 co-expression in some presumed PE cells. In IVD blastocysts, SOX-2 expression was exclusive to the compacted presumptive EPI, while GATA-6 and CDX-2 expression were consistent with PE and TE specification, respectively. In IVP blastocysts, SOX-2 and GATA-6 positive cells were intermingled and relatively dispersed, and co-expression of SOX-2 or GATA-6 was evident in some CDX-2 positive TE cells. IVP blastocysts had lower TE and total cell numbers than IVD blastocysts and displayed larger mean inter-EPI cell distances; these features were more pronounced in slower-developing IVP blastocysts. Transferring IVP blastocysts into recipient mares led to the compaction of SOX-2 positive cells into a presumptive EPI, whereas extended in vitro culture did not. In conclusion, IVP equine embryos have a poorly compacted ICM with intermingled EPI and PE cells; features accentuated in slowly developing embryos but remedied by transfer to a recipient mare.
Collapse
Affiliation(s)
- Muhammad Umair
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | | | - Mabel M Beitsma
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | | | - Cesare Galli
- Avantea srl, Via Porcellasco 7/F, 26100 Cremona, Italy
| | | | - Marta de Ruijter-Villani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Tom A E Stout
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Anthony Claes
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
8
|
Yang SP, Zhu XX, Qu ZX, Chen CY, Wu YB, Wu Y, Luo ZD, Wang XY, He CY, Fang JW, Wang LQ, Hong GL, Zheng ST, Zeng JM, Yan AF, Feng J, Liu L, Zhang XL, Zhang LG, Miao K, Tang DS. Production of MSTN knockout porcine cells using adenine base-editing-mediated exon skipping. In Vitro Cell Dev Biol Anim 2023:10.1007/s11626-023-00763-5. [PMID: 37099179 DOI: 10.1007/s11626-023-00763-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/24/2023] [Indexed: 04/27/2023]
Abstract
Gene-knockout pigs have important applications in agriculture and medicine. Compared with CRISPR/Cas9 and cytosine base editing (CBE) technologies, adenine base editing (ABE) shows better safety and accuracy in gene modification. However, because of the characteristics of gene sequences, the ABE system cannot be widely used in gene knockout. Alternative splicing of mRNA is an important biological mechanism in eukaryotes for the formation of proteins with different functional activities. The splicing apparatus recognizes conserved sequences of the 5' end splice donor and 3' end splice acceptor motifs of introns in pre-mRNA that can trigger exon skipping, leading to the production of new functional proteins, or causing gene inactivation through frameshift mutations. This study aimed to construct a MSTN knockout pig by inducing exon skipping with the aid of the ABE system to expand the application of the ABE system for the preparation of knockout pigs. In this study, first, we constructed ABEmaxAW and ABE8eV106W plasmid vectors and found that their editing efficiencies at the targets were at least sixfold and even 260-fold higher than that of ABEmaxAW by contrasting the editing efficiencies at the gene targets of endogenous CD163, IGF2, and MSTN in pigs. Subsequently, we used the ABE8eV106W system to realize adenine base (the base of the antisense strand is thymine) editing of the conserved splice donor sequence (5'-GT) of intron 2 of the porcine MSTN gene. A porcine single-cell clone carrying a homozygous mutation (5'-GC) in the conserved sequence (5'-GT) of the intron 2 splice donor of the MSTN gene was successfully generated after drug selection. Unfortunately, the MSTN gene was not expressed and, therefore, could not be characterized at this level. No detectable genomic off-target edits were identified by Sanger sequencing. In this study, we verified that the ABE8eV106W vector had higher editing efficiency and could expand the editing scope of ABE. Additionally, we successfully achieved the precise modification of the alternative splice acceptor of intron 2 of the porcine MSTN gene, which may provide a new strategy for gene knockout in pigs.
Collapse
Affiliation(s)
- Shuai-Peng Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Sciences and Engineering, Foshan University, Foshan, 528225, China
| | - Xiang-Xing Zhu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Sciences and Engineering, Foshan University, Foshan, 528225, China.
