1
|
Hong S, Nguyen BN, Min H, Youn HY, Choi S, Hitayezu E, Cha KH, Park YT, Lee CG, Yoo G, Kim M. Host-specific effects of Eubacterium species on Rg3-mediated modulation of osteosarcopenia in a genetically diverse mouse population. MICROBIOME 2024; 12:251. [PMID: 39623488 PMCID: PMC11613481 DOI: 10.1186/s40168-024-01971-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/08/2024] [Indexed: 12/06/2024]
Abstract
BACKGROUND Osteosarcopenia, characterized by the simultaneous loss of bone and muscle mass, is a serious health problem in the aging population. This study investigated the interplay between host genetics, gut microbiota, and musculoskeletal health in a mouse model of osteosarcopenia, exploring the therapeutic potential of gut microbiota modulation. METHODS We examined the effects of Rg3, a phytochemical, on osteosarcopenia and its interactions with host genetics and gut microbiota in six founder strains of the Collaborative Cross (CC) population. Subsequently, we evaluated the therapeutic potential of Eubacterium nodatum (EN) and Eubacterium ventriosum (EV), two gut microbes identified as significant correlates of Rg3-mediated osteosarcopenia improvement, in selected C57BL/6 J (B6) and 129S1/SvImJ (129S1) mouse strains. RESULTS Rg3 treatment altered gut microbiota composition aligned with osteosarcopenia phenotypes, which response varied depending on host genetics. This finding enabled the identification of two microbes in the Eubacterium genus, potential mediator of Rg3 effect on osteosarcopenia. Oral administration of EN and EV differentially impacted bone density, muscle mass, exercise performance, and related gene expression in a mouse strain-specific manner. In 129S1 mice, EN and EV significantly improved these parameters, effectively reversing osteosarcopenic phenotypes. Mechanistic investigations revealed that these effects were mediated through the modulation of osteoblast differentiation and protein degradation pathways. In contrast, EN and EV did not significantly improve osteosarcopenic phenotypes in B6 mice, although they did modulate mitochondrial biogenesis and microbial diversity. CONCLUSIONS Our findings underscore the complex interplay between host genetics and the gut microbiota in osteosarcopenia and emphasize the need for personalized treatment strategies. EN and EV exhibit strain-specific therapeutic effects, suggesting that tailoring microbial interventions to individual genetic backgrounds may be crucial for optimizing treatment outcomes. Video Abstract.
Collapse
Affiliation(s)
- Soyeon Hong
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, Gangneung, Gangwon-Do, 25451, Republic of Korea
| | - Bao Ngoc Nguyen
- College of Dentistry, Gangneung Wonju National University, Gangneung, Gangwon-Do, Republic of Korea
- Center for Natural Product Efficacy Optimization, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, 679 Saimdang-Ro, Gangneung, Gangwon-Do, 210-340, Republic of Korea
| | - Huitae Min
- Center for Natural Product Efficacy Optimization, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, 679 Saimdang-Ro, Gangneung, Gangwon-Do, 210-340, Republic of Korea
| | - Hye-Young Youn
- Center for Natural Product Efficacy Optimization, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, 679 Saimdang-Ro, Gangneung, Gangwon-Do, 210-340, Republic of Korea
| | - Sowoon Choi
- Center for Natural Product Efficacy Optimization, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, 679 Saimdang-Ro, Gangneung, Gangwon-Do, 210-340, Republic of Korea
| | - Emmanuel Hitayezu
- Center for Natural Product Systems Biology, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangneung, 25451, Republic of Korea
| | - Kwang-Hyun Cha
- Center for Natural Product Systems Biology, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangneung, 25451, Republic of Korea
- Department of Natural Product Applied Science, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-Do, Republic of Korea
| | - Young Tae Park
- Center for Natural Product Efficacy Optimization, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, 679 Saimdang-Ro, Gangneung, Gangwon-Do, 210-340, Republic of Korea
- Department of Natural Product Applied Science, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Choong-Gu Lee
- Center for Natural Product Systems Biology, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangneung, 25451, Republic of Korea
- Department of Natural Product Applied Science, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-Do, Republic of Korea
| | - GyHye Yoo
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, Gangneung, Gangwon-Do, 25451, Republic of Korea.
- Department of Natural Product Applied Science, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Myungsuk Kim
- Center for Natural Product Efficacy Optimization, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, 679 Saimdang-Ro, Gangneung, Gangwon-Do, 210-340, Republic of Korea.
- Department of Natural Product Applied Science, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-Do, Republic of Korea.
| |
Collapse
|
2
|
Recatalá CA, Albiero M, Santoro MM. Evaluation of post-natal angiogenesis in a mouse hind limb ischemia model. STAR Protoc 2023; 4:102232. [PMID: 37071530 DOI: 10.1016/j.xpro.2023.102232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/08/2023] [Accepted: 03/17/2023] [Indexed: 04/19/2023] Open
Abstract
Hind limb ischemia is a useful model to assess metabolic and cellular responses. Here, we present a protocol for evaluating post-natal angiogenesis in a mouse hind limb ischemia model. We describe steps to induce a severe restriction of blood supply of the femoral artery and vein that mimics the real-life scenario observed in clinical settings. We then detail procedures for follow-up laser Doppler imaging to compare post-ischemic responses of four different mouse strains in their capacity to trigger compensatory arteriogenesis. For complete details on the use and execution of this protocol, please refer to Oberkersch et al. (2022).1.
