1
|
Kostic M, Zivkovic N, Cvetanovic A, Basic J, Stojanovic I. Dissecting the immune response of CD4 + T cells in Alzheimer's disease. Rev Neurosci 2025; 36:139-168. [PMID: 39238424 DOI: 10.1515/revneuro-2024-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/18/2024] [Indexed: 09/07/2024]
Abstract
The formation of amyloid-β (Aβ) plaques is a neuropathological hallmark of Alzheimer's disease (AD), however, these pathological aggregates can also be found in the brains of cognitively unimpaired elderly population. In that context, individual variations in the Aβ-specific immune response could be key factors that determine the level of Aβ-induced neuroinflammation and thus the propensity to develop AD. CD4+ T cells are the cornerstone of the immune response that coordinate the effector functions of both adaptive and innate immunity. However, despite intensive research efforts, the precise role of these cells during AD pathogenesis is still not fully elucidated. Both pathogenic and beneficial effects have been observed in various animal models of AD, as well as in humans with AD. Although this functional duality of CD4+ T cells in AD can be simply attributed to the vast phenotype heterogeneity of this cell lineage, disease stage-specific effect have also been proposed. Therefore, in this review, we summarized the current understanding of the role of CD4+ T cells in the pathophysiology of AD, from the aspect of their antigen specificity, activation, and phenotype characteristics. Such knowledge is of practical importance as it paves the way for immunomodulation as a therapeutic option for AD treatment, given that currently available therapies have not yielded satisfactory results.
Collapse
Affiliation(s)
- Milos Kostic
- Department of Immunology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Nikola Zivkovic
- Department of Pathology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Ana Cvetanovic
- Department of Oncology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Jelena Basic
- Department of Biochemistry, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Ivana Stojanovic
- Department of Biochemistry, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| |
Collapse
|
2
|
Cui LJ, Cai LL, Na WQ, Jia RL, Zhu JL, Pan X. Interaction between serum inflammatory cytokines and brain-derived neurotrophic factor in cognitive function among first-episode schizophrenia patients. World J Psychiatry 2024; 14:1804-1814. [PMID: 39704351 PMCID: PMC11622020 DOI: 10.5498/wjp.v14.i12.1804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/24/2024] [Accepted: 09/14/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND The pathogenesis of cognitive impairment in schizophrenia (SCZ) remains unclear. Accumulating studies showed that inflammatory-immune dysregulation and altered brain derived neurotrophic factor (BDNF) levels play a crucial role in the psychopathology of SCZ. However, their association with cognitive dysfunction in first-episode SCZ patients has not been thoroughly investigated. AIM To explore the interaction effects between cognitive function and inflammatory cytokines and BDNF in first-episode SCZ. METHODS The current study is a cross-sectional case-control investigation that recruited 84 patients with first-episode SCZ (SCZ group) and 80 healthy controls (HCs group) at the Huzhou Third Municipal Hospital between August 2021 and September 2023. ELISA was employed to measure the serum levels of interleukin (IL)-1β, IL-4, IL-6, IL-10, and BDNF. The Chinese brief cognitive test (C-BCT) and the positive and negative syndrome scales were measured the severity of cognitive impairment and psychiatric symptoms. RESULTS Compared to the HC group, the SCZ group exhibited elevated IL-1β and IL-6 levels, decreased BDNF levels, and reduced C-BCT scores (all P < 0.001). In SCZ, BDNF was negatively correlated with IL-6 (r = -0.324, P < 0.05). Information processing speed was negatively correlated with IL-6 (r = -0.315, P < 0.05) and positively with BDNF (r = 0.290, P < 0.05); attention, working memory, comprehensive ability, and executive function were negatively correlated with IL-1β and IL-6 (all P < 0.05) and positively with BDNF (all P < 0.05). Multiple regression analysis showed IL-6 influenced C-BCT dimensions (β = -0.218 to -0.327, all P < 0.05); attention and executive ability were influenced by IL-1β (β = -0.199 to -0.261, all P < 0.05); comprehensive executive ability was influenced by BDNF (β = 0.209, P < 0.05). CONCLUSION Our findings suggested that interrelationships between immune dysfunction and neurotrophic deficiency might underlie the pathological mechanisms of cognitive impairments in first-episode SCZ patients.