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China.
| | - Zi-Xiao Qu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Sciences and Engineering, Foshan University, Foshan, 528225, China
| | - Cai-Yue Chen
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Yao-Bing Wu
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Yue Wu
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Zi-Dan Luo
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Xin-Yi Wang
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Chu-Yu He
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Jia-Wen Fang
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Ling-Qi Wang
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Guang-Long Hong
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Shu-Tao Zheng
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Jie-Mei Zeng
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Ai-Fen Yan
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Juan Feng
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Lian Liu
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Xiao-Li Zhang
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Li-Gang Zhang
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Kai Miao
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China.
| | - Dong-Sheng Tang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Sciences and Engineering, Foshan University, Foshan, 528225, China.
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China.
| |
Collapse
|
9
|
Wang J, Wang L, Wang Z, Lv M, Fu J, Zhang Y, Qiu P, Shi D, Luo C. Vitamin C down-regulates the H3K9me3-dependent heterochromatin in buffalo fibroblasts via PI3K/PDK1/SGK1/KDM4A signal axis. Theriogenology 2023; 200:114-124. [PMID: 36805248 DOI: 10.1016/j.theriogenology.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
The success of reprogramming is dependent on the reprogramming factors enriched in the cytoplasm of recipient oocytes and the potential of donor nucleus to be reprogrammed. Histone 3 lysine 9 trimethylation (H3K9me3) was identified as a major epigenetic barrier impeding complete reprogramming. Treating donor cell with vitamin C (Vc) can enhance the developmental potential of cloned embryos, but the underlying mechanisms still need to be elucidated. In this study, we found that 20μg/mL Vc could promote proliferation and inhibit apoptosis of BFFs, as well as down-regulate the H3K9me3-dependent heterochromatin and increase chromatin accessibility. Inhibited the expression of KDM4A resulted in increasing apoptosis rate and the H3K9me3-dependent heterochromatin, which can be restored by Vc. Moreover, Vc up-regulated the expression of KDM4A through PI3K/PDK1/SGK1 pathway. Inhibiting any factor in the signal axis of this PI3K pathway not only suppressed the activity of KDM4A but also substantially increased the level of H3K9me3 modification and the expression of the HP1α protein. Finally, Vc can rescue those negative effects induced by the blocking the PI3K/PDK1/SGK1 pathway. Collectively, Vc can down-regulate the H3K9me3-dependent heterochromatin in BFFs via PI3K/PDK1/SGK1/KDM4A signal axis, suggesting that Vc can turn the chromatin status of donor cells to be reprogrammed more easily.
Collapse
Affiliation(s)
- Jinling Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi University, 75 Xiuling Road, Nanning, 530005, China; College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China
| | - Lei Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi University, 75 Xiuling Road, Nanning, 530005, China; College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China
| | - Zhiqiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi University, 75 Xiuling Road, Nanning, 530005, China; Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Meiyun Lv
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi University, 75 Xiuling Road, Nanning, 530005, China; College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China
| | - Jiayuan Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi University, 75 Xiuling Road, Nanning, 530005, China; College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China
| | - Yunchuan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi University, 75 Xiuling Road, Nanning, 530005, China; College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China
| | - Peng Qiu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi University, 75 Xiuling Road, Nanning, 530005, China; College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi University, 75 Xiuling Road, Nanning, 530005, China; College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China.
| | - Chan Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi University, 75 Xiuling Road, Nanning, 530005, China; College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China.
| |
Collapse
|
10
|
Nandi S, Tripathi SK, Singh PK, Gupta PSP, Mondal S. Global DNA methylation, DNA methyltransferase and stress-related gene expression in ovine oocytes and embryos after exposure to metabolic stressors. Reprod Domest Anim 2023. [PMID: 36920043 DOI: 10.1111/rda.14341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/20/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023]
Abstract
DNA methylation, considered the most prominent epigenetic mark was important for the gene regulation in embryonic development. The present study aimed at evaluating the effects of metabolic stressors [Non-esterified fatty acid (NEFA), β-hydroxy-butyric acid (BHB), ammonia and urea] exposure during the in vitro ovine oocyte maturation, global DNA methylation, DNA methyltransferase and stress-related gene expression. Colorimetric analysis of global DNA methylation and the expression of the DNA methyltransferase genes (DNMT1, DNMT3A, and DNMT3B) were assessed in the matured oocytes, 2-cell embryos and blastocysts produced in vitro from oocytes exposed with the metabolic stressors during 24 h of the in vitro maturation (IVM). Further, the mRNA expression of the stress-related genes (SOD1, SOD2) in the matured oocytes, 2-cell embryos and blastocysts produced was assessed. Significant difference in global DNA methylation levels between all the treatments tested was observed when compared with control in oocytes, two-cell embryos and blastocysts. Elevated concentration of metabolic stressors resulted in increased expressions of several stress-related genes, i.e., SOD1, SOD2 and in mRNA expression of DNA methyltransferase genes. The present study is the first to report that the DNA methylation was sensitive to the effects of the metabolic stressors in ovine oocytes/embryos. The aberrant expressions of genes during oocyte development targeted in the present study can provide evidence for the early embryo developmental arrest and blastocysts quality. These results highlighted the sensitivity of the early embryogenesis and more precisely of the reprogramming period to metabolites challenges, in a realistic situation of elevated concentration of metabolic stressors.
