1
|
Chylińska N, Maciejczyk M. Hyaluronic Acid and Skin: Its Role in Aging and Wound-Healing Processes. Gels 2025; 11:281. [PMID: 40277717 DOI: 10.3390/gels11040281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
Hyaluronic acid (HA) is a linear, unbranched polysaccharide classified as a glycosaminoglycan. While HA is found in various tissues throughout the body, over half of its total proportion is found in the skin. The role of HA in the skin is complex and multifaceted. HA maintains proper hydration, elasticity, and skin firmness, serving as a key extracellular matrix (ECM) component. With age, HA production gradually decreases, leading to reduced water-binding capacity, drier and less elastic skin, and the formation of wrinkles. Additionally, HA plays an active role in the wound-healing process at every stage. This review summarizes the current background knowledge about the role of HA in skin aging and wound healing. We discuss the latest applications of HA in aging prevention, including anti-aging formulations, nutricosmetics, microneedles, nanoparticles, HA-based fillers, and skin biostimulators. Furthermore, we explore various HA-based dressings used in wound treatment, such as hydrogels, sponges, membranes, and films.
Collapse
Affiliation(s)
- Natalia Chylińska
- Independent Laboratory of Cosmetology, Medical University of Białystok, Akademicka 3, 15-267 Bialystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Białystok, Mickiewicza 2c, 15-022 Bialystok, Poland
| |
Collapse
|
2
|
Prakash G, Clasky AJ, Gadani K, Nazeri M, Gu FX. Ion-Mediated Cross-Linking of Hyaluronic Acid into Hydrogels without Chemical Modification. Biomacromolecules 2024; 25:7723-7735. [PMID: 39485907 DOI: 10.1021/acs.biomac.4c00985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Hyaluronic acid (HA) is a biomedically relevant polymer widely explored as a component of hydrogels. The prevailing approaches for cross-linking HA into hydrogels require chemically modifying the polymer, which can increase processing steps and complicate biocompatibility. Herein, we demonstrate an alternative approach to cross-link HA that eliminates the need for chemical modifications by leveraging the interactions between metal cations and the negatively charged, ionizable functional groups on HA. We demonstrate that HA can be cross-linked with the bivalent metal cations Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Pd(II), and notably Mg(II). Using Mg(II) as a model, we show that ion-HA hydrogel rheological properties can be tuned by altering the HA molecular weight and concentrations of ions, NaOH, and HA. Mg(II)-HA hydrogels showed the potential for self-healing and stimulus response. Our findings lay the groundwork for developing a new class of HA-based hydrogels for use in biomedical applications and beyond.
Collapse
Affiliation(s)
- Gayatri Prakash
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Aaron J Clasky
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Kunal Gadani
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Mohammad Nazeri
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Frank X Gu
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
3
|
Pan SC, Huang YJ, Wang CH, Hsu CK, Yeh ML. Novel Magnesium- and Silver-Loaded Dressing Promotes Tissue Regeneration in Cutaneous Wounds. Int J Mol Sci 2024; 25:9311. [PMID: 39273259 PMCID: PMC11395027 DOI: 10.3390/ijms25179311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Wound healing is a dynamic process involving a complex interaction between many cells and mediators. Magnesium (Mg) is an essential element for cell stabilization. Mg was reported to stimulate the proliferation and migration of endothelial cells in angiogenesis in vitro. However, the function of Mg in wound healing is not known. We observed that the expression level of Mg in human wound tissue fluid was only 10% of that found in human blood serum. To confirm whether Mg is a suitable wound dressing material, we fabricated a Mg- or Mg-silver (Ag)-based polyethylene dressing to study its effect on wound healing. We observed that Mg and Ag were stably preserved in the constructed material and were able to be rapidly released in the moist environment. We also observed that the Mg-based dressing had good cellular compatibility without harmful extractables. Furthermore, Mg enhanced the antibacterial activity of Ag. In line with the observed increase in fibroblast migration in vitro, the Mg-Ag-based dressing improved acute and chronic wound repairs via an increase in neovascularization and basal cell proliferation. The present results show that a Mg-Ag-based coating can be manufactured as an optimal dressing for adjuvant wound therapy.