Collapse
Affiliation(s)
- Li-Jun Cui
- Key Laboratory of Psychiatry, Huzhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, Huzhou 313000, Zhejiang Province, China
| | - Li-Li Cai
- Department of Psychiatry, Huzhou Third Municipal Hospital, The Affiliated Hospital of Huzhou University, Huzhou 313000, Zhejiang Province, China
| | - Wan-Qiu Na
- Department of Psychiatry, Huzhou Third Municipal Hospital, The Affiliated Hospital of Huzhou University, Huzhou 313000, Zhejiang Province, China
| | - Rui-Long Jia
- School of Information Engineering, Huzhou University, Huzhou 313000, Zhejiang Province, China
| | - Jie-Lin Zhu
- Department of Clinical Laboratory, Huzhou Third Municipal Hospital, The Affiliated Hospital of Huzhou University, Huzhou 313000, Zhejiang Province, China
| | - Xin Pan
- Department of Psychiatry, Huzhou Third Municipal Hospital, The Affiliated Hospital of Huzhou University, Huzhou 313000, Zhejiang Province, China
| |
Collapse
|
3
|
Sfera A, Thomas KA, Anton J. Cytokines and Madness: A Unifying Hypothesis of Schizophrenia Involving Interleukin-22. Int J Mol Sci 2024; 25:12110. [PMID: 39596179 PMCID: PMC11593724 DOI: 10.3390/ijms252212110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/30/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Schizophrenia is a severe neuropsychiatric illness of uncertain etiopathogenesis in which antipsychotic drugs can attenuate the symptoms, but patients rarely return to the premorbid level of functioning. In fact, with each relapse, people living with schizophrenia progress toward disability and cognitive impairment. Moreover, our patients desire to live normal lives, to manage their daily affairs independently, date, get married, and raise and support a family. Those of us who work daily with schizophrenia patients know that these objectives are rarely met despite the novel and allegedly improved dopamine blockers. We hypothesize that poor outcomes in schizophrenia reflect the gray matter volume reduction, which continues despite antipsychotic treatment. We hypothesize further that increased gut barrier permeability, due to dysfunctional aryl hydrocarbon receptor (AhR), downregulates the gut barrier protectors, brain-derived neurotrophic factor (BDNF), and interleukin-22 (IL-22), facilitating microbial translocation into the systemic circulation, eventually reaching the brain. Recombinant human IL-22 could ameliorate the outcome of schizophrenia by limiting bacterial translocation and by initiating tissue repair. This short review examines the signal transducer and transcription-three (STAT3)/AhR axis and downregulation of IL-22 and BDNF with subsequent increase in gut barrier permeability. Based on the hypothesis presented here, we discuss alternative schizophrenia interventions, including AhR antagonists, mitochondrial transplant, membrane lipid replacement, and recombinant human IL-22.
Collapse
Affiliation(s)
- Adonis Sfera
- Patton State Hospital, 3102 Highland Ave., Patton, CA 92369, USA (J.A.)
| | | | | |
Collapse
|
4
|
You X, Wang L, Wang H, Xu Y, Chen Y, Xu H, Ji X, Ma X, Xu X. Liver abscess induced by intestinal hypervirulent Klebsiella pneumoniae through down-regulation of tryptophan-IPA-IL22 axis. iScience 2024; 27:110849. [PMID: 39429788 PMCID: PMC11490733 DOI: 10.1016/j.isci.2024.110849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/08/2024] [Accepted: 08/27/2024] [Indexed: 10/22/2024] Open
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp) is a significant causative agent of invasive hepatic abscess syndrome in Asia, presenting substantial clinical challenges due to its intricate pathogenesis. This study revealed the crucial role of the gut microbiota in fortifying the host's defense against hvKp infection by enhancing interleukin-22 (IL-22), probably through regulating downstream antimicrobial peptides such as Reg3β. In antibiotic-treated mice, we observed that gut microbiota disruption impaired the transformation of tryptophan to indole, a key ligand for the aryl hydrocarbon receptor (AhR), consequently affecting the regulatory functions of IL-22. Our experimental findings revealed that administering rIL-22 or indole propionic acid notably diminished the translocation of hvKp from the intestine to the liver. This research not only underscores the pivotal role of the gut microbiome in modulating tryptophan metabolism and the IL-22 pathway but also highlights its critical function in preventing hvKp migration from the colon to the liver.
