1
|
Wutikeli H, Xie T, Xiong W, Shen Y. ELAV/Hu RNA-binding protein family: key regulators in neurological disorders, cancer, and other diseases. RNA Biol 2025; 22:1-11. [PMID: 40000387 PMCID: PMC11926907 DOI: 10.1080/15476286.2025.2471133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
The ELAV/Hu family represents a crucial group of RNA-binding proteins predominantly expressed in neurons, playing significant roles in mRNA transcription and translation. These proteins bind to AU-rich elements in transcripts to regulate the expression of cytokines, growth factors, and the development and maintenance of neurons. Elav-like RNA-binding proteins exhibit remarkable molecular weight conservation across different species, highlighting their evolutionary conservation. Although these proteins are widely expressed in the nervous system and other cell types, variations in the DNA sequences of the four Elav proteins contribute to their distinct roles in neurological disorders, cancer, and other Diseases . Elavl1, a ubiquitously expressed family member, is integral to processes such as cell growth, ageing, tumorigenesis, and inflammatory diseases. Elavl2, primarily expressed in the nervous and reproductive systems, is critical for central nervous system and retinal development; its dysregulation has been implicated in neurodevelopmental disorders such as autism. Both Elavl3 and Elavl4 are restricted to the nervous system and are involved in neuronal differentiation and excitability. Elavl3 is essential for cerebellar function and has been associated with epilepsy, while Elavl4 is linked to neurodegenerative diseases, including Parkinson's and Alzheimer's diseases. This paper provides a comprehensive review of the ELAV/Hu family's role in nervous system development, neurological disorders, cancer, and other diseases.
Collapse
Affiliation(s)
- Huxitaer Wutikeli
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Ting Xie
- Division of Life Science, The Hong Kong University of Science and Technology, Special Administrative Region (SAR), Kowloon, Hong Kong, China
| | - Wenjun Xiong
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
2
|
Filcenkova L, Reisbitzer A, Joseph BP, Weber V, Carloni P, Rossetti G, Krauß S. Application of a novel RNA-protein interaction assay to develop inhibitors blocking RNA-binding of the HuR protein. Front Genet 2025; 16:1549304. [PMID: 40110045 PMCID: PMC11921777 DOI: 10.3389/fgene.2025.1549304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
RNA-protein interactions play an important regulatory role in several biological processes. For example, the RNA-binding protein HuR (human antigen R) binds to its target mRNAs and regulates their translation, stability, and subcellular localization. HuR is involved in the pathogenic processes of various diseases. Thus, small molecules blocking RNA-binding of HuR may be useful in a variety of diseases. Previously, we identified STK018404 as a small molecule targeting the HuR-RNA interaction. Based on this study we identified optimized compounds by exploiting combined structure-based and ligand-based computational approaches. To test a series of these compounds, we developed a novel readout system for the HuR-RNA interaction. Traditional methods to detect RNA-protein interaction come with some disadvantages: they require significant reagent optimization and may be difficult to optimize for weakly expressed RNA molecules. The readout often requires amplification. Thus, these methods are not well suited for quantitative analysis of RNA-protein interactions. To achieve an easy-to-perform, rapid, and robust detection of RNA-protein binding, we applied a split luciferase reporter system, to detect the interaction between HuR and its target RNA. We expressed one luciferase fragment as a fusion protein with HuR. The second luciferase fragment was Streptavidin-coated and coupled to a biotinylated RNA-oligo comprising an AU-rich HuR-binding element. The binding between HuR and its target RNA-oligo then allowed reconstitution of the functional luciferase that was detectable by luminescence. Using the split luciferase reporter system, we present here a series of optimized compounds that we developed.
