1
|
Pomerleau F, Sulkowski BA, Suhail C, Quintero JE, Littrell OM, Murphy MP, Huettl P, Gerhardt GA. Age-related differences in resting glutamate levels and glutamate uptake in the hippocampus and frontal cortex of C57BL/6 mice. Neurobiol Aging 2025; 150:146-156. [PMID: 40121724 PMCID: PMC11981836 DOI: 10.1016/j.neurobiolaging.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/24/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
In normal aging, little is known in human and animal models about functional changes to glutamate neuronal systems that may contribute to age-related cognitive differences. The present studies investigated glutamate neuronal signaling in the hippocampus (dentate gyrus) and frontal cortex (infralimbic) of young adult (3-8 months), middle-aged (10-13 months), and aged (15-27 months) male and female C57BL/6 mice using microelectrode electrode array (MEA) recording technology to measure second-by-second resting levels of glutamate in anesthetized mice. Glutamate regulation was investigated in vivo by inhibiting the uptake of glutamate by local application of the competitive non-transportable blocker of excitatory amino acid transporters DL-threo-beta-benzyloxyaspartate (TBOA). Resting levels of glutamate and TBOA-induced changes in extracellular glutamate concentration were reliably measured in the hippocampus and frontal cortex of young adult, middle-aged, and aged mice and were seen to significantly increase in aging in the hippocampus. In the frontal cortex we observed an increase only in the middle-aged animals. TBOA produced robust changes in extracellular glutamate in the hippocampus and frontal cortex which showed significant changes in the kinetics of the signals in the middle-aged mice. Interestingly, the variance of the resting glutamate levels in the hippocampus of aged female mice was greater than in aged male mice, supporting a possible age-related gender difference in glutamate function. Taken together, these data support that glutamate signaling in the hippocampus and frontal cortex of aged mice is affected in normal aging with changes in glial regulation of glutamate uptake observed from the TBOA effects in the middle-aged mice.
Collapse
Affiliation(s)
- Francois Pomerleau
- Department of Neuroscience, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA; Neurorestoration Center, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA; Center for Microelectrode Technology, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA.
| | - Brittany A Sulkowski
- Department of Pharmaceutical Sciences, University of Kentucky, 789 S. Limestone, Lexington, KY 40508, USA
| | - Cocanut Suhail
- Department of Pharmaceutical Sciences, University of Kentucky, 789 S. Limestone, Lexington, KY 40508, USA
| | - Jorge E Quintero
- Department of Neuroscience, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA; Department of Neurosurgery, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA; Neurorestoration Center, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA; Center for Microelectrode Technology, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA
| | - O Meagan Littrell
- Department of Neuroscience, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA; Neurorestoration Center, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA; Center for Microelectrode Technology, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA
| | - M Paul Murphy
- Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 S. Limestone, Lexington, KY 40508, USA; Sanders Brown Center on Aging, University of Kentucky Medical Center, 800 S. Limestone, Lexington, KY 40536, USA
| | - Peter Huettl
- Department of Neuroscience, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA; Neurorestoration Center, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA; Center for Microelectrode Technology, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA
| | - Greg A Gerhardt
- Department of Neuroscience, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA; Department of Neurology, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA; Department of Neurosurgery, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA; Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 S. Limestone, Lexington, KY 40508, USA; Neurorestoration Center, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA; Center for Microelectrode Technology, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA
| |
Collapse
|
2
|
Pfitzer J, Pinky PD, Perman S, Redmon E, Cmelak L, Suppiramaniam V, Coric V, Qureshi IA, Gramlich MW, Reed MN. Troriluzole rescues glutamatergic deficits, amyloid and tau pathology, and synaptic and memory impairments in 3xTg-AD mice. J Neurochem 2025; 169:e16215. [PMID: 39214859 DOI: 10.1111/jnc.16215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/18/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition in which clinical symptoms are highly correlated with the loss of glutamatergic synapses. While later stages of AD are associated with markedly decreased glutamate levels due to neuronal loss, in the early stages, pathological accumulation of glutamate and hyperactivity contribute to AD pathology and cognitive dysfunction. There is increasing awareness that presynaptic dysfunction, particularly synaptic vesicle (SV) alterations, play a key role in mediating this early-stage hyperactivity. In the current study, we sought to determine whether the 3xTg mouse model of AD that exhibits both beta-amyloid (Aβ) and tau-related pathology would exhibit similar presynaptic changes as previously observed in amyloid or tau models separately. Hippocampal cultures from 3xTg mice were used to determine whether presynaptic vesicular glutamate transporters (VGlut) and glutamate are increased at the synaptic level while controlling for postsynaptic activity. We observed that 3xTg hippocampal cultures exhibited increased VGlut1 associated with an increase in glutamate release, similar to prior observations in cultures from tau mouse models. However, the SV pool size was also increased in 3xTg cultures, an effect not previously observed in tau mouse models but observed in Aβ models, suggesting the changes in pool size may be due to Aβ and not tau. Second, we sought to determine whether treatment with troriluzole, a novel 3rd generation tripeptide prodrug of the glutamate modulator riluzole, could reduce VGlut1 and glutamate release to restore cognitive deficits in 8-month-old 3xTg mice. Treatment with troriluzole reduced VGlut1 expression, decreased basal and evoked glutamate release, and restored cognitive deficits in 3xTg mice. Together, these findings suggest presynaptic alterations are early events in AD that represent potential targets for therapeutic intervention, and these results support the promise of glutamate-modulating drugs such as troriluzole in Alzheimer's disease.
