1
|
Heydemann L, Ciurkiewicz M, Störk T, Zdora I, Hülskötter K, Gregor KM, Michaely LM, Reineking W, Schreiner T, Beythien G, Volz A, Tuchel T, Meyer Zu Natrup C, Schünemann LM, Clever S, Henneck T, von Köckritz-Blickwede M, Schaudien D, Rohn K, Schughart K, Geffers R, Kaneko MK, Kato Y, Gross C, Amanakis G, Pavlou A, Baumgärtner W, Armando F. Respiratory long COVID in aged hamsters features impaired lung function post-exercise with bronchiolization and fibrosis. Nat Commun 2025; 16:2080. [PMID: 40021627 PMCID: PMC11871369 DOI: 10.1038/s41467-025-57267-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 02/14/2025] [Indexed: 03/03/2025] Open
Abstract
Long-term consequences of SARS-CoV-2 infection affect millions of people and strain public health systems. The underlying pathomechanisms remain unclear, necessitating further research in appropriate animal models. This study aimed to characterize the trajectory of lung regeneration over 112 days in the male hamster model by combining morphological, transcriptomic and functional readouts. We demonstrate that in the acute phase, SARS-CoV-2 Delta-infected, male, aged hamsters show a severe impairment of lung function at rest. In the chronic phase, similar impairments persisted up to 7 weeks post-infection but were only evident after exercise on a rodent treadmill. The male hamster model recapitulates chronic pulmonary fibrotic changes observed in many patients with respiratory long COVID, but lacks extra-pulmonary long-term lesions. We show that sub-pleural and interstitial pulmonary fibrosis as well as alveolar bronchiolization persist until 112 dpi. Interestingly, CK8+ alveolar differentiation intermediate (ADI) cells are becoming less prominent in the alveolar proliferation areas from 28 dpi on. Instead, CK14+ airway basal cells and SCGB1A1+ club cells, expressing cell proliferation markers, mainly populate alveolar bronchiolization areas at later time-points. We postulate that pulmonary fibrosis and SCGB1A1+ club cell-rich areas of alveolar bronchiolization represent potential risk factors for other diseases in long-COVID survivors.
Collapse
Affiliation(s)
- Laura Heydemann
- Department of Pathology, University of Veterinary Medicine Foundation, Hanover, Germany
| | | | - Theresa Störk
- Department of Pathology, University of Veterinary Medicine Foundation, Hanover, Germany
| | - Isabel Zdora
- Department of Pathology, University of Veterinary Medicine Foundation, Hanover, Germany
| | - Kirsten Hülskötter
- Department of Pathology, University of Veterinary Medicine Foundation, Hanover, Germany
| | | | | | - Wencke Reineking
- Department of Pathology, University of Veterinary Medicine Foundation, Hanover, Germany
| | - Tom Schreiner
- Department of Pathology, University of Veterinary Medicine Foundation, Hanover, Germany
| | - Georg Beythien
- Department of Pathology, University of Veterinary Medicine Foundation, Hanover, Germany
| | - Asisa Volz
- Department of Virology, University of Veterinary Medicine Foundation, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Foundation, Hanover, Germany
| | - Tamara Tuchel
- Department of Virology, University of Veterinary Medicine Foundation, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Foundation, Hanover, Germany
| | - Christian Meyer Zu Natrup
- Department of Virology, University of Veterinary Medicine Foundation, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Foundation, Hanover, Germany
| | - Lisa-Marie Schünemann
- Department of Virology, University of Veterinary Medicine Foundation, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Foundation, Hanover, Germany
| | - Sabrina Clever
- Department of Virology, University of Veterinary Medicine Foundation, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Foundation, Hanover, Germany
| | - Timo Henneck
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Foundation, Hanover, Germany
- Department of Biochemistry, University of Veterinary Medicine Foundation, Hanover, Germany
| | - Maren von Köckritz-Blickwede
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Foundation, Hanover, Germany
- Department of Biochemistry, University of Veterinary Medicine Foundation, Hanover, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Germany
| | - Karl Rohn
- Department of Biometry, Epidemiology and Data Management, University of Veterinary Medicine Foundation, Hanover, Germany
| | - Klaus Schughart
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
- Institute of Virology Münster, University of Münster, Münster, Germany
| | - Robert Geffers
- Helmholtz Centre for Infection Research (HZI), Brunswick, Germany
| | - Mika K Kaneko
- Department of antibody drug development, Tohoku University, Sendai, Miyagi, Japan
| | - Yukinari Kato
- Department of antibody drug development, Tohoku University, Sendai, Miyagi, Japan
| | - Carina Gross
- Department of Cardiology and Angiology, Hanover Medical School (MHH), Hanover, Germany
| | - Georgios Amanakis
- Department of Cardiology and Angiology, Hanover Medical School (MHH), Hanover, Germany
| | - Andreas Pavlou
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Foundation, Hanover, Germany.