Collapse
Affiliation(s)
- Sumanta Nandi
- Animal Biotechnology Laboratory, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, 560030, India
| | - Shiv K Tripathi
- Animal Biotechnology Laboratory, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, 560030, India
| | - Poonam K Singh
- Animal Biotechnology Laboratory, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, 560030, India
| | - Paluru S P Gupta
- Animal Biotechnology Laboratory, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, 560030, India
| | - Sukanta Mondal
- Animal Biotechnology Laboratory, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, 560030, India
| |
Collapse
|
11
|
Mauchart P, Vass RA, Nagy B, Sulyok E, Bódis J, Kovács K. Oxidative Stress in Assisted Reproductive Techniques, with a Focus on an Underestimated Risk Factor. Curr Issues Mol Biol 2023; 45:1272-1286. [PMID: 36826028 PMCID: PMC9954903 DOI: 10.3390/cimb45020083] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Based on current findings, the presence of oxidative stress has a significant impact on the quality of gametes and embryos when performing assisted reproductive techniques (ART). Unfortunately, in vitro manipulation of these cells exposes them to a higher level of reactive oxygen species (ROS). The primary goal of this review is to provide a comprehensive overview of the development of oxidative stress in female and male reproductive systems, as well as in the case of the pre-implantation embryo and its environment. This review also focuses on the origins of ROS and the mechanisms of oxidative stress-induced damage during ART procedures. A well-known but underestimated hazard, light exposure-related photo-oxidation, is particularly concerning. The effect of oxidative stress on ART outcomes, as well as the various strategies for preventing it, are also discussed. We emphasize the role and significance of antioxidants and light protection including forms, functions, and mechanisms in the development of gametes and embryos in vivo and in vitro.
Collapse
Affiliation(s)
- Péter Mauchart
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Department of Obstetrics and Gynecology, Medical School, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, 7624 Pécs, Hungary
- Correspondence:
| | - Réka Anna Vass
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Department of Obstetrics and Gynecology, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Bernadett Nagy
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Department of Obstetrics and Gynecology, Medical School, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, 7624 Pécs, Hungary
| | - Endre Sulyok
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Department of Obstetrics and Gynecology, Medical School, University of Pécs, 7624 Pécs, Hungary
- Faculty of Health Sciences, Doctoral School of Health Sciences, University of Pécs, 7621 Pécs, Hungary
| | - József Bódis
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Department of Obstetrics and Gynecology, Medical School, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, 7624 Pécs, Hungary
- Faculty of Health Sciences, Doctoral School of Health Sciences, University of Pécs, 7621 Pécs, Hungary
| | - Kálmán Kovács
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Department of Obstetrics and Gynecology, Medical School, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, 7624 Pécs, Hungary
| |
Collapse
|
12
|
Saha A, Chauhan MS, Manik RS, Palta P, Singla SK. Comparison the effects of 5-Aza-2'-deoxycytidine and zebularine on the in vitro development, blastocyst quality, methylation pattern and conception rate on handmade cloned buffalo embryos. Reprod Domest Anim 2023; 58:158-167. [PMID: 36214130 DOI: 10.1111/rda.14275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/09/2022] [Indexed: 01/07/2023]
Abstract
In this study we treated the handmade cloned (HMC) buffalo embryos with the DNA methylation inhibitors; 5-aza-2'-deoxycytidine (AzadC) or Zebularine individually after post-fusion and during in vitro culture till eighth day. The blastocysts production rate significantly improved (p < .01) after treating embryos independently with 5 nM AzadC and 5 nM zebularine compared with 2 and 10 nM AzadC or zebularine groups, respectively. The highest cleavage rates were obtained for 5 nM treatment of AzadC and zebularine compared with other treatments and untreated control group. Quality of blastocysts were evaluated using total cell number (TCN) and the ratio of number of inner cell mass (ICM) cells/total cell number (ICM/TCN). Zebularine treatments (2/5/10 nM) significantly improved both TCN and ICM/TCN ratio compared with AzadC treatments (2/5/10 nM); however, control group TCN and ICM/TCN ratio was found lower. The methylation percentage of pDS4.1 and B. bubalis satellite DNA were comparatively more attenuated with 5 nM zebularine than 5 nM AzadC treatment. The increased in vitro development rates of the treated embryos were correlated with the decreased level of DNA methylation and the improved blastocyst quality. Following transfer of 5 nM zebularine treated embryos to 6 recipients, 4 were found to be pregnant, though the pregnancies were not carried to full term.
