1
|
Zhang J, Liu Y, Zuo L, Fan F, Yan H, Zhao F, Li J, Ma C, Li Q, Xu A, Xu J, Zhang B, Hu Y, Sun C. Class II ferroptosis inducers are a novel therapeutic approach for t(4;14)-positive multiple myeloma. Blood Adv 2024; 8:5022-5038. [PMID: 39042883 PMCID: PMC11465055 DOI: 10.1182/bloodadvances.2023010335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/17/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024] Open
Abstract
ABSTRACT Multiple myeloma (MM) is a clonal plasma cell malignancy that is characterized by genetic heterogeneity. The cytogenetic abnormality t(4;14) strongly predicts poor outcome in patients with MM, even in the era of novel drugs. Ferroptosis is a new approach to antitumor therapy, but the relationship between ferroptosis and MM cytogenetic abnormalities remains largely unclear. In this study, we show that t(4;14)-positive but not t(4;14)-negative MM cells are susceptible to class II ferroptosis inducers (FINs) in a preclinical setting, which is dependent on the significant upregulation of the MM SET domain-containing protein (MMSET). Mechanistically, MMSET upregulates acyl-coenzyme A synthetase long-chain family member 4 transcription by binding to its promoter region, leading to increased polyunsaturated fatty acid (PUFA) levels and enhanced sensitivity of t(4;14)-positive MM cells to ferroptosis. Supplementation with PUFAs efficiently restores the susceptibility of t(4;14)-negative MM cells to ferroptosis. In addition, combining class II FIN treatment with bortezomib in t(4;14)-positive MM cells attenuates cellular glutathione and induces both apoptosis and ferroptosis levels by inhibiting the increase in solute carrier family 7 member 11, demonstrating synergistic antitumor activity in vitro and in a xenograft model. Taken together, our findings suggest that targeting ferroptosis with class II FINs is a novel and promising therapeutic approach to improve the outcome of t(4;14)-positive patients with MM.
Collapse
Affiliation(s)
- Jiasi Zhang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxi Liu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liping Zuo
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengjuan Fan
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Yan
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Zhao
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junying Li
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chi Ma
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Li
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aoshuang Xu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Xu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Zhang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Sun
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Xing Z, Su A, Mi L, Zhang Y, He T, Qiu Y, Wei T, Li Z, Zhu J, Wu W. Withaferin A: A Dietary Supplement with Promising Potential as an Anti-Tumor Therapeutic for Cancer Treatment - Pharmacology and Mechanisms. Drug Des Devel Ther 2023; 17:2909-2929. [PMID: 37753228 PMCID: PMC10519218 DOI: 10.2147/dddt.s422512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023] Open
Abstract
Cancer, as the leading cause of death worldwide, poses a serious threat to human health, making the development of effective tumor treatments a significant challenge. Natural products continue to serve as crucial resources for drug discovery. Among them, Withaferin A (WA), the most active phytocompound extracted from the renowned dietary supplement Withania somnifera (L.) Dunal, exhibits remarkable anti-tumor efficacy. In this manuscript, we aim to comprehensively summarize the pharmacological characteristics of WA as a potential anti-tumor drug candidate, with the objective of contributing to its further development and the discovery of prospective drugs. Through an extensive review of literature from PubMed, Science Direct, and Web of Science, we have gathered substantial evidence showcasing WA's significant anti-tumor effects against a wide range of cancers in both in vitro and in vivo studies. Mechanistically, WA exerts its anti-tumor influence by inducing cell cycle arrest, apoptosis, autophagy, and ferroptosis. Additionally, it inhibits cell proliferation, cancer stem cells, tumor metastasis, and also suppresses epithelial-mesenchymal transition (EMT) and angiogenesis. Several studies have identified direct target proteins of WA, such as vimentin, Hsp90, annexin II and mFAM72A, while BCR-ABL, Mortalin (mtHsp70), Nrf2, and c-MYB are potential targets of WA. Notwithstanding its remarkable anti-tumor efficacy, there are some limitations associated with WA, including potential toxicity and poor oral bioavailability, which need to be addressed when considering it as an anti-tumor candidate agent. Nevertheless, I given its promising anti-tumor attributes, WA remains an encouraging candidate for future drug development. Unveiling the exact target and comprehensive mechanism of WA's action represents a crucial research direction to pursue in the future.
