1
|
Płaczkiewicz J, Gieczewska K, Musiałowski M, Adamczyk-Popławska M, Bącal P, Kwiatek A. Availability of iron ions impacts physicochemical properties and proteome of outer membrane vesicles released by Neisseria gonorrhoeae. Sci Rep 2023; 13:18733. [PMID: 37907530 PMCID: PMC10618220 DOI: 10.1038/s41598-023-45498-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/20/2023] [Indexed: 11/02/2023] Open
Abstract
Outer membrane vesicles (OMVs) are bilayer structures released by bacteria for various purposes, e.g., response to environmental factors, bacterial communication, and interactions with host cells. One of the environmental variables bacteria need to react is the amount and availability of iron, a crucial element for bacteria biology. We have investigated the impact of the iron amount and availability on OMV secretion by pathogenic Neisseria gonorrhoeae, which, depending on the infection site, challenges different iron availability. N. gonorrhoeae releases OMVs in iron starvation and repletion growth environments. However, OMVs differed in physicochemical features and proteome according to iron amount and availability during the bacteria growth, as was analyzed by Liquid Chromatography-Tandem Mass Spectrometry, Infrared spectroscopy with a Fourier transform infrared spectrometer, and Atomic Force Microscopy. OMVs from iron starvation and repletion conditions had a higher variation in size, different flexibility, and different membrane protein and lipid components than OMVs isolated from control growth conditions. These OMVs also varied qualitatively and quantitatively in their total proteome composition and contained proteins unique for iron starvation and repletion conditions. Thus, the modulation of OMVs' properties seems to be a part of N. gonorrhoeae adaptation to surroundings and indicates a new direction of antigonococcal proceeding.
Collapse
Affiliation(s)
- Jagoda Płaczkiewicz
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
- International Centre for Translational Eye Research, Ophthalmic Biology Group, Warsaw, Poland, 01-230
| | - Katarzyna Gieczewska
- Department of Plant Anatomy and Cytology, Institute of Experimental Biology and Plant Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland, 02-096
| | - Marcin Musiałowski
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland, 02-096
| | - Monika Adamczyk-Popławska
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
| | - Paweł Bącal
- Institute of Paleobiology, Polish Academy of Sciences, Warsaw, Poland, 00-818
| | - Agnieszka Kwiatek
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland.
| |
Collapse
|
2
|
Sheteiwy MS, Ulhassan Z, Qi W, Lu H, AbdElgawad H, Minkina T, Sushkova S, Rajput VD, El-Keblawy A, Jośko I, Sulieman S, El-Esawi MA, El-Tarabily KA, AbuQamar SF, Yang H, Dawood M. Association of jasmonic acid priming with multiple defense mechanisms in wheat plants under high salt stress. FRONTIERS IN PLANT SCIENCE 2022; 13:886862. [PMID: 36061773 PMCID: PMC9429808 DOI: 10.3389/fpls.2022.886862] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/04/2022] [Indexed: 05/14/2023]
Abstract
Salinity is a global conundrum that negatively affects various biometrics of agricultural crops. Jasmonic acid (JA) is a phytohormone that reinforces multilayered defense strategies against abiotic stress, including salinity. This study investigated the effect of JA (60 μM) on two wheat cultivars, namely ZM9 and YM25, exposed to NaCl (14.50 dSm-1) during two consecutive growing seasons. Morphologically, plants primed with JA enhanced the vegetative growth and yield components. The improvement of growth by JA priming is associated with increased photosynthetic pigments, stomatal conductance, intercellular CO2, maximal photosystem II efficiency, and transpiration rate of the stressed plants. Furthermore, wheat cultivars primed with JA showed a reduction in the swelling of the chloroplast, recovery of the disintegrated thylakoids grana, and increased plastoglobuli numbers compared to saline-treated plants. JA prevented dehydration of leaves by increasing relative water content and water use efficiency via reducing water and osmotic potential using proline as an osmoticum. There was a reduction in sodium (Na+) and increased potassium (K+) contents, indicating a significant role of JA priming in ionic homeostasis, which was associated with induction of the transporters, viz., SOS1, NHX2, and HVP1. Exogenously applied JA mitigated the inhibitory effect of salt stress in plants by increasing the endogenous levels of cytokinins and indole acetic acid, and reducing the abscisic acid (ABA) contents. In addition, the oxidative stress caused by increasing hydrogen peroxide in salt-stressed plants was restrained by JA, which was associated with increased α-tocopherol, phenolics, and flavonoids levels and triggered the activities of superoxide dismutase and ascorbate peroxidase activity. This increase in phenolics and flavonoids could be explained by the induction of phenylalanine ammonia-lyase activity. The results suggest that JA plays a key role at the morphological, biochemical, and genetic levels of stressed and non-stressed wheat plants which is reflected in yield attributes. Hierarchical cluster analysis and principal component analyses showed that salt sensitivity was associated with the increments of Na+, hydrogen peroxide, and ABA contents. The regulatory role of JA under salinity stress was interlinked with increased JA level which consequentially improved ion transporting, osmoregulation, and antioxidant defense.
Collapse
Affiliation(s)
- Mohamed S. Sheteiwy
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
- Southern Federal University, Academy of Biology and Biotechnology, Rostov-on-Don, Russia
| | - Zaid Ulhassan
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Weicong Qi
- Institute of Agriculture Resources and Environment, Jiangsu Academy of Agricultural Sciences (JAAS), Nanjing, China
| | - Haiying Lu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- *Correspondence: Haiying Lu
| | - Hamada AbdElgawad
- Department of Botany, Faculty of Science, University of Beni-Suef, Beni-Suef, Egypt
| | - Tatiana Minkina
- Southern Federal University, Academy of Biology and Biotechnology, Rostov-on-Don, Russia
| | - Svetlana Sushkova
- Southern Federal University, Academy of Biology and Biotechnology, Rostov-on-Don, Russia
| | - Vishnu D. Rajput
- Southern Federal University, Academy of Biology and Biotechnology, Rostov-on-Don, Russia
| | - Ali El-Keblawy
- Department of Applied Biology, Faculty of Science, University of Sharjah, Sharjah, United Arab Emirates
| | - Izabela Jośko
- Faculty of Agrobioengineering, Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences, Lublin, Poland
| | - Saad Sulieman
- Department of Agronomy, Faculty of Agriculture, University of Khartoum, Khartoum North, Sudan
| | | | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
- Khaled A. El-Tarabily
| | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- Synan F. AbuQamar
| | - Haishui Yang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Mona Dawood
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|