Collapse
Affiliation(s)
- Ambikaprasanna Saha
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India.,Dum Dum Motijheel College, Kolkata, India
| | - Manmohan S Chauhan
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Radhey S Manik
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Prabhat Palta
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Suresh K Singla
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| |
Collapse
|
13
|
Yang XC, Wu XL, Li WH, Wu XJ, Shen QY, Li YX, Peng S, Hua JL. OCT6 inhibits differentiation of porcine-induced pluripotent stem cells through MAPK and PI3K signaling regulation. Zool Res 2022; 43:911-922. [PMID: 36052561 PMCID: PMC9700490 DOI: 10.24272/j.issn.2095-8137.2022.220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/01/2022] [Indexed: 08/18/2023] Open
Abstract
As a transcription factor of the Pit-Oct-Unc (POU) domain family, octamer-binding transcription factor 6 ( OCT6) participates in various aspects of stem cell development and differentiation. At present, however, its role in porcine-induced pluripotent stem cells (piPSCs) remains unclear. Here, we explored the function of OCT6 in piPSCs. We found that piPSCs overexpressing OCT6 maintained colony morphology and pluripotency under differentiation conditions, with a similar gene expression pattern to that of non-differentiated piPSCs. Functional analysis revealed that OCT6 attenuated the adverse effects of extracellular signal-regulated kinase (ERK) signaling pathway inhibition on piPSC pluripotency by activating phosphatidylinositol 3-kinase-protein kinase B (PI3K-AKT) signaling activity. Our research sheds new light on the mechanism by which OCT6 promotes PSC maintenance.
Collapse
Affiliation(s)
- Xin-Chun Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xiao-Long Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Wen-Hao Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xiao-Jie Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Qiao-Yan Shen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yun-Xiang Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jin-Lian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China. E-mail:
| |
Collapse
|
14
|
Samiec M, Wiater J, Wartalski K, Skrzyszowska M, Trzcińska M, Lipiński D, Jura J, Smorąg Z, Słomski R, Duda M. The Relative Abundances of Human Leukocyte Antigen-E, α-Galactosidase A and α-Gal Antigenic Determinants Are Biased by Trichostatin A-Dependent Epigenetic Transformation of Triple-Transgenic Pig-Derived Dermal Fibroblast Cells. Int J Mol Sci 2022; 23:ijms231810296. [PMID: 36142211 PMCID: PMC9499218 DOI: 10.3390/ijms231810296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
The present study sought to establish the mitotically stable adult cutaneous fibroblast cell (ACFC) lines stemming from hFUT2×hGLA×HLA-E triple-transgenic pigs followed by trichostatin A (TSA)-assisted epigenetically modulating the reprogrammability of the transgenes permanently incorporated into the host genome and subsequent comprehensive analysis of molecular signatures related to proteomically profiling the generated ACFC lines. The results of Western blot and immunofluorescence analyses have proved that the profiles of relative abundance (RA) noticed for both recombinant human α-galactosidase A (rhα-Gal A) and human leukocyte antigen-E (HLA-E) underwent significant upregulations in tri-transgenic (3×TG) ACFCs subjected to TSA-mediated epigenetic transformation as compared to not only their TSA-unexposed counterparts but also TSA-treated and untreated non-transgenic (nTG) cells. The RT-qPCR-based analysis of porcine tri-genetically engineered ACFCs revealed stable expression of mRNA fractions transcribed from hFUT2, hGLA and HLA-E transgenes as compared to a lack of such transcriptional activities in non-transgenic ACFC variants. Furthermore, although TSA-based epigenomic modulation has given rise to a remarkable increase in the expression levels of Galα1→3Gal (α-Gal) epitopes that have been determined by lectin blotting analysis, their semi-quantitative profiles have dwindled profoundly in both TSA-exposed and unexposed 3×TG ACFCs as compared to their nTG counterparts. In conclusion, thoroughly exploring proteomic signatures in such epigenetically modulated ex vivo models devised on hFUT2×hGLA×HLA-E triple-transgenic ACFCs that display augmented reprogrammability of translational activities of two mRNA transcripts coding for rhα-Gal A and HLA-E proteins might provide a completely novel and powerful research tool for the panel of further studies. The objective of these future studies should be to multiply the tri-transgenic pigs with the aid of somatic cell nuclear transfer (SCNT)-based cloning for the purposes of both xenografting the porcine cutaneous bioprostheses and dermoplasty-mediated surgical treatments in human patients.