Collapse
Affiliation(s)
- Larissa Filcenkova
- Institute of Biology, Human Biology/Neurobiology, University of Siegen, Siegen, Germany
| | - Annika Reisbitzer
- Institute of Biology, Human Biology/Neurobiology, University of Siegen, Siegen, Germany
| | - Benjamin Philipp Joseph
- Institute for Neuroscience and Medicine and Institute for Advanced Simulations (INM-9/IAS-5), Computational Biomedicine, Forschungszentrum Jülich, Jülich, Germany
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen, Aachen, Germany
| | - Verena Weber
- Institute for Neuroscience and Medicine and Institute for Advanced Simulations (INM-9/IAS-5), Computational Biomedicine, Forschungszentrum Jülich, Jülich, Germany
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen, Aachen, Germany
| | - Paolo Carloni
- Institute for Neuroscience and Medicine and Institute for Advanced Simulations (INM-9/IAS-5), Computational Biomedicine, Forschungszentrum Jülich, Jülich, Germany
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen, Aachen, Germany
| | - Giulia Rossetti
- Institute for Neuroscience and Medicine and Institute for Advanced Simulations (INM-9/IAS-5), Computational Biomedicine, Forschungszentrum Jülich, Jülich, Germany
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- Juelich Supercomputing Center (JSC), Forschungszentrum Jülich, Jülich, Germany
| | - Sybille Krauß
- Institute of Biology, Human Biology/Neurobiology, University of Siegen, Siegen, Germany
| |
Collapse
|
3
|
Tang H, Zhu D, Li W, Zhang G, Zhang H, Peng Q. Exosomal AFAP1-AS1 Promotes the Growth, Metastasis, and Glycolysis of Pituitary Adenoma by Inhibiting HuR Degradation. Mol Neurobiol 2025; 62:2212-2229. [PMID: 39090353 PMCID: PMC11772456 DOI: 10.1007/s12035-024-04387-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024]
Abstract
Exosomal long noncoding RNAs (lncRNAs), which are highly expressed in tumor-derived exosomes, regulate various cellular behaviors such as cell proliferation, metastasis, and glycolysis by facilitating intercellular communication. Here, we explored the role and regulatory mechanism of tumor-derived exosomal lncRNAs in pituitary adenomas (PA). We isolated exosomes from PA cells, and performed in vitro and in vivo assays to examine their effect on the proliferation, metastasis, and glycolysis of PA cells. In addition, we conducted RNA pull-down, RNA immunoprecipitation, co-immunoprecipitation, and ubiquitination assays to investigate the downstream mechanism of exosomal AFAP1-AS1. Exosomes from PA cells augmented the proliferation, mobility, and glycolysis of PA cells. Moreover, AFAP1-AS1 was significantly enriched in these exosomes and stimulated the growth, migration, invasion, and glycolysis of PA cells in vitro, as well as tumor metastasis in vivo. It also enhanced the binding affinity between Hu antigen R (HuR) and SMAD-specific E3 ubiquitin protein ligase 1 (SMURF1), resulting in HuR ubiquitination and degradation accompanied by enhanced expression of hexokinase 2 (HK2) and pyruvate kinase M2 (PKM2). Moreover, HuR overexpression alleviated the exosomal AFAP1-AS1-mediated promotion of growth, metastasis, and glycolysis effects. These findings indicate that tumor-derived exosomal AFAP1-AS1 modulated SMURF1-mediated HuR ubiquitination and degradation to upregulate HK2 and PKM2 expression, thereby enhancing PA cell growth, metastasis, and glucose metabolism. This suggests targeting exosomal AFAP1-AS1 may be a potential strategy for the treatment of PA.
Collapse
Affiliation(s)
- Hengxin Tang
- Department of Neurosurgery, Guangzhou First People's Hospital, South China University of Technology, 105 Fengze East Road, Nansha District, Guangzhou, 511457, Guangdong, China.