| | - Federico Armando
- Pathology Unit, Department of Veterinary Science, University of Parma, Parma, Italy
| |
Collapse
|
2
|
Wang G, Mao X, Wang W, Wang X, Li S, Wang Z. Bioprinted research models of urological malignancy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230126. [PMID: 39175884 PMCID: PMC11335473 DOI: 10.1002/exp.20230126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/08/2024] [Indexed: 08/24/2024]
Abstract
Urological malignancy (UM) is among the leading threats to health care worldwide. Recent years have seen much investment in fundamental UM research, including mechanistic investigation, early diagnosis, immunotherapy, and nanomedicine. However, the results are not fully satisfactory. Bioprinted research models (BRMs) with programmed spatial structures and functions can serve as powerful research tools and are likely to disrupt traditional UM research paradigms. Herein, a comprehensive review of BRMs of UM is presented. It begins with a brief introduction and comparison of existing UM research models, emphasizing the advantages of BRMs, such as modeling real tissues and organs. Six kinds of mainstream bioprinting techniques used to fabricate such BRMs are summarized with examples. Thereafter, research advances in the applications of UM BRMs, such as culturing tumor spheroids and organoids, modeling cancer metastasis, mimicking the tumor microenvironment, constructing organ chips for drug screening, and isolating circulating tumor cells, are comprehensively discussed. At the end of this review, current challenges and future development directions of BRMs and UM are highlighted from the perspective of interdisciplinary science.
Collapse
Affiliation(s)
- Guanyi Wang
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related DiseaseTaiKang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanChina
| | - Xiongmin Mao
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Wang Wang
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Xiaolong Wang
- Lewis Katz School of MedicineTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Sheng Li
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Zijian Wang
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related DiseaseTaiKang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanChina
| |
Collapse
|
3
|
Munday JS, Knight CG, Bodaan CJ, Codaccioni C, Hardcastle MR. Equus caballus papillomavirus Type 7 is a rare cause of equine penile squamous cell carcinomas. Vet J 2024; 306:106155. [PMID: 38838769 DOI: 10.1016/j.tvjl.2024.106155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
Penile squamous cell carcinomas (SCCs) are common, potentially life-threatening neoplasms of horses. They are well-recognized to be caused by Equus caballus papillomavirus (EcPV) type 2, although EcPV2 cannot be detected in all cases. A 23-year-old standardbred gelding developed multiple penile in situ and invasive SCCs that contained histological evidence of PV infection. By using both consensus and specific PCR primers, these lesions were found to contain EcPV7 DNA, but not DNA from EcPV2 or any other PV type. To determine how frequently EcPV7 is present in equine penile SCCs, specific primers were used to detect EcPV2 and EcPV7 in a series of 20 archived samples. EcPV7 was the only PV detected in one, both EcPV2 and 7 were detected in five, and only EcPV2 was detected in 14 SCCs. EcPV7 DNA was also detected in three of 10 archived oropharyngeal SCCs, although only as a co- infection with EcPV2. This is the first report of EcPV7 causing disease in horses. These results suggest EcPV7 could cause a subset of equine penile SCCs, and this is the first evidence that PV types other than EcPV2 can cause these neoplasms. The detection of EcPV7 in the oropharyngeal SCCs suggests a potential role of this PV type in the development of these SCCs. There were no clinical or histological features that differentiated lesions containing EcPV7 DNA from those containing EcPV2 DNA. If EcPV7 causes a proportion of equine penile SCCs, vaccines to prevent EcPV2 infection may not prevent all equine penile SCCs.