Collapse
Affiliation(s)
- Xiu You
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Laboratory Medical Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Liping Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Laboratory Medical Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hong Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Laboratory Medical Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yizheng Xu
- Key Laboratory of Laboratory Medical Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Department of Clinical Laboratory, Sichuan Orthopedic Hospital, Chengdu, Sichuan 610000, China
| | - Yongzheng Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Laboratory Medical Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Huizhen Xu
- Key Laboratory of Laboratory Medical Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xuelian Ji
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiangsong Ma
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiuyu Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
5
|
Xu L, Cao P, Wang J, Zhang P, Hu S, Cheng C, Wang H. IL-22: A key inflammatory mediator as a biomarker and potential therapeutic target for lung cancer. Heliyon 2024; 10:e35901. [PMID: 39263114 PMCID: PMC11387261 DOI: 10.1016/j.heliyon.2024.e35901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024] Open
Abstract
Lung cancer, one of the most prevalent cancers worldwide, stands as the primary cause of cancer-related deaths. As is well-known, the utmost crucial risk factor contributing to lung cancer is smoking. In recent years, remarkable progress has been made in treating lung cancer, particularly non-small cell lung cancer (NSCLC). Nevertheless, the absence of effective and accurate biomarkers for diagnosing and treating lung cancer remains a pressing issue. Interleukin 22 (IL-22) is a member of the IL-10 cytokine family. It exerts biological functions (including induction of proliferation and anti-apoptotic signaling pathways, enhancement of tissue regeneration and immunity defense) by binding to heterodimeric receptors containing type 1 receptor chain (R1) and type 2 receptor chain (R2). IL-22 has been identified as a pro-cancer factor since dysregulation of the IL-22-IL-22R system has been implicated in the development of different cancers, including lung, breast, gastric, pancreatic, and colon cancers. In this review, we discuss the differential expression, regulatory role, and potential clinical significance of IL-22 in lung cancer, while shedding light on innovative approaches for the future.
Collapse
Affiliation(s)
- Ling Xu
- Department of Interventional Pulmonary Diseases, The Anhui Chest Hospital, Hefei, China
| | - Peng Cao
- Department of Interventional Pulmonary Diseases, The Anhui Chest Hospital, Hefei, China
| | - Jianpeng Wang
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Peng Zhang
- Department of Interventional Pulmonary Diseases, The Anhui Chest Hospital, Hefei, China
| | - Shuhui Hu
- Department of Interventional Pulmonary Diseases, The Anhui Chest Hospital, Hefei, China
| | - Chao Cheng
- Department of Interventional Pulmonary Diseases, The Anhui Chest Hospital, Hefei, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| |
Collapse
|
6
|
Laska J, Tota M, Łacwik J, Sędek Ł, Gomułka K. IL-22 in Atopic Dermatitis. Cells 2024; 13:1398. [PMID: 39195286 PMCID: PMC11353104 DOI: 10.3390/cells13161398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/11/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
Atopic dermatitis (AD) is a prevalent and chronic inflammatory skin condition characterized by a multifaceted pathophysiology that gives rise to diverse clinical manifestations. The management of AD remains challenging due to the suboptimal efficacy of existing treatment options. Nonetheless, recent progress in elucidating the underlying mechanisms of the disease has facilitated the identification of new potential therapeutic targets and promising drug candidates. In this review, we summarize the newest data, considering multiple connections between IL-22 and AD. The presence of circulating IL-22 has been found to correlate with the severity of AD and is identified as a critical factor driving the inflammatory response associated with the condition. Elevated levels of IL-22 in patients with AD are correlated with increased proliferation of keratinocytes, alterations in the skin microbiota, and impaired epidermal barrier function. Collectively, these factors contribute to the manifestation of the characteristic symptoms observed in AD.