Collapse
Affiliation(s)
- Marcin Samiec
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice, Poland
- Correspondence: (M.S.); (J.W.)
| | - Jerzy Wiater
- Department of Histology, Jagiellonian University Medical College, Kopernika 7 Street, 31-034 Kraków, Poland
- Correspondence: (M.S.); (J.W.)
| | - Kamil Wartalski
- Department of Histology, Jagiellonian University Medical College, Kopernika 7 Street, 31-034 Kraków, Poland
| | - Maria Skrzyszowska
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice, Poland
| | - Monika Trzcińska
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice, Poland
| | - Daniel Lipiński
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11 Street, 60-647 Poznań, Poland
| | - Jacek Jura
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice, Poland
| | - Zdzisław Smorąg
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice, Poland
| | - Ryszard Słomski
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11 Street, 60-647 Poznań, Poland
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32 Street, 60-479 Poznań, Poland
| | - Małgorzata Duda
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387 Kraków, Poland
| |
Collapse
|
15
|
Li Y, Sun Q. Epigenetic manipulation to improve mouse SCNT embryonic development. Front Genet 2022; 13:932867. [PMID: 36110221 PMCID: PMC9468881 DOI: 10.3389/fgene.2022.932867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Cloned mammals can be achieved through somatic cell nuclear transfer (SCNT), which involves reprogramming of differentiated somatic cells into a totipotent state. However, low cloning efficiency hampers its application severely. Cloned embryos have the same DNA as donor somatic cells. Therefore, incomplete epigenetic reprogramming accounts for low development of cloned embryos. In this review, we describe recent epigenetic barriers in SCNT embryos and strategies to correct these epigenetic defects and avoid the occurrence of abnormalities in cloned animals.
Collapse
Affiliation(s)
- Yamei Li
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Qiang Sun
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
- *Correspondence: Qiang Sun,
| |
Collapse
|
16
|
The secretion and metabolism of cumulus cells support fertilization in the bovine model. Theriogenology 2022; 193:136-145. [DOI: 10.1016/j.theriogenology.2022.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022]
|
17
|
Liu RP, Wang XQ, Wang J, Dan L, Li YH, Jiang H, Xu YN, Kim NH. Oroxin A reduces oxidative stress, apoptosis, and autophagy and improves the developmental competence of porcine embryos in vitro. Reprod Domest Anim 2022; 57:1255-1266. [PMID: 35780288 DOI: 10.1111/rda.14200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/01/2022] [Indexed: 11/28/2022]
Abstract
Oroxin A (OA) is a flavonoid isolated from Oroxylum indicum (L.) Kurz that has various biological activities, including antioxidant activities. This study aimed to examine the viability of using OA in an in vitro culture (IVC) medium for its antioxidant effects and related molecular mechanisms on porcine blastocyst development. In this study, we investigated the effects of OA on early porcine embryo development via terminal deoxynucleotidyl transferase dUTP nick-end labeling, 5-ethynyl-2'-deoxyuridine labeling, quantitative reverse transcription PCR, and immunocytochemistry. Embryos cultured in the IVC medium supplemented with 2.5 μM of OA had an increased blastocyst formation rate, total cell number, and proliferation capacity, along with a low apoptosis rate. OA supplementation decreased reactive oxygen species levels, while increasing glutathione levels. OA-treated embryos exhibited an improved intracellular mitochondrial membrane potential and reduced autophagy. Moreover, levels of pluripotency- and antioxidant-related genes were upregulated, whereas those of apoptosis- and autophagy-related genes were downregulated by OA addition. In conclusion, OA improves preimplantation embryonic development by reducing oxidative stress and enhancing mitochondrial function.