| | - Delong Zhu
- Department of Neurosurgery, Guangzhou First People's Hospital, South China University of Technology, 105 Fengze East Road, Nansha District, Guangzhou, 511457, Guangdong, China
| | - Wenxiang Li
- Department of Neurosurgery, Guangzhou First People's Hospital, South China University of Technology, 105 Fengze East Road, Nansha District, Guangzhou, 511457, Guangdong, China
| | - Guozhi Zhang
- Department of Neurosurgery, Guangzhou First People's Hospital, South China University of Technology, 105 Fengze East Road, Nansha District, Guangzhou, 511457, Guangdong, China
| | - Heng Zhang
- Department of Neurosurgery, Guangzhou First People's Hospital, South China University of Technology, 105 Fengze East Road, Nansha District, Guangzhou, 511457, Guangdong, China
| | - Qiujiao Peng
- Department of Neurosurgery, Guangzhou First People's Hospital, South China University of Technology, 105 Fengze East Road, Nansha District, Guangzhou, 511457, Guangdong, China
| |
Collapse
|
4
|
Wutikeli H, Yu Y, Zhang T, Cao J, Nawy S, Shen Y. Role of Elavl-like RNA-binding protein in retinal development and signal transduction. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167518. [PMID: 39307290 DOI: 10.1016/j.bbadis.2024.167518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/25/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
RNA-binding proteins (RBPs) play central roles in post-transcriptional gene regulation. However, the function of RBP in retinal progenitor cell differentiation and synaptic signal transmission are largely unexplored. Previously we have shown that Elavl2 regulates amacrine cell (AC) differentiation during retinogenesis, by directly binding to Nr4a2 and Barhl2. Elavl2 is expressed in early neuronal progenitors to mature neurons, and Elavl4 expression begins slightly later, during cortical neuron development as a paralog. Here, Retinal-specific Elavl2 and Elavl4 double knockout mice were made to further explore the role of Elavl2 and Elavl4 in retinal development and signal transduction. We disclose that Elavl4 binds to Satb1 to regulate Neurod1, then promoting retinal progenitor and amacrine cells differentiation. We were also surprised to find that Elavl2 interacted with GABAB receptors at the RNA and protein levels. In conclusion, Elavl2 and Elavl4 regulate amacrine cells differentiation through different pathways, leading to decreased scotopic vision. Our findings reveal the roles of Elavl2 and Elavl4 in retinal amacrine cells differentiation in modulating visual functions.
Collapse
Affiliation(s)
- Huxitaer Wutikeli
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China
| | - Yao Yu
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China
| | - Tianlu Zhang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China
| | | | - Scott Nawy
- University of California Berkeley, Department of Molecular and Cell Biology, Berkeley, CA, USA
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China.
| |
Collapse
|
5
|
Azizian S, Cui J. DeepMiRBP: a hybrid model for predicting microRNA-protein interactions based on transfer learning and cosine similarity. BMC Bioinformatics 2024; 25:381. [PMID: 39695955 DOI: 10.1186/s12859-024-05985-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Interactions between microRNAs and RNA-binding proteins are crucial for microRNA-mediated gene regulation and sorting. Despite their significance, the molecular mechanisms governing these interactions remain underexplored, apart from sequence motifs identified on microRNAs. To date, only a limited number of microRNA-binding proteins have been confirmed, typically through labor-intensive experimental procedures. Advanced bioinformatics tools are urgently needed to facilitate this research. METHODS We present DeepMiRBP, a novel hybrid deep learning model specifically designed to predict microRNA-binding proteins by modeling molecular interactions. This innovation approach is the first to target the direct interactions between small RNAs and proteins. DeepMiRBP consists of two main components. The first component employs bidirectional long short-term memory (Bi-LSTM) neural networks to capture sequential dependencies and context within RNA sequences, attention mechanisms to enhance the model's focus on the most relevant features and transfer learning to apply knowledge gained from a large dataset of RNA-protein binding sites to the specific task of predicting microRNA-protein interactions. Cosine similarity is applied to assess RNA similarities. The second component utilizes Convolutional Neural Networks (CNNs) to process the spatial data inherent in protein structures based on Position-Specific Scoring Matrices (PSSM) and contact maps to generate detailed and accurate representations of potential microRNA-binding sites and assess protein similarities. RESULTS DeepMiRBP achieved a prediction accuracy of 87.4% during training and 85.4% using testing, with an F score of 0.860. Additionally, we validated our method using three case studies, focusing on microRNAs such as miR-451, -19b, -23a, -21, -223, and -let-7d. DeepMiRBP successfully predicted known miRNA interactions with recently discovered RNA-binding proteins, including AGO, YBX1, and FXR2, identified in various exosomes. CONCLUSIONS Our proposed DeepMiRBP strategy represents the first of its kind designed for microRNA-protein interaction prediction. Its promising performance underscores the model's potential to uncover novel interactions critical for small RNA sorting and packaging, as well as to infer new RNA transporter proteins. The methodologies and insights from DeepMiRBP offer a scalable template for future small RNA research, from mechanistic discovery to modeling disease-related cell-to-cell communication, emphasizing its adaptability and potential for developing novel small RNA-centric therapeutic interventions and personalized medicine.