Collapse
Affiliation(s)
- Julia Laska
- Student Research Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Maciej Tota
- Student Research Group of Internal Medicine and Allergology, Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Julia Łacwik
- Student Research Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Łukasz Sędek
- Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| |
Collapse
|
7
|
Mitchell C, Staley S, Williams MC, Saxena A, Bogdon R, Roark K, Hailey M, Miranda K, Becker W, Dopkins N, Pena MM, Hogan KM, Baird M, Wilson K, Nagarkatti P, Nagarkatti M, Busbee PB. Regulation of Bacteroides acidifaciens by the aryl hydrocarbon receptor in IL-22-producing immune cells has sex-dependent consequential impact on colitis. Front Immunol 2024; 15:1444045. [PMID: 39229279 PMCID: PMC11368719 DOI: 10.3389/fimmu.2024.1444045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/31/2024] [Indexed: 09/05/2024] Open
Abstract
Introduction Colitis is an inflammatory bowel disease (IBD) characterized by immune cell dysregulation and alterations in the gut microbiome. In our previous report, we showed a natural product in cruciferous vegetables and ligand of the aryl hydrocarbon receptor (AhR), indole-3-carbinol (I3C), was able to reduce colitis-induced disease severity and microbial dysbiosis in an interleukin-22 (IL-22) dependent manner. Methods In the current study, we performed single-cell RNA sequencing (scRNAseq) from colonocytes during colitis induction and supplementation with I3C and show how this treatment alters expression of genes involved in IL-22 signaling. To further define the role of IL-22 signaling in I3C-mediated protection during colitis and disease-associated microbial dysbiosis, we generated mice with AhR deficiency in RAR-related orphan receptor c (Rorc)-expressing cells (AhR ΔRorc ) which depletes this receptor in immune cells involved in production of IL-22. Colitis was induced in wildtype (WT), AhR ΔRorc , and littermate (LM) mice with or without I3C treatment. Results Results showed AhR ΔRorc mice lost the efficacy effects of I3C treatment which correlated with a loss of ability to increase IL-22 by innate lymphoid type 3 (ILC3s), not T helper 22 (Th22) cells. 16S rRNA microbiome profiling studies showed AhR ΔRorc mice were unable to regulate disease-associated increases in Bacteroides, which differed between males and females. Lastly, inoculation with a specific disease-associated Bacteroides species, Bacteroides acidifaciens (B. acidifaciens), was shown to exacerbate colitis in females, but not males. Discussion Collectively, this report highlights the cell and sex-specific role of AhR in regulating microbes that can impact colitis disease.
Collapse
Affiliation(s)
- Chandani Mitchell
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Shanieka Staley
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Michal Claire Williams
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Archana Saxena
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Raymond Bogdon
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Kasie Roark
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Michele Hailey
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Kathryn Miranda
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - William Becker
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Nicholas Dopkins
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Maria Marjorette Pena
- Department of Biological Sciences, College of Arts and Sciences, University of South Carolina, Columbia, SC, United States
| | - Kristen M. Hogan
- Department of Biological Sciences, College of Arts and Sciences, University of South Carolina, Columbia, SC, United States
| | - Maredith Baird
- Department of Biological Sciences, College of Arts and Sciences, University of South Carolina, Columbia, SC, United States
| | - Kiesha Wilson
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Philip Brandon Busbee
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
8
|
Sun X, Gu R, Bai J. Differentiation and regulation of CD4 + T cell subsets in Parkinson's disease. Cell Mol Life Sci 2024; 81:352. [PMID: 39153043 PMCID: PMC11335276 DOI: 10.1007/s00018-024-05402-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, and its hallmark pathological features are the loss of dopaminergic (DA) neurons in the midbrain substantia nigra pars compacta (SNpc) and the accumulation of alpha-synuclein (α-syn). It has been shown that the integrity of the blood-brain barrier (BBB) is damaged in PD patients, and a large number of infiltrating T cells and inflammatory cytokines have been detected in the cerebrospinal fluid (CSF) and brain parenchyma of PD patients and PD animal models, including significant change in the number and proportion of different CD4+ T cell subsets. This suggests that the neuroinflammatory response caused by CD4+ T cells is an important risk factor for the development of PD. Here, we systematically review the differentiation of CD4+ T cell subsets, and focus on describing the functions and mechanisms of different CD4+ T cell subsets and their secreted cytokines in PD. We also summarize the current immunotherapy targeting CD4+ T cells with a view to providing assistance in the diagnosis and treatment of PD.
Collapse
Affiliation(s)
- Xiaowei Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650500, China
| | - Rou Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China.
- Southwest United Graduate School, Kunming, 650500, China.
| |
Collapse
|
9