Collapse
Affiliation(s)
- John S Munday
- School of Veterinary Science, Massey University, Palmerston North, New Zealand.
| | | | | | - Camille Codaccioni
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | | |
Collapse
|
4
|
De Paolis L, Armando F, Montemurro V, Petrizzi L, Straticò P, Mecocci S, Guarnieri C, Pezzolato M, Fruscione F, Passeri B, Marruchella G, Razzuoli E. Epithelial-mesenchymal transition in an EcPV2-positive vulvar squamous cell carcinoma of a mare. Equine Vet J 2024; 56:768-775. [PMID: 37395141 DOI: 10.1111/evj.13965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/29/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Vulvar squamous cell carcinoma (VSCC) has been recently associated with Equus caballus papillomavirus type 2 (EcPV2) infection. Still, few reports concerning this disease are present in the literature. OBJECTIVE To describe a case of naturally occurring EcPV2-induced VSCC, by investigating tumour ability in undergoing the epithelial-to-mesenchymal transition (EMT). STUDY DESIGN Case report. METHODS A 13-year-old Haflinger mare was referred for a rapidly growing vulvar mass. After surgical excision, the mass was submitted to histopathology and molecular analysis. Histopathological diagnosis was consistent with a VSCC. Real-time qPCR, real-time reverse transcriptase (RT)-qPCR and RNAscope were carried out to detect EcPV2 infection and to evaluate E6/E7 oncogenes expression. To highlight the EMT, immunohistochemistry (IHC) was performed. Expression of EMT-related and innate immunity-related genes was investigated through RT-qPCR. RESULTS Real-time qPCR, RT-qPCR and RNAscope confirmed EcPV2 DNA presence and expression of EcPV2 oncoproteins (E6 and E7) within the neoplastic vulvar lesion. IHC highlighted a cadherin switch together with the expression of the EMT-related transcription factor HIF1α. With RT-qPCR, significantly increased gene expression of EBI3 (45.0 ± 1.62, p < 0.01), CDH2 (2445.3 ± 0.39, p < 0.001), CXCL8 (288.7 ± 0.40, p < 0.001) and decreased gene expression of CDH1 (0.3 ± 0.57, p < 0.05), IL12A (0.04 ± 1.06, p < 0.01) and IL17 (0.2 ± 0.64, p < 0.05) were detected. MAIN LIMITATIONS Lack of ability to generalise and danger of over-interpretation. CONCLUSION The results obtained were suggestive of an EMT event occurring within the neoplastic lesion.
Collapse
Affiliation(s)
- Livia De Paolis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Genova, Italy
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Vittoria Montemurro
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Histopathology and Applied Technology Laboratory, Torino, Italy
| | - Lucio Petrizzi
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Paola Straticò
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Samanta Mecocci
- Department of Veterinary Science, University of Perugia, Perugia, Italy
| | - Chiara Guarnieri
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Marzia Pezzolato
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Histopathology and Applied Technology Laboratory, Torino, Italy
| | - Floriana Fruscione
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Genova, Italy
| | | | | | - Elisabetta Razzuoli
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Genova, Italy
| |
Collapse
|
5
|
Armando F, Porcellato I, de Paolis L, Mecocci S, Passeri B, Ciurkiewicz M, Mechelli L, Grazia De Ciucis C, Pezzolato M, Fruscione F, Brachelente C, Montemurro V, Cappelli K, Puff C, Baumgärtner W, Ghelardi A, Razzuoli E. Vulvo-vaginal epithelial tumors in mares: A preliminary investigation on epithelial-mesenchymal transition and tumor-immune microenvironment. Vet Pathol 2024; 61:366-381. [PMID: 37909398 DOI: 10.1177/03009858231207025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Vulvo-vaginal epithelial tumors are uncommon in mares, and data on the epithelial-to-mesenchymal transition (EMT) and the tumor-immune microenvironment (TIME) are still lacking. This is a study investigating the equus caballus papillomavirus type 2 (EcPV2) infection state as well as the EMT process and the tumor microenvironment in vulvo-vaginal preneoplastic/ benign (8/22) or malignant (14/22) epithelial lesions in mares. To do this, histopathological, immunohistochemical, transcriptomic, in situ hybridization, and correlation analyses were carried out. Immunohistochemistry quantification showed that cytoplasmic E-cadherin and β-catenin expression as well as nuclear β-catenin expression were features of malignant lesions, while benign/preneoplastic lesions were mainly characterized by membranous E-cadherin and β-catenin expression. Despite this, there were no differences between benign and malignant equine vulvo-vaginal lesions in the expression of downstream genes involved in the canonical and noncanonical wnt/β-catenin pathways. In addition, malignant lesions were characterized by a lower number of cells with cytoplasmic cytokeratin expression as well as a slightly higher cytoplasmic vimentin immunolabeling. The TIME of malignant lesions was characterized by more numerous CD204+ M2-polarized macrophages. Altogether, our results support the hypothesis that some actors in TIME such as CD204+ M2-polarized macrophages may favor the EMT process in equine vulvo-vaginal malignant lesions providing new insights for future investigations in the field of equine EcPV2-induced genital neoplastic lesions.
Collapse
Affiliation(s)
| | | | - Livia de Paolis
- University of Perugia, Perugia, Italy
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Genova, Italy
| | | | | | | | | | - Chiara Grazia De Ciucis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Genova, Italy
- University of Pavia, Pavia, Italy
| | - Marzia Pezzolato
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Genova, Italy
| | - Floriana Fruscione
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Genova, Italy
| | | | - Vittoria Montemurro
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Genova, Italy
| | | | - Christina Puff
- University of Veterinary Medicine Hannover, Hannover, Germany
| | | | | | - Elisabetta Razzuoli
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Genova, Italy
| |
Collapse
|
6
|
Townsend KS, Johnson PJ, Kuroki K. Head and neck squamous cell carcinoma with heterotopic ossification, lymphovascular invasion, and nodal and pulmonary metastases in a 23-year-old Morgan gelding. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2023; 64:627-632. [PMID: 37397690 PMCID: PMC10286139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Primary squamous cell carcinoma of the head and neck occurs in the skin or squamous epithelial lining tissues of the oral cavity, pharynx, larynx, and sinonasal tract. Although it is a common tumor in horses, distant metastatic spread to the lung is rare. This report describes a case of metastatic pulmonary squamous cell carcinoma in a 23-year-old Morgan gelding. The clinical signs displayed by this gelding in some ways mimicked the typical presentation of equine multinodular pulmonary fibrosis or thoracic lymphoma. The postmortem diagnosis in this case was head and neck squamous cell carcinoma, but a primary site of origin could not be ascertained. Cancer-associated heterotopic ossification (HO) was also identified in this case; this is an exceedingly rare finding with equine pulmonary neoplasia. Key clinical message: Careful physical examination should be undertaken in all horses presenting with clinical signs of intrathoracic disease. Clinical and radiographic abnormalities in this case of pulmonary metastatic disease resembled some of those associated with interstitial pneumonia. Rarely encountered in domestic animal species, there has been only 1 previous report of HO in a case of oronasal carcinoma in a horse.