Collapse
Affiliation(s)
- Shin-Chen Pan
- Department of Surgery, Section of Plastic and Reconstructive Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Ying-Jhen Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Chong-Han Wang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Chao-Kai Hsu
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Ming-Long Yeh
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
4
|
Yoshino Y, Teruya T, Miyamoto C, Hirose M, Endo S, Ikari A. Unraveling the Mechanisms Involved in the Beneficial Effects of Magnesium Treatment on Skin Wound Healing. Int J Mol Sci 2024; 25:4994. [PMID: 38732212 PMCID: PMC11084488 DOI: 10.3390/ijms25094994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
The skin wound healing process consists of hemostatic, inflammatory, proliferative, and maturation phases, with a complex cellular response by multiple cell types in the epidermis, dermis, and immune system. Magnesium is a mineral essential for life, and although magnesium treatment promotes cutaneous wound healing, the molecular mechanism and timing of action of the healing process are unknown. This study, using human epidermal-derived HaCaT cells and human normal epidermal keratinocyte cells, was performed to investigate the mechanism involved in the effect of magnesium on wound healing. The expression levels of epidermal differentiation-promoting factors were reduced by MgCl2, suggesting an inhibitory effect on epidermal differentiation in the remodeling stage of the late wound healing process. On the other hand, MgCl2 treatment increased the expression of matrix metalloproteinase-7 (MMP7), a cell migration-promoting factor, and enhanced cell migration via the MEK/ERK pathway activation. The enhancement of cell migration by MgCl2 was inhibited by MMP7 knockdown, suggesting that MgCl2 enhances cell migration which is mediated by increased MMP7 expression. Our results revealed that MgCl2 inhibits epidermal differentiation but promotes cell migration, suggesting that applying magnesium to the early wound healing process could be beneficial.
Collapse
Affiliation(s)
| | | | | | | | | | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (Y.Y.); (T.T.); (C.M.); (M.H.); (S.E.)
| |
Collapse
|
5
|
Fujita K, Shindo Y, Katsuta Y, Goto M, Hotta K, Oka K. Intracellular Mg 2+ protects mitochondria from oxidative stress in human keratinocytes. Commun Biol 2023; 6:868. [PMID: 37620401 PMCID: PMC10449934 DOI: 10.1038/s42003-023-05247-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Reactive oxygen species (ROS) are harmful for the human body, and exposure to ultraviolet irradiation triggers ROS generation. Previous studies have demonstrated that ROS decrease mitochondrial membrane potential (MMP) and that Mg2+ protects mitochondria from oxidative stress. Therefore, we visualized the spatio-temporal dynamics of Mg2+ in keratinocytes (a skin component) in response to H2O2 (a type of ROS) and found that it increased cytosolic Mg2+ levels. H2O2-induced responses in both Mg2+ and ATP were larger in keratinocytes derived from adults than in keratinocytes derived from newborns, and inhibition of mitochondrial ATP synthesis enhanced the H2O2-induced Mg2+ response, indicating that a major source of Mg2+ was dissociation from ATP. Simultaneous imaging of Mg2+ and MMP revealed that larger Mg2+ responses corresponded to lower decreases in MMP in response to H2O2. Moreover, Mg2+ supplementation attenuated H2O2-induced cell death. These suggest the potential of Mg2+ as an active ingredient to protect skin from oxidative stress.
Collapse
Affiliation(s)
- Keigo Fujita
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Yutaka Shindo
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
- School of Frontier Engineering, Kitasato University, Sagamihara, Japan
| | - Yuji Katsuta
- MIRAI Technology Institute, Shiseido Co. Ltd., Yokohama, Japan
| | - Makiko Goto
- MIRAI Technology Institute, Shiseido Co. Ltd., Yokohama, Japan
| | - Kohji Hotta
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Kotaro Oka
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan.