Collapse
Affiliation(s)
- Rong-Ping Liu
- School of Biotechnology and Health Sciences, Wuyi University, 529000, Jiangmen, China
| | - Xin-Qin Wang
- School of Biotechnology and Health Sciences, Wuyi University, 529000, Jiangmen, China
| | - Jing Wang
- School of Biotechnology and Health Sciences, Wuyi University, 529000, Jiangmen, China
| | - Luo Dan
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Ying-Hua Li
- School of Biotechnology and Health Sciences, Wuyi University, 529000, Jiangmen, China
| | - Hao Jiang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Yong-Nan Xu
- School of Biotechnology and Health Sciences, Wuyi University, 529000, Jiangmen, China
| | - Nam-Hyung Kim
- School of Biotechnology and Health Sciences, Wuyi University, 529000, Jiangmen, China
| |
Collapse
|
18
|
Ren X, She C, Huang S, Yang T, Tong Y, Yuan X, Shi D, Li X. Chromatin openness of donor cells is directly correlated with the in vitro developmental capabilities of cloned buffalo embryos. Reprod Domest Anim 2022; 57:1113-1124. [PMID: 35689464 DOI: 10.1111/rda.14177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/09/2022] [Indexed: 11/29/2022]
Abstract
The Switch/sucrose nonfermentable (SWI/SNF) chromatin remodelling complex is closely related to chromatin openness and gene transcriptional activity. To understand if the chromatin openness of donor cells was related to the development efficiency of somatic cell cloning embryos, two buffalo fetal fibroblasts (BFF), BFF1 and BFF3, with significantly different cloned blastocyst development rates (18.4% and 30.9% respectively), were selected in this study. The expression of SWI/SNF complex genes, chromatin openness, and transcript level of these two cell lines were analysed, and the effect of ATP on the expression of the SWI/SNF complex genes was further explored. The results showed that compared with BFF1, the expression of SWI/SNF complex family genes was higher in BFF3 at the G0/G1 phase, where SMARCC1, SMARCC2 and SMARCE1 were significantly different (p < .05). Assay of Transposase Accessible Chromatin sequencing (ATAC-seq) results showed that, at the genome-wide level, BFF3 had more open chromatin, especially which having more open chromatin peaks at SMARCA4, SMARCA2, and RBPMS2 (RNA Binding Protein, mRNA Processing Factor 2) sites. In total, 2,712 differentially expressed genes (DEGs) were identified by the RNA-Seq method, with 1380 up- and 1332 down-regulated genes in BFF3. Interestingly, the ATPase-related genes ATP1B1 and ATP11A were extreme significantly up-regulated in BFF3 (p < .01). The ATP content and the expression of SWI/SNF complex genes in both BFF1 and BFF3 decreased when treated with rotenone. The above results demonstrated that the SWI/SNF complex contributed to chromatin opening, and chromatin opening of donor cells was essential for cloned embryo development.