Collapse
Affiliation(s)
- Zhichao Xing
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Anping Su
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Li Mi
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Yujie Zhang
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Ting He
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Yuxuan Qiu
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Tao Wei
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Zhihui Li
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Jingqiang Zhu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
3
|
Qin J, Sharma A, Wang Y, Tobar-Tosse F, Dakal TC, Liu H, Liu H, Ke B, Kong C, Liu T, Zhao C, Schmidt-Wolf IGH, Jin C. Systematic discrimination of the repetitive genome in proximity of ferroptosis genes and a novel prognostic signature correlating with the oncogenic lncRNA CRNDE in multiple myeloma. Front Oncol 2022; 12:1026153. [PMID: 36605450 PMCID: PMC9808058 DOI: 10.3389/fonc.2022.1026153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023] Open
Abstract
Emerging insights into iron-dependent form of regulated cell death ferroptosis in cancer have opened a perspective for its use in cancer therapy. Of interest, a systematic profiling of ferroptosis gene signatures as prognostic factors has gained special attention in several cancers. Herein, we sought to investigate the presence of repetitive genomes in the vicinity of ferroptosis genes that may influence their expression and to establish a prognostic gene signature associated with multiple myeloma (MM). Our analysis showed that genes associated with ferroptosis were enriched with the repetitive genome in their vicinity, with a strong predominance of the SINE family, followed by LINE, of which the most significant discriminant values were SINE/Alu and LINE/L1, respectively. In addition, we examined in detail the performance of these genes as a cancer risk prediction model and specified fourteen ferroptosis-related gene signatures, which identified MM high-risk patients with lower immune/stromal scores with higher tumor purity in their immune microenvironment. Of interest, we also found that lncRNA CRNDE correlated with a risk score and was highly associated with the majority of genes comprising the signature. Taken together, we propose to investigate the molecular impact of the repetitive genome we have highlighted on the local transcriptome of ferroptosis genes in cancer. Furthermore, we revealed a genomic signature/biomarker related to ferroptosis that can be used to predict the risk of survival in MM patients.
Collapse
Affiliation(s)
- Jiading Qin
- Medical College of Nanchang University, Nanchang, China,Department of Hematology, Jiangxi Provincial People’s Hospital, Nanchang, China,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology, University Hospital of Bonn, Bonn, Germany,Department of Neurosurgery, University Hospital of Bonn, Bonn, Germany
| | - Yulu Wang
- Department of Integrated Oncology, Center for Integrated Oncology, University Hospital of Bonn, Bonn, Germany
| | - Fabian Tobar-Tosse
- Department of Basic Sciences for Health, Pontificia Universidad Javeriana Cali, Cali, Colombia
| | - Tikam Chand Dakal
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, India
| | - Hongde Liu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| | - Hongjia Liu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| | - Bo Ke
- Department of Hematology, Jiangxi Provincial People’s Hospital, Nanchang, China
| | - Chunfang Kong
- Department of Hematology, Jiangxi Provincial People’s Hospital, Nanchang, China
| | - Tingting Liu
- Department of Hematology, Jiangxi Provincial People’s Hospital, Nanchang, China
| | - Chunxia Zhao
- School of Nursing, Nanchang University, Nanchang, China
| | - Ingo G. H. Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology, University Hospital of Bonn, Bonn, Germany
| | - Chenghao Jin
- Medical College of Nanchang University, Nanchang, China,Department of Hematology, Jiangxi Provincial People’s Hospital, Nanchang, China,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Soochow, China,*Correspondence: Chenghao Jin,
| |
Collapse
|
4
|
Zhao F, Peng C, Sun Y, Li H, Du K, Liu F. Potential application of traditional Chinese medicine in cerebral ischemia—Focusing on ferroptosis. Front Pharmacol 2022; 13:963179. [PMID: 36210857 PMCID: PMC9539431 DOI: 10.3389/fphar.2022.963179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Abstract
Traditional Chinese medicine (TCM) has attracted a great deal of attention in the treatment of cerebral ischemia is credited with the remarkable neuroprotective effects. However, the imperfect functional mechanism of TCM is a major obstacle to their application. Many studies have been conducted to illustrate the pathophysiology of post-ischemic cerebral ischemia by elucidating the neuronal cell death pathway. Meanwhile, a new type of cell death, ferroptosis, is gradually being recognized in various diseases and is becoming a new pathway of therapeutic intervention strategy to solve many health problems. Especially since ferroptosis has been found to be closely involved into the pathogenesis of cerebral ischemia, it has been considered as a key target in the treatment of cerebral ischemia. Therefore, this paper reviews the latest research findings about the treatment of cerebral ischemia with TCM focused on ferroptosis as a target. Also, in order to explores the possibility of a new approach to treat cerebral ischemia with TCM, we discusses the correlation between ferroptosis and other cell death pathways such as apoptosis and autophagy, which would provide references for the following researches.