Collapse
Affiliation(s)
- Jeremiah Pfitzer
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
| | - Priyanka D Pinky
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
| | - Savannah Perman
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
| | - Emma Redmon
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
| | - Luca Cmelak
- Department of Psychological Sciences, Auburn University, Auburn, Alabama, USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, Alabama, USA
- Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, Georgia, USA
| | - Vladimir Coric
- Biohaven Pharmaceuticals Inc., New Haven, Connecticut, USA
| | | | - Michael W Gramlich
- Center for Neuroscience Initiative, Auburn University, Auburn, Alabama, USA
- Department of Physics, Auburn University, Auburn, Alabama, USA
| | - Miranda N Reed
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
3
|
Weir JS, Hanssen KS, Winter-Hjelm N, Sandvig A, Sandvig I. Evolving alterations of structural organization and functional connectivity in feedforward neural networks after induced P301L tau mutation. Eur J Neurosci 2024; 60:7228-7248. [PMID: 39622242 DOI: 10.1111/ejn.16625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/29/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024]
Abstract
Reciprocal structure-function relationships underlie both healthy and pathological behaviours in complex neural networks. Thus, understanding neuropathology and network dysfunction requires a thorough investigation of the complex interactions between structural and functional network reconfigurations in response to perturbation. Such adaptations are often difficult to study in vivo. For example, subtle, evolving changes in synaptic connectivity, transmission and the electrophysiological shift from healthy to pathological states, for example alterations that may be associated with evolving neurodegenerative disease, such as Alzheimer's, are difficult to study in the brain. Engineered in vitro neural networks are powerful models that enable selective targeting, manipulation and monitoring of dynamic neural network behaviour at the micro- and mesoscale in physiological and pathological conditions. In this study, we engineered feedforward cortical neural networks using two-nodal microfluidic devices with controllable connectivity interfaced with microelectrode arrays (mMEAs). We induced P301L mutated tau protein to the presynaptic node of these networks and monitored network dynamics over three weeks. Induced perturbation resulted in altered structural organization and extensive axonal retraction starting in the perturbed node. Perturbed networks also exhibited functional changes in intranodal activity, which manifested as an overall decline in both firing rate and bursting activity, with a progressive increase in synchrony over time and a decrease in internodal signal propagation between pre- and post-synaptic nodes. These results provide insights into dynamic structural and functional reconfigurations at the micro- and mesoscale as a result of evolving pathology and illustrate the utility of engineered networks as models of network function and dysfunction.
Collapse
Affiliation(s)
- Janelle S Weir
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Katrine Sjaastad Hanssen
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Nicolai Winter-Hjelm
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Community Medicine and Rehabilitation, Umeå University, Umeå, Sweden
- Department of Neurorehabilitation, Umeå University Hospital, Umeå, Sweden
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
4
|
Zhang L, Cui Y, Zhou G, Zhang Z, Zhang P. Leveraging mitochondrial-programmed cell death dynamics to enhance prognostic accuracy and immunotherapy efficacy in lung adenocarcinoma. J Immunother Cancer 2024; 12:e010008. [PMID: 39455097 PMCID: PMC11529751 DOI: 10.1136/jitc-2024-010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is a highly heterogeneous disease, posing significant challenges to accurate prognosis prediction. Mitochondria play a central role in the energy metabolism of eukaryotic cells and can influence programmed cell death (PCD) mechanisms, which are critical in tumorigenesis and cancer progression. However, the prognostic significance of the interplay between mitochondrial function and PCD in LUAD requires further investigation. METHODS We analyzed data from 1231 LUAD patients across seven global cohorts to develop a mitochondrial-related PCD signature (MPCDS) using machine learning. Validation was done using six immunotherapy cohorts (LUAD, melanoma, clear cell renal cell carcinoma; n=935) and a pan-cancer cohort of 21 tumor types. An in-house LUAD tissue cohort (n=100) confirmed the prognostic significance of nucleoside diphosphate kinase 4 (NME4). In vivo and in vitro experiments explored NME4's role in immune exclusion. RESULTS The MPCDS demonstrated strong predictive performance for prognosis in LUAD patients, surpassing 114 previously published LUAD signatures. Additionally, MPCDS effectively predicted outcomes in immunotherapy patients (including those with LUAD, melanoma, and clear cell renal cell carcinoma). Biologically, MPCDS was significantly associated with immune features, with the high MPCDS group exhibiting reduced immune activity and a tendency towards cold tumors. NME4, a key gene within the MPCDS (correlation=0.55, p<0.05), was associated with poorer prognosis in LUAD patients with high expression, particularly in CD8 desert phenotypes, as validated by our in-house cohort. Multiplex immunofluorescence confirmed the spatial colocalization and exclusion relationship between NME4 and immune cells such as CD3+ T cells and CD20+ B cells. Further experiments revealed that NME4 regulated the proliferation and invasion of LUAD cells both in vitro and in vivo. Importantly, inhibiting NME4 increased the abundance and activity of CD8+ T cells and enhanced the antitumor immunity of anti-programmed cell death protein-1 therapy in vivo. CONCLUSION The MPCDS provides personalized risk assessment and immunotherapy interventions for individual LUAD patients. NME4, a key gene within the MPCDS, has been identified as a novel oncogene associated with immune exclusion and may serve as a new target for LUAD intervention and immunotherapy.