Collapse
Affiliation(s)
- Xuan Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Chun She
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Shihai Huang
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Ting Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Yi Tong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Xi Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Xiangping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| |
Collapse
|
19
|
Dai S, Zhang H, Yang F, Shang W, Zeng S. Effects of IGF-1 on the Three-Dimensional Culture of Ovarian Preantral Follicles and Superovulation Rates in Mice. BIOLOGY 2022; 11:biology11060833. [PMID: 35741354 PMCID: PMC9219699 DOI: 10.3390/biology11060833] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 12/25/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) plays a crucial role during folliculogenesis, which has been demonstrated by previous research. However, the optimal IGF-1 dosage in the three-dimensional (3D) culture system is unknown. Mouse secondary follicles (140−150 µm) were cultured for 6 days within an alginate bead in a medium supplemented with 0 (G0), 5 ng/mL (G5), 10 ng/mL (G10), or 50 ng/mL IGF-1 (G50). Secretions of 17β-estradiol and progesterone were significantly increased in G10 and G50 (p < 0.05). However, G50 significantly inhibited follicular growth (p < 0.05), while G10 showed a higher oocyte maturation rate. Thus, the 10 ng/mL IGF-1 was used in subsequent experiments. IGF-1 enhanced the function of granulosa cells (GCs) by upregulating expressions of Star, Cyp19a1, Hsd3b1, Fshr, and Lhcgr. Oocyte secretory function was promoted by upregulating expressions of Bmp-15, Gdf-9, and Fgf-8. Addition of IGF-1 showed anti-apoptotic effect. However, G10 did not improve fertilization rate of MII oocytes compared to G0. In an intraperitoneal injection experiment in mice, IGF-1 significantly increased the number of ovulated oocytes (p < 0.05). In conclusion, 10 ng/mL IGF-1 can promote the production of mature oocytes in the 3D culture medium and injection of IGF-1 before superovulation increases the number of ovulated oocytes.
Collapse
Affiliation(s)
- Shizhen Dai
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.D.); (H.Z.); (F.Y.)
| | - Hanxue Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.D.); (H.Z.); (F.Y.)
| | - Feng Yang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.D.); (H.Z.); (F.Y.)
| | - Wei Shang
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Center for Reproductive Medicine, The Sixth Medical Center, Beijing 100037, China
- Correspondence: (W.S.); (S.Z.)
| | - Shenming Zeng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.D.); (H.Z.); (F.Y.)
- Correspondence: (W.S.); (S.Z.)
| |
Collapse
|
20
|
Vazquez-Avendaño JR, Ambriz-García DA, Cortez-Romero C, Trejo-Córdova A, del Carmen Navarro-Maldonado M. Current state of the efficiency of sheep embryo production through somatic cell nuclear transfer. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Ammari AA, ALghadi MG, ALhimaidi AR, Amran RA. The role of passage numbers of donor cells in the development of Arabian Oryx – Cow interspecific somatic cell nuclear transfer embryos. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The cloning between different animals known as interspecific somatic cell nuclear transfer (iSCNT) was carried out for endangered species. The iSCNT has been characterized by a poor success rate due to several factors that influence the formation of the SCNT in various cytoplasms. The cell cycle of the transferred somatic cell, the passage number of the cultured somatic cell, the mitochondria oocytes, and their capabilities are among these factors. This study investigates the role of the passage number of the Arabian Oryx somatic cell culture when transplanted to an enucleated domestic cow oocyte and embryo development in vitro. The fibroblast somatic cell of the Arabian Oryx was cultured for several passage lanes (3–13). The optimal passage cell number was found to be 10–13 Oryx cell lines that progressed to various cell stages up to the blastula stage. There was some variation between the different passage numbers of the oryx cell line. The 3–9 cell line did not show a good developmental stage. These could be attributed to several factors that control the iSCNT as stated by several investigators. More investigation is needed to clarify the role of factors that affect the success rate for the iSCNT.