Collapse
Affiliation(s)
- Kile S Townsend
- Veterinary Medicine and Surgery, University of Missouri, 900 East Campus Drive, Columbia, Missouri 65211, USA (Townsend, Johnson); Veterinary Pathobiology, University of Missouri, 1600 East Rollins, Columbia, Missouri 65211, USA (Kuroki)
| | - Philip J Johnson
- Veterinary Medicine and Surgery, University of Missouri, 900 East Campus Drive, Columbia, Missouri 65211, USA (Townsend, Johnson); Veterinary Pathobiology, University of Missouri, 1600 East Rollins, Columbia, Missouri 65211, USA (Kuroki)
| | - Keiichi Kuroki
- Veterinary Medicine and Surgery, University of Missouri, 900 East Campus Drive, Columbia, Missouri 65211, USA (Townsend, Johnson); Veterinary Pathobiology, University of Missouri, 1600 East Rollins, Columbia, Missouri 65211, USA (Kuroki)
| |
Collapse
|
7
|
Hainisch EK, Jindra C, Kirnbauer R, Brandt S. Papillomavirus-like Particles in Equine Medicine. Viruses 2023; 15:v15020345. [PMID: 36851559 PMCID: PMC9966523 DOI: 10.3390/v15020345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Papillomaviruses (PVs) are a family of small DNA tumor viruses that can induce benign lesions or cancer in vertebrates. The observation that animal PV capsid-proteins spontaneously self-assemble to empty, highly immunogenic virus-like particles (VLPs) has led to the establishment of vaccines that efficiently protect humans from specific PV infections and associated diseases. We provide an overview of PV-induced tumors in horses and other equids, discuss possible routes of PV transmission in equid species, and present recent developments aiming at introducing the PV VLP-based vaccine technology into equine medicine.
Collapse
Affiliation(s)
- Edmund K. Hainisch
- Research Group Oncology (RGO), Clinical Unit of Equine Surgery, Department for Companion Animals and Horses, Veterinary University, 1210 Vienna, Austria
| | - Christoph Jindra
- Research Group Oncology (RGO), Clinical Unit of Equine Surgery, Department for Companion Animals and Horses, Veterinary University, 1210 Vienna, Austria
- Division of Molecular Oncology and Haematology, Karl Landsteiner University of Health Sciences, 3500 Krems an der Donau, Austria
| | - Reinhard Kirnbauer
- Laboratory of Viral Oncology (LVO), Department of Dermatology, Medical University, 1090 Vienna, Austria
| | - Sabine Brandt
- Research Group Oncology (RGO), Clinical Unit of Equine Surgery, Department for Companion Animals and Horses, Veterinary University, 1210 Vienna, Austria
- Correspondence:
| |
Collapse
|
8
|
Miglinci L, Reicher P, Nell B, Koch M, Jindra C, Brandt S. Detection of Equine Papillomaviruses and Gamma-Herpesviruses in Equine Squamous Cell Carcinoma. Pathogens 2023; 12:179. [PMID: 36839451 PMCID: PMC9958655 DOI: 10.3390/pathogens12020179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/21/2023] [Indexed: 01/25/2023] Open
Abstract
Squamous cell carcinoma (SCC) seriously compromises the health and welfare of affected horses. Although robust evidence points to equine papillomavirus type 2 (EcPV2) causing genital lesions, the etiopathogenesis of equine SCC is still poorly understood. We screened a series of SCCs from the head-and-neck (HN), (peri-)ocular and genital region, and site-matched controls for the presence of EcPV2-5 and herpesvirus DNA using type-specific EcPV PCR, and consensus nested herpesvirus PCR followed by sequencing. EcPV2 DNA was detected in 45.5% of HN lesions, 8.3% of (peri-)ocular SCCs, and 100% of genital tumors, whilst control samples from tumor-free horses except one tested EcPV-negative. Two HNSCCs harbored EcPV5, and an ocular lesion EcPV4 DNA. Herpesvirus DNA was detected in 63.6%, 66.6%, 47.2%, and 14.2% of horses with HN, ocular, penile, and vulvar SCCs, respectively, and mainly identified as equine herpesvirus 2 (EHV2), 5 (EHV5) or asinine herpesvirus 5 (AsHV5) DNA. In the tumor-free control group, 9.6% of oral secretions, 46.6% of ocular swabs, 47% of penile samples, and 14.2% of vaginal swabs scored positive for these herpesvirus types. This work further highlights the role of EcPV2 as an oncovirus and is the first to provide information on the prevalence of (gamma-)herpesviruses in equine SCCs.