Collapse
Affiliation(s)
- Lianmin Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yanan Cui
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guangyao Zhou
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhenfa Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Pengpeng Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Parodis I, Lindblom J, Barturen G, Ortega-Castro R, Cervera R, Pers JO, Genre F, Hiepe F, Gerosa M, Kovács L, De Langhe E, Piantoni S, Stummvoll G, Vasconcelos C, Vigone B, Witte T, Alarcón-Riquelme ME, Beretta L. Molecular characterisation of lupus low disease activity state (LLDAS) and DORIS remission by whole-blood transcriptome-based pathways in a pan-European systemic lupus erythematosus cohort. Ann Rheum Dis 2024; 83:889-900. [PMID: 38373843 PMCID: PMC11187369 DOI: 10.1136/ard-2023-224795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 02/05/2024] [Indexed: 02/21/2024]
Abstract
OBJECTIVES To unveil biological milieus underlying low disease activity (LDA) and remission versus active systemic lupus erythematosus (SLE). METHODS We determined differentially expressed pathways (DEPs) in SLE patients from the PRECISESADS project (NTC02890121) stratified into patients fulfilling and not fulfilling the criteria of (1) Lupus LDA State (LLDAS), (2) Definitions of Remission in SLE remission, and (3) LLDAS exclusive of remission. RESULTS We analysed data from 321 patients; 40.8% were in LLDAS, and 17.4% in DORIS remission. After exclusion of patients in remission, 28.3% were in LLDAS. Overall, 604 pathways differed significantly in LLDAS versus non-LLDAS patients with an false-discovery rate-corrected p (q)<0.05 and a robust effect size (dr)≥0.36. Accordingly, 288 pathways differed significantly between DORIS remitters and non-remitters (q<0.05 and dr≥0.36). DEPs yielded distinct molecular clusters characterised by differential serological, musculoskeletal, and renal activity. Analysis of partially overlapping samples showed no DEPs between LLDAS and DORIS remission. Drug repurposing potentiality for treating SLE was unveiled, as were important pathways underlying active SLE whose modulation could aid attainment of LLDAS/remission, including toll-like receptor (TLR) cascades, Bruton tyrosine kinase (BTK) activity, the cytotoxic T lymphocyte antigen 4 (CTLA-4)-related inhibitory signalling, and the nucleotide-binding oligomerization domain leucine-rich repeat-containing protein 3 (NLRP3) inflammasome pathway. CONCLUSIONS We demonstrated for the first time molecular signalling pathways distinguishing LLDAS/remission from active SLE. LLDAS/remission was associated with reversal of biological processes related to SLE pathogenesis and specific clinical manifestations. DEP clustering by remission better grouped patients compared with LLDAS, substantiating remission as the ultimate treatment goal in SLE; however, the lack of substantial pathway differentiation between the two states justifies LLDAS as an acceptable goal from a biological perspective.
Collapse
Affiliation(s)
- Ioannis Parodis
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
- Department of Rheumatology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Julius Lindblom
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Guillermo Barturen
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada / Andalusian Regional Government, Granada, Spain, Medical Genomics, Granada, Spain
- Department of Genetics, Faculty of Sciences, University of Granada, Granada, Spain
| | | | - Ricard Cervera
- Department of Autoimmune Diseases, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Catalonia, Spain
| | - Jacques-Olivier Pers
- Centre Hospitalier Universitaire de Brest, Hopital de la Cavale Blanche, Brest, France
| | - Fernanda Genre
- Research Group on Genetic Epidemiology and Atherosclerosis in Systemic Diseases and in Metabolic Bone Diseases of the Musculoskeletal System, IDIVAL, Santander, Spain
| | - Falk Hiepe
- Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | | - Ellen De Langhe
- Katholieke Universiteit Leuven and Universitair Ziekenhuis Leuven, Leuven, Belgium
| | - Silvia Piantoni
- Rheumatology and Clinical Immunology Unit, Department of Clinical and Experimental Sciences, Azienda Socio Sanitaria Territoriale Spedali Civili and University of Brescia, Brescia, Italy
| | | | | | - Barbara Vigone
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Marta E Alarcón-Riquelme
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada / Andalusian Regional Government, Granada, Spain, Medical Genomics, Granada, Spain
- Department of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Lorenzo Beretta
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|