Collapse
Affiliation(s)
- Sasan Azizian
- School of Computing, University of Nebraska-Lincoln, 1400 R St, Lincoln, NE, 68588-0115, USA
| | - Juan Cui
- School of Computing, University of Nebraska-Lincoln, 1400 R St, Lincoln, NE, 68588-0115, USA.
| |
Collapse
|
6
|
Shi X, Liu S, Zou Y, Wu H, Ma J, Lin J, Zhang X. LncRNA Taurine Up-Regulated 1 Knockout Provides Neuroprotection in Ischemic Stroke Rats by Inhibiting Nuclear-Cytoplasmic Shuttling of HuR. Biomedicines 2024; 12:2520. [PMID: 39595085 PMCID: PMC11592331 DOI: 10.3390/biomedicines12112520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Long non-coding RNA taurine-upregulated gene 1 (TUG1) is involved in various cellular processes, but its role in cerebral ischemia-reperfusion injury remains unclear. This study investigated TUG1's role in regulating the nucleocytoplasmic shuttling of human antigen R (HuR), a key apoptosis regulator under ischemic conditions. Methods: CRISPR-Cas9 technology was used to generate TUG1 knockout Sprague Dawley rats to assess TUG1's impact on ischemic injury. The infarct area and neuronal apoptosis were evaluated using TUNEL, hematoxylin and eosin (HE), and TTC staining, while behavioral functions were assessed. Immunofluorescence staining with confocal microscopy was employed to examine TUG1-mediated HuR translocation and expression changes in the apoptosis-related proteins COX-2 and Bax. Results: TUG1 knockout rats showed significantly reduced cerebral infarct areas, decreased neuronal apoptosis, and improved neurological functions compared to controls. Immunofluorescence staining revealed that HuR translocation from the nucleus to the cytoplasm was inhibited, leading to decreased COX-2 and Bax expression levels. Conclusions: TUG1 knockout reduces ischemic damage and neuronal apoptosis by inhibiting HuR nucleocytoplasmic shuttling, making TUG1 a potential therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Xiaocheng Shi
- Department of Neurological Rehabilitation, Zhongnan Hospital of Wuhan University, Wuhan 430071, China;
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Y.Z.); (H.W.); (J.M.)
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China;
| | - Sha Liu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China;
- Department of General Practice, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yichun Zou
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Y.Z.); (H.W.); (J.M.)
| | - Hengping Wu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Y.Z.); (H.W.); (J.M.)
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China;
| | - Jinyang Ma
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Y.Z.); (H.W.); (J.M.)
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China;
| | - Junbin Lin
- Department of Neurological Rehabilitation, Zhongnan Hospital of Wuhan University, Wuhan 430071, China;
| | - Xin Zhang
- Department of Neurological Rehabilitation, Zhongnan Hospital of Wuhan University, Wuhan 430071, China;
| |
Collapse
|
7
|
Joseph BP, Weber V, Knüpfer L, Giorgetti A, Alfonso-Prieto M, Krauß S, Carloni P, Rossetti G. Low Molecular Weight Inhibitors Targeting the RNA-Binding Protein HuR. Int J Mol Sci 2023; 24:13127. [PMID: 37685931 PMCID: PMC10488267 DOI: 10.3390/ijms241713127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The RNA-binding protein human antigen R (HuR) regulates stability, translation, and nucleus-to-cytoplasm shuttling of its target mRNAs. This protein has been progressively recognized as a relevant therapeutic target for several pathologies, like cancer, neurodegeneration, as well as inflammation. Inhibitors of mRNA binding to HuR might thus be beneficial against a variety of diseases. Here, we present the rational identification of structurally novel HuR inhibitors. In particular, by combining chemoinformatic approaches, high-throughput virtual screening, and RNA-protein pulldown assays, we demonstrate that the 4-(2-(2,4,6-trioxotetrahydropyrimidin-5(2H)-ylidene)hydrazineyl)benzoate ligand exhibits a dose-dependent HuR inhibition effect in binding experiments. Importantly, the chemical scaffold is new with respect to the currently known HuR inhibitors, opening up a new avenue for the design of pharmaceutical agents targeting this important protein.