Collapse
Affiliation(s)
- Lea Miglinci
- Research Group Oncology (RGO), Clinical Unit of Equine Surgery, Department for Companion Animals and Horses, Veterinary University, 1210 Vienna, Austria
| | - Paul Reicher
- Research Group Oncology (RGO), Clinical Unit of Equine Surgery, Department for Companion Animals and Horses, Veterinary University, 1210 Vienna, Austria
| | - Barbara Nell
- Clinical Unit of Ophthalmology, Department for Companion Animals and Horses, Veterinary University, 1210 Vienna, Austria
| | - Michelle Koch
- Research Group Oncology (RGO), Clinical Unit of Equine Surgery, Department for Companion Animals and Horses, Veterinary University, 1210 Vienna, Austria
| | - Christoph Jindra
- Research Group Oncology (RGO), Clinical Unit of Equine Surgery, Department for Companion Animals and Horses, Veterinary University, 1210 Vienna, Austria
- Division of Molecular Oncology and Hematology, Karl Landsteiner University of Health Sciences, 3500 Krems an der Donau, Austria
| | - Sabine Brandt
- Research Group Oncology (RGO), Clinical Unit of Equine Surgery, Department for Companion Animals and Horses, Veterinary University, 1210 Vienna, Austria
| |
Collapse
|
9
|
An Overview of Epithelial-to-Mesenchymal Transition and Mesenchymal-to-Epithelial Transition in Canine Tumors: How Far Have We Come? Vet Sci 2022; 10:vetsci10010019. [PMID: 36669020 PMCID: PMC9865109 DOI: 10.3390/vetsci10010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Historically, pre-clinical and clinical studies in human medicine have provided new insights, pushing forward the contemporary knowledge. The new results represented a motivation for investigators in specific fields of veterinary medicine, who addressed the same research topics from different perspectives in studies based on experimental and spontaneous animal disease models. The study of different pheno-genotypic contexts contributes to the confirmation of translational models of pathologic mechanisms. This review provides an overview of EMT and MET processes in both human and canine species. While human medicine rapidly advances, having a large amount of information available, veterinary medicine is not at the same level. This situation should provide motivation for the veterinary medicine research field, to apply the knowledge on humans to research in pets. By merging the knowledge of these two disciplines, better and faster results can be achieved, thus improving human and canine health.
Collapse
|
10
|
Detection of Equus Caballus Papillomavirus Type-2 in Asymptomatic Italian Horses. Viruses 2022; 14:v14081696. [PMID: 36016317 PMCID: PMC9412442 DOI: 10.3390/v14081696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 02/07/2023] Open
Abstract
Equine Papillomavirus 2 (EcPV2) is responsible for squamous cell carcinomas (eSCCs) of external genitalia of both male and female horses. However, few studies report the EcPV2 prevalence among healthy horses. Currently, the lack of these data does not permit identifying at-risk populations and, thus, developing screening protocols aimed at the early detection of the infection, as for humans. The aim of our study was to estimate the genoprevalence of EcPV2 in clinically healthy horses in Italy and to evaluate their innate immune response. For this purpose, penile and vulvar swabs of 234 healthy horses were collected through sampling with sterile cytobrushes. Nucleic acids were isolated and EcPV2-L1 presence (DNA) and gene expression (RNA) were checked by RT-qPCR. Our results showed EcPV2-L1 DNA presence in 30.3% of the samples and L1 expression in 48% of the positive samples. No statistically significant differences were found in genoprevalence in relation to sex, age, and origin, while, concerning breeds, the Thoroughbred had the highest risk of infection. Concerning specifically the mares, 40.2% of them resulted in being positive for EcPV2; our findings show a major positivity in pluriparous (p = 0.0111) and mares subjected to natural reproduction (p = 0.0037). Moreover, samples expressing L1 showed an increased expression of IL1B (p = 0.0139) and IL12p40 (p = 0.0133) and a decreased expression of RANKL (p = 0.0229) and TGFB (p = 0.0177). This finding suggests the presence of an effective immune response, which could explain the low incidence of SCCs in positive horses, despite a high EcPV2 genoprevalence (30%).