Collapse
Affiliation(s)
- Aiman A. Ammari
- Department of Zoology, King Saud University, College of Science , P.O. Box 2455 , Riyadh 11451 , Kingdom of Saudi Arabia
| | - Muath G. ALghadi
- Department of Zoology, King Saud University, College of Science , P.O. Box 2455 , Riyadh 11451 , Kingdom of Saudi Arabia
| | - Ahmad R. ALhimaidi
- Department of Zoology, King Saud University, College of Science , P.O. Box 2455 , Riyadh 11451 , Kingdom of Saudi Arabia
| | - Ramzi A. Amran
- Department of Zoology, King Saud University, College of Science , P.O. Box 2455 , Riyadh 11451 , Kingdom of Saudi Arabia
| |
Collapse
|
22
|
Liu Y, Cui M, Zhang Y, Zhao X, Sun M, Zhao X. Oocyte Penetration Speed Optimization Based on Intracellular Strain. MICROMACHINES 2022; 13:309. [PMID: 35208433 PMCID: PMC8875814 DOI: 10.3390/mi13020309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023]
Abstract
Oocyte penetration is an essential step for many biological technologies, such as animal cloning, embryo microinjection, and intracytoplasmic sperm injection (ICSI). Although the success rate of robotic cell penetration is very high now, the development potential of oocytes after penetration has not been significantly improved compared with manual operation. In this paper, we optimized the oocyte penetration speed based on the intracellular strain. We firstly analyzed the intracellular strain at different penetration speeds and performed the penetration experiments on porcine oocytes. Secondly, we studied the cell development potential after penetration at different penetration speeds. The statistical results showed that the percentage of large intracellular strain decreased by 80% and the maximum and average intracellular strain decreased by 25-38% at the penetration speed of 50 μm/s compared to at 10 μm/s. Experiment results showed that the cleavage rates of the oocytes after penetration increased from 65.56% to 86.36%, as the penetration speed increased from 10 to 50 μm/s. Finally, we verified the gene expression of oocytes after penetration at different speeds. The experimental results showed that the totipotency and antiapoptotic genes of oocytes were significantly higher after penetration at the speed of 50 μm/s, which verified the effectiveness of the optimization method at the gene level.
Collapse
Affiliation(s)
- Yaowei Liu
- Institute of Robotics and Automatic Information System, The Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300071, China; (Y.L.); (Y.Z.); (X.Z.); (M.S.)
- Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, China;
| | - Maosheng Cui
- Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, China;
- Institute of Animal Sciences, Tianjin 300112, China
| | - Yidi Zhang
- Institute of Robotics and Automatic Information System, The Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300071, China; (Y.L.); (Y.Z.); (X.Z.); (M.S.)
| | - Xiangfei Zhao
- Institute of Robotics and Automatic Information System, The Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300071, China; (Y.L.); (Y.Z.); (X.Z.); (M.S.)
| | - Mingzhu Sun
- Institute of Robotics and Automatic Information System, The Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300071, China; (Y.L.); (Y.Z.); (X.Z.); (M.S.)
- Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, China;
| | - Xin Zhao
- Institute of Robotics and Automatic Information System, The Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300071, China; (Y.L.); (Y.Z.); (X.Z.); (M.S.)
- Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, China;
| |
Collapse
|
23
|
Saini S, Ansari S, Sharma V, Saugandhika S, Kumar S, Malakar D. Folate Receptor-1 is Vital for Developmental Competence of Goat Embryos. Reprod Domest Anim 2022; 57:541-549. [PMID: 35122705 DOI: 10.1111/rda.14092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/03/2022] [Indexed: 11/30/2022]
Abstract
Folate is essential for DNA synthesis and methylation via one-carbon (C1) metabolism during embryonic development. It is transported into the developing oocytes via folate receptors (FOLR1 and FOLR2) and transporters (RFC1) for utilization during embryo development. However, the role of folate receptors during pre-implantation stages of embryos is not well known. Thus, the present study aimed to investigate the expression of folate transport genes and proteins in mature oocytes and pre-implantation embryos; and the effect of FOLR1 knockdown in zygotes on blastocyst outcome. For this, Immature goat oocytes were matured in maturation medium followed by in vitro fertilization and culture at standard conditions. A group of zygotes was transfected with esiRNA against FOLR1 and in vitro cultured for blastocyst outcome assessment. The transcripts and proteins for FOLR1, FOLR2 and RFC1 were present in oocytes as well as all the stages of pre-implantation embryos. Immunofluorescence revealed the presence of FOLR1 in the nuclei of embryos but not in the metaphase (matured) oocytes. The knockdown of FOLR1 in embryos was effective and significantly reduced the blastocyst production rate. The present study demonstrates the existence of active folate transport in oocytes and pre-implantation goat embryos. FOLR1 is vital for pre-implantation embryo development and may aid in the progression by functioning as a transcription factor.
Collapse
Affiliation(s)
- Sikander Saini
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | - Shama Ansari
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | - Vishal Sharma
- National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | | | - Sandeep Kumar
- Kalpana Chawla Government Medical College & Hospital, Karnal, Haryana, India
| | - Dhruba Malakar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|