Collapse
Affiliation(s)
- Benjamin Philipp Joseph
- Institute for Neuroscience and Medicine and Institute for Advanced Simulations (INM-9/IAS-5), Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany; (B.P.J.); (V.W.); (A.G.); (M.A.-P.); (G.R.)
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, 52062 Aachen, Germany
| | - Verena Weber
- Institute for Neuroscience and Medicine and Institute for Advanced Simulations (INM-9/IAS-5), Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany; (B.P.J.); (V.W.); (A.G.); (M.A.-P.); (G.R.)
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, 52062 Aachen, Germany
| | - Lisa Knüpfer
- Institute of Biology, University of Siegen, 57076 Siegen, Germany;
| | - Alejandro Giorgetti
- Institute for Neuroscience and Medicine and Institute for Advanced Simulations (INM-9/IAS-5), Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany; (B.P.J.); (V.W.); (A.G.); (M.A.-P.); (G.R.)
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Mercedes Alfonso-Prieto
- Institute for Neuroscience and Medicine and Institute for Advanced Simulations (INM-9/IAS-5), Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany; (B.P.J.); (V.W.); (A.G.); (M.A.-P.); (G.R.)
| | - Sybille Krauß
- Institute of Biology, University of Siegen, 57076 Siegen, Germany;
| | - Paolo Carloni
- Institute for Neuroscience and Medicine and Institute for Advanced Simulations (INM-9/IAS-5), Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany; (B.P.J.); (V.W.); (A.G.); (M.A.-P.); (G.R.)
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, 52062 Aachen, Germany
| | - Giulia Rossetti
- Institute for Neuroscience and Medicine and Institute for Advanced Simulations (INM-9/IAS-5), Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany; (B.P.J.); (V.W.); (A.G.); (M.A.-P.); (G.R.)
- Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich, 52425 Jülich, Germany
- Department of Neurology, RWTH Aachen University, 44517 Aachen, Germany
| |
Collapse
|
8
|
Ferrigno A, Campagnoli LIM, Barbieri A, Marchesi N, Pascale A, Croce AC, Vairetti M, Di Pasqua LG. MCD Diet Modulates HuR and Oxidative Stress-Related HuR Targets in Rats. Int J Mol Sci 2023; 24:9808. [PMID: 37372956 DOI: 10.3390/ijms24129808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
The endogenous antioxidant defense plays a big part in the pathogenesis of non-alcoholic fatty liver disease (NAFLD), a common metabolic disorder that can lead to serious complications such as cirrhosis and cancer. HuR, an RNA-binding protein of the ELAV family, controls, among others, the stability of MnSOD and HO-1 mRNA. These two enzymes protect the liver cells from oxidative damage caused by excessive fat accumulation. Our aim was to investigate the expression of HuR and its targets in a methionine-choline deficient (MCD) model of NAFLD. To this aim, we fed male Wistar rats with an MCD diet for 3 and 6 weeks to induce NAFLD; then, we evaluated the expression of HuR, MnSOD, and HO-1. The MCD diet induced fat accumulation, hepatic injury, oxidative stress, and mitochondrial dysfunction. A HuR downregulation was also observed in association with a reduced expression of MnSOD and HO-1. Moreover, the changes in the expression of HuR and its targets were significantly correlated with oxidative stress and mitochondrial injury. Since HuR plays a protective role against oxidative stress, targeting this protein could be a therapeutic strategy to both prevent and counteract NAFLD.