- School of Frontier Engineering, Kitasato University, Sagamihara, Japan.
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| |
Collapse
|
6
|
Kanda N. Editorial: Special Issue, “Molecular Advances in Skin Diseases”. Int J Mol Sci 2022; 23:ijms232012396. [PMID: 36293252 PMCID: PMC9604500 DOI: 10.3390/ijms232012396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Naoko Kanda
- Department of Dermatology, Nippon Medical School Chiba Hokusoh Hospital, Kamagari 1715, Inzai 270-1694, Chiba, Japan
| |
Collapse
|
7
|
Anti-skin aging activity of eggshell membrane administration and its underlying mechanism. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Abstract
Background
There is active research on developing materials for improving skin function. Eggshell membrane (ESM) is one such raw material that is consumed as a functional food to support skin health. However, studies on the mechanism of improvement of skin function on ingestion of ESM are still lacking.
Objectives
To explore this mechanism of action, we conducted an ultraviolet (UV) irradiation study on a SKH-1 hairless mouse model. Feeding ESM was found to improve skin moisture and reduce wrinkles during 12 weeks of UVB irradiation.
Results
Oral administration of ESM restored moisture in the dorsal skin tissue of mice. In addition, oral ingestion of ESM also reversed the increased transepidermal water loss and reduction of mRNA expression of hyaluronic synthases induced by UVB irradiation. Furthermore, UVB irradiation-induced collagen degradation was inhibited, and the expression of the collagenase MMP was reduced in the ESM intake group compared to the control. These results confirmed that oral ingestion of the ESM has an anti-wrinkle effect. In addition, the mRNA expression of the antioxidant enzyme SOD1, which was reduced on UVB irradiation, was restored on ingestion of the ESM. Restoring the expression of antioxidant enzymes is a key strategy for improving skin function of the ESM.
Conclusion
Taken together, the findings from our study reveal the potential of ESM as a nutricosmetic material with anti-wrinkle and skin moisturizing properties.
Collapse
|
8
|
Jang D, Shim J, Shin DM, Noh H, Oh SJ, Park J, Lee JH. Magnesium microneedle patches for under‐eye wrinkles. Dermatol Ther 2022; 35:e15732. [PMID: 35871464 PMCID: PMC9541154 DOI: 10.1111/dth.15732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/22/2022] [Accepted: 07/19/2022] [Indexed: 11/27/2022]
Abstract
Microneedling is a common cosmetic procedure for improvement of wrinkles, acne, scars, and other conditions. Various microneedle (MN) patches have been developed as home care therapy for wrinkles and skin texture. Most of them are made of soluble and absorbable needles. To evaluate the efficacy and safety of non‐absorbable magnesium (Mg) MN patches on under‐eye wrinkles. A total of 20 subjects aged 27–58 years was enrolled in the study. The subjects applied Mg MN patches on the under‐eye wrinkle area for 1–2 h every other night for 12 weeks. The evaluation comprised grading by clinicians, measuring the wrinkle index with a facial analyzer, and measuring the dermal thickness of the under‐eye area with ultrasonography. Any adverse events and discomfort were addressed during the study. The application of Mg MN patches on under‐eye areas showed improvements in under‐eye grading scale, wrinkle index, and dermal thickness after 12 weeks. The mean grading scale significantly improved after 8 weeks of application (p < 0.01). The wrinkle index showed significant improvement after 12 weeks on the right under‐eye area (p < 0.05). The dermal thickness of the under‐eye area tended to increase, but no statistically significant changes were observed. Non‐absorbable Mg MN patches can be used for under‐eye wrinkles with minimal discomfort.