Collapse
Affiliation(s)
- Fengyan Zhao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, China
| | - Caiwang Peng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, China
| | - Yang Sun
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, China
| | - Hengli Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, China
| | - Ke Du
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Fang Liu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, China
- *Correspondence: Fang Liu,
| |
Collapse
|
5
|
Bjørklund G, Antonyak H, Polishchuk A, Semenova Y, Lesiv M, Lysiuk R, Peana M. Effect of methylmercury on fetal neurobehavioral development: an overview of the possible mechanisms of toxicity and the neuroprotective effect of phytochemicals. Arch Toxicol 2022; 96:3175-3199. [PMID: 36063174 DOI: 10.1007/s00204-022-03366-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022]
Abstract
Methylmercury (MeHg) is a global environmental pollutant with neurotoxic effects. Exposure to MeHg via consumption of seafood and fish can severely impact fetal neurobehavioral development even when MeHg levels in maternal blood are as low as about 5 μg/L, which the mother tolerates well. Persistent motor dysfunctions and cognitive deficits may result from trans-placental exposure. The present review summarizes current knowledge on the mechanisms of MeHg toxicity during the period of nervous system development. Although cerebellar Purkinje cells are MeHg targets, the actions of MeHg on thiol components in the neuronal cytoskeleton as well as on mitochondrial enzymes and induction of disturbances of glutamate signaling can impair extra-cerebellar functions, also at levels well tolerated by adult individuals. Numerous herbal substances possess neuroprotective effects, predominantly represented by natural polyphenolic molecules that might be utilized to develop natural drugs to alleviate neurotoxicity symptoms caused by MeHg or other Hg compounds.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610, Mo i Rana, Norway.
| | | | | | | | - Marta Lesiv
- Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Massimiliano Peana
- Department of Chemical, Physics, Mathematics and Natural Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
6
|
Regulatory pathways and drugs associated with ferroptosis in tumors. Cell Death Dis 2022; 13:544. [PMID: 35688814 PMCID: PMC9187756 DOI: 10.1038/s41419-022-04927-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 01/21/2023]
Abstract
Ferroptosis is a type of cell death that depends on iron and reactive oxygen species (ROS). The accumulation of iron and lipid peroxidation primarily initiates oxidative membrane damage during ferroptosis. The core molecular mechanism of ferroptosis includes the regulation of oxidation and the balance between damage and antioxidant defense. Tumor cells usually contain a large amount of H2O2, and ferrous/iron ions will react with excessive H2O2 in cells to produce hydroxyl radicals and induce ferroptosis in tumor cells. Here, we reviewed the latest studies on the regulation of ferroptosis in tumor cells and introduced the tumor-related signaling pathways of ferroptosis. We paid particular attention to the role of noncoding RNA, nanomaterials, the role of drugs, and targeted treatment using ferroptosis drugs for mediating the ferroptosis process in tumor cells. Finally, we discussed the currently unresolved problems and future research directions for ferroptosis in tumor cells and the prospects of this emerging field. Therefore, we have attempted to provide a reference for further understanding of the pathogenesis of ferroptosis and proposed new targets for cancer treatment.
Collapse
|