Collapse
Affiliation(s)
- Andrea Ferrigno
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56122 Pisa, Italy
| | | | - Annalisa Barbieri
- Unit of Pharmacology, Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Nicoletta Marchesi
- Unit of Pharmacology, Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Alessia Pascale
- Unit of Pharmacology, Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Anna Cleta Croce
- IGM-CNR, Unit of Histochemistry and Cytometry, University of Pavia, 27100 Pavia, Italy
| | - Mariapia Vairetti
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Laura Giuseppina Di Pasqua
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
9
|
Borgonetti V, Galeotti N. Posttranscriptional Regulation of Gene Expression Participates in the Myelin Restoration in Mouse Models of Multiple Sclerosis: Antisense Modulation of HuR and HuD ELAV RNA Binding Protein. Mol Neurobiol 2023; 60:2661-2677. [PMID: 36696009 PMCID: PMC10039839 DOI: 10.1007/s12035-023-03236-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023]
Abstract
Neuropathic pain is the most difficult-to-treat pain syndrome in multiple sclerosis. Evidence relates neuropathic pain to demyelination, which often originates from unresolved neuroinflammation or altered immune response. Posttranscriptional regulation of gene expression might play a fundamental role in the regulation of these processes. The ELAV RNA-binding proteins HuR and HuD are involved in the promotion of inflammatory phenomena and in neuronal development and maintenance, respectively. Thus, the aim of this study was to investigate the role of HuR and HuD in demyelination-associated neuropathic pain in the mouse experimental autoimmune encephalomyelitis (EAE) model. HuR resulted overexpressed in the spinal cord of MOG35-55-EAE and PLP139-151-EAE mice and was detected in CD11b + cells. Conversely, HuD was largely downregulated in the MOG-EAE spinal cord, along with GAP43 and neurofilament H, while in PLP-EAE mice, HuD and neuronal markers remained unaltered. Intranasal antisense oligonucleotide (ASO) delivery to knockdown HuR, increased myelin basic protein expression, and Luxol Fast Blue staining in both EAE models, an indication of increased myelin content. These effects temporally coincided with attenuation of pain hypersensitivity. Anti-HuR ASO increased the expression of HuD in GAP43-expressing cells and promoted a HuD-mediated neuroprotective activity in MOG-EAE mice, while in PLP-EAE mice, HuR silencing dampened pro-inflammatory responses mediated by spinal microglia activation. In conclusion, anti-HuR ASO showed myelin protection at analgesic doses with multitarget mechanisms, and it deserves further consideration as an innovative agent to counteract demyelination in neuropathic pain states.
Collapse
Affiliation(s)
- Vittoria Borgonetti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Viale G. Pieraccini 6, I-50139, Florence, Italy
| | - Nicoletta Galeotti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Viale G. Pieraccini 6, I-50139, Florence, Italy.
| |
Collapse
|
10
|
Lin WY, Liu CH, Cheng J, Liu HP. Alterations of RNA-binding protein found in neurons in Drosophila neurons and glia influence synaptic transmission and lifespan. Front Mol Neurosci 2022; 15:1006455. [DOI: 10.3389/fnmol.2022.1006455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
The found in neurons (fne), a paralog of the RNA-binding protein ELAV gene family in Drosophila, is required for post-transcriptional regulation of neuronal development and differentiation. Previous explorations into the functions of the FNE protein have been limited to neurons. The function of fne in Drosophila glia remains unclear. We induced the knockdown or overexpression of fne in Drosophila neurons and glia to determine how fne affects different types of behaviors, neuronal transmission and the lifespan. Our data indicate that changes in fne expression impair associative learning, thermal nociception, and phototransduction. Examination of synaptic transmission at presynaptic and postsynaptic terminals of the larval neuromuscular junction (NMJ) revealed that loss of fne in motor neurons and glia significantly decreased excitatory junction currents (EJCs) and quantal content, while flies with glial fne knockdown facilitated short-term synaptic plasticity. In muscle cells, overexpression of fne reduced both EJC and quantal content and increased short-term synaptic facilitation. In both genders, the lifespan could be extended by the knockdown of fne in neurons and glia; the overexpression of fne shortened the lifespan. Our results demonstrate that disturbances of fne in neurons and glia influence the function of the Drosophila nervous system. Further explorations into the physiological and molecular mechanisms underlying neuronal and glial fne and elucidation of how fne affects neuronal activity may clarify certain brain functions.
Collapse
|