Collapse
Affiliation(s)
- Donghwi Jang
- Department of Dermatology, Samsung Medical Center Sungkyunkwan University School of Medicine Seoul South Korea
| | - Joonho Shim
- Department of Dermatology, Samsung Medical Center Sungkyunkwan University School of Medicine Seoul South Korea
| | - Dong Min Shin
- Department of Dermatology, Samsung Medical Center Sungkyunkwan University School of Medicine Seoul South Korea
| | - Hyungrye Noh
- Department of Dermatology, Samsung Medical Center Sungkyunkwan University School of Medicine Seoul South Korea
| | - Se Jin Oh
- Department of Dermatology, Samsung Medical Center Sungkyunkwan University School of Medicine Seoul South Korea
| | - Ji‐Hye Park
- Department of Dermatology, Samsung Medical Center Sungkyunkwan University School of Medicine Seoul South Korea
| | - Jong Hee Lee
- Department of Dermatology, Samsung Medical Center Sungkyunkwan University School of Medicine Seoul South Korea
- Department of Medical Device Management & Research, SAIHST Sungkyunkwan University Seoul South Korea
| |
Collapse
|
9
|
Shu S, Kobayashi M, Marunaka K, Yoshino Y, Goto M, Katsuta Y, Ikari A. Magnesium Supplementation Attenuates Ultraviolet-B-Induced Damage Mediated through Elevation of Polyamine Production in Human HaCaT Keratinocytes. Cells 2022; 11:cells11152268. [PMID: 35892565 PMCID: PMC9332241 DOI: 10.3390/cells11152268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
Magnesium ions (Mg2+) have favorable effects such as the improvement of barrier function and the reduction of inflammation reaction in inflammatory skin diseases. However, its mechanisms have not been fully understood. Microarray analysis has shown that the gene expressions of polyamine synthases are upregulated by MgCl2 supplementation in human HaCaT keratinocytes. Here, we investigated the mechanism and function of polyamine production. The mRNA and protein levels of polyamine synthases were dose-dependently increased by MgCl2 supplementation, which were inhibited by U0126, a MEK inhibitor; CHIR-99021, a glycogen synthase kinase-3 (GSK3) inhibitor; and Naphthol AS-E, a cyclic AMP-response-element-binding protein (CREB) inhibitor. Similarly, reporter activities of polyamine synthases were suppressed by these inhibitors, suggesting that MEK, GSK3, and CREB are involved in the transcriptional regulation of polyamine synthases. Cell viability was reduced by ultraviolet B (UVB) exposure, which was rescued by MgCl2 supplementation. The UVB-induced elevation of reactive oxygen species was attenuated by MgCl2 supplementation, which was inhibited by cysteamine, a polyamine synthase inhibitor. Our data indicate that the expression levels of polyamine synthases are upregulated by MgCl2 supplementation mediated through the activation of the MEK/GSK3/CREB pathway. MgCl2 supplementation may be useful in reducing the UVB-induced oxidative stress in the skin.
Collapse
Affiliation(s)
- Shokoku Shu
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (S.S.); (M.K.); (K.M.); (Y.Y.)
| | - Mao Kobayashi
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (S.S.); (M.K.); (K.M.); (Y.Y.)
| | - Kana Marunaka
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (S.S.); (M.K.); (K.M.); (Y.Y.)
| | - Yuta Yoshino
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (S.S.); (M.K.); (K.M.); (Y.Y.)
| | - Makiko Goto
- Shiseido Co., Ltd., MIRAI Technology Institute, Yokohama 220-0011, Japan; (M.G.); (Y.K.)
| | - Yuji Katsuta
- Shiseido Co., Ltd., MIRAI Technology Institute, Yokohama 220-0011, Japan; (M.G.); (Y.K.)
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (S.S.); (M.K.); (K.M.); (Y.Y.)
- Correspondence: ; Tel.: +81-58-230-8124
| |
Collapse
|