Collapse
|
11
|
Manfioletti G, Fedele M. Epithelial-Mesenchymal Transition (EMT) 2021. Int J Mol Sci 2022; 23:ijms23105848. [PMID: 35628655 PMCID: PMC9145979 DOI: 10.3390/ijms23105848] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/27/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a transdifferentiation process wherein epithelial cells acquire characteristics typical of mesenchymal cells [...].
Collapse
Affiliation(s)
| | - Monica Fedele
- National Research Council (CNR), Institute of Experimental Endocrinology and Oncology (IEOS), 80145 Naples, Italy
- Correspondence: or ; Tel.: +39-(081)-545-5751
| |
Collapse
|
12
|
Strohmayer C, Klang A, Kummer S, Walter I, Jindra C, Weissenbacher-Lang C, Redmer T, Kneissl S, Brandt S. Tumor Cell Plasticity in Equine Papillomavirus-Positive Versus-Negative Squamous Cell Carcinoma of the Head and Neck. Pathogens 2022; 11:pathogens11020266. [PMID: 35215208 PMCID: PMC8875230 DOI: 10.3390/pathogens11020266] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 11/29/2022] Open
Abstract
Squamous cell carcinoma of the head and neck (HNSCC) is a common malignant tumor in humans and animals. In humans, papillomavirus (PV)-induced HNSCCs have a better prognosis than papillomavirus-unrelated HNSCCs. The ability of tumor cells to switch from epithelial to mesenchymal, endothelial, or therapy-resistant stem-cell-like phenotypes promotes disease progression and metastasis. In equine HNSCC, PV-association and tumor cell phenotype switching are poorly understood. We screened 49 equine HNSCCs for equine PV (EcPV) type 2, 3 and 5 infection. Subsequently, PV-positive versus -negative lesions were analyzed for expression of selected epithelial (keratins, β-catenin), mesenchymal (vimentin), endothelial (COX-2), and stem-cell markers (CD271, CD44) by immunohistochemistry (IHC) and immunofluorescence (IF; keratins/vimentin, CD44/CD271 double-staining) to address tumor cell plasticity in relation to PV infection. Only EcPV2 PCR scored positive for 11/49 equine HNSCCs. IHC and IF from 11 EcPV2-positive and 11 EcPV2-negative tumors revealed epithelial-to-mesenchymal transition events, with vimentin-positive cells ranging between <10 and >50%. CD44- and CD271-staining disclosed the intralesional presence of infiltrative tumor cell fronts and double-positive tumor cell subsets independently of the PV infection status. Our findings are indicative of (partial) epithelial–mesenchymal transition events giving rise to hybrid epithelial/mesenchymal and stem-cell-like tumor cell phenotypes in equine HNSCCs and suggest CD44 and CD271 as potential malignancy markers that merit to be further explored in the horse.
Collapse
Affiliation(s)
- Carina Strohmayer
- Clinical Unit of Diagnostic Imaging, Department for Companion Animals and Horses, University of Veterinary Medicine, 1210 Vienna, Austria; (C.S.); (S.K.)
| | - Andrea Klang
- Institute of Pathology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria; (A.K.); (C.W.-L.)
| | - Stefan Kummer
- VetCore Facility for Research, University of Veterinary Medicine, 1210 Vienna, Austria; (S.K.); (I.W.)
| | - Ingrid Walter
- VetCore Facility for Research, University of Veterinary Medicine, 1210 Vienna, Austria; (S.K.); (I.W.)
- Institute of Morphology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Christoph Jindra
- Research Group Oncology (RGO), Clinical Unit of Equine Surgery, Department for Companion Animals and Horses, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Christiane Weissenbacher-Lang
- Institute of Pathology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria; (A.K.); (C.W.-L.)
| | - Torben Redmer
- Institute of Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Sibylle Kneissl
- Clinical Unit of Diagnostic Imaging, Department for Companion Animals and Horses, University of Veterinary Medicine, 1210 Vienna, Austria; (C.S.); (S.K.)
| | - Sabine Brandt
- Research Group Oncology (RGO), Clinical Unit of Equine Surgery, Department for Companion Animals and Horses, University of Veterinary Medicine, 1210 Vienna, Austria;
- Correspondence: ; Tel.: +43-12-5077-5308
| |
Collapse
|