Collapse
Affiliation(s)
- Cristina Arce Recatalá
- Laboratory of Angiogenesis and Cancer Metabolism, DiBio, University of Padua, Padua, Italy; Veneto Institute of Molecular Medicine (VIMM), University of Padova, Padua, Italy
| | - Mattia Albiero
- Department of Medicine (DIMED), University of Padova, Padua, Italy; Veneto Institute of Molecular Medicine (VIMM), University of Padova, Padua, Italy
| | - Massimo Mattia Santoro
- Laboratory of Angiogenesis and Cancer Metabolism, DiBio, University of Padua, Padua, Italy; Veneto Institute of Molecular Medicine (VIMM), University of Padova, Padua, Italy.
| |
Collapse
|
3
|
Guo H, Song Y, Li F, Fan Y, Li Y, Zhang C, Hou H, Shi M, Zhao Z, Chen Z. ACT001 suppressing M1 polarization against inflammation via NF-κB and STAT1 signaling pathways alleviates acute lung injury in mice. Int Immunopharmacol 2022; 110:108944. [PMID: 35728304 DOI: 10.1016/j.intimp.2022.108944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022]
Abstract
ACT001 has been shown to exhibit excellent antitumor and anti-fibrosis activities. However, the role of ACT001 in acute lung injury (ALI) and the underlying mechanism remains largely unclear. The present study aimed to investigate the protective effects of ACT001 on ALI and explore the potential mechanisms. Herein, we firstly established the ALI mouse model induced by intratracheal instillation of lipopolysaccharide (LPS). ACT001 treatment significantly alleviated histopathological changes of lung tissues with lower infiltration of pulmonary M1 macrophages in ALI mice. Then, we performed in vitro experiment and found that ACT001 treatment effectively inhibited the M1 phenotype of RAW264.7 and THP-1.. Next, we performed pull-down and mass spectrometry analysis to screen the interacting proteins of ACT001, identifying IKKβ and STAT1 as the critical target proteins of ACT001. And ACT001 treatment significantly suppressed the NF-κB and STAT1 pathways, thereby inhibiting the M1 polarization against inflammation in vivo and in vitro. Finally, we used IMD 0354 (IMD) and Fludarabine (Flud) to specifically block the activity of IKKβ and STAT1, and stimulated macrophages through IKKβ and STAT1 overexpression. Our data clearly showed that ACT001-induced decrease of the M1 polarization was blocked by IMD and Flud treatment, and reversed by IKKβ and STAT1 overexpression in RAW264.7 cells. In conclusion, we discovered that ACT001 significantly alleviates inflammation and limits M1 phenotype of pulmonary macrophages via suppressing NF-κB and STAT1 signaling pathways, providing new insights for the development of drugs to treat ALI/ARDS.
Collapse
Affiliation(s)
- Hui Guo
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Song
- Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Fanjian Li
- Department of Neurosurgery, Tianjin Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Fan
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yiman Li
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Chaonan Zhang
- Department of Neurosurgery, Tianjin Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Huijie Hou
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Minmin Shi
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Zilong Zhao
- Department of Neurosurgery, Tianjin Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China.
| | - Zhe Chen
- Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
4
|
Xu Y, Ward AD, Goldman D, Yin H, Arpino JM, Nong Z, Lee JJ, O'Neil C, Pickering JG. Arteriolar dysgenesis in ischemic, regenerating skeletal muscle revealed by automated micro-morphometry, computational modeling, and perfusion analysis. Am J Physiol Heart Circ Physiol 2022; 323:H38-H48. [PMID: 35522554 DOI: 10.1152/ajpheart.00010.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rebuilding the local vasculature is central to restoring the health of muscles subjected to ischemic injury. Arteriogenesis yields remodeled collateral arteries that circumvent the obstruction, and angiogenesis produces capillaries to perfuse the regenerating myofibers. However, the vital intervening network of arterioles that feed the regenerated capillaries is poorly understood and an investigative challenge. We used machine learning and automated micro-morphometry to quantify the arteriolar landscape in distal hindlimb muscles in mice that have regenerated after femoral artery excision. Assessment of 1546 arteriolar sections revealed a striking (> 2-fold) increase in arteriolar density in regenerated muscle 14 and 28 days after ischemic injury. Lumen caliber was initially similar to that of control arterioles but after 4 weeks lumen area was reduced by 46%. In addition, the critical smooth muscle layer was attenuated throughout the arteriolar network, across a 150 to 5 µm diameter range. To understand the consequences of the reshaped distal hindlimb arterioles, we undertook computational flow modeling which revealed blunted flow augmentation. Moreover, impaired flow reserve was confirmed in vivo by laser Doppler analyses of flow in response to directly applied sodium nitroprusside. Thus, in hindlimb muscles regenerating after ischemic injury, the arteriolar network is amplified, inwardly remodels, and is diffusely under-muscularized. These defects and the associated flow restraints could contribute to the deleterious course of peripheral artery disease and merit attention when considering therapeutic innovations.
Collapse
Affiliation(s)
- Yiwen Xu
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Aaron D Ward
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Daniel Goldman
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Hao Yin
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - John-Michael Arpino
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Zengxuan Nong
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Jason J Lee
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada.,Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Caroline O'Neil
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - J Geoffrey Pickering
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada.,Department of Biochemistry, University of Western Ontario, London, Ontario, Canada.,Department of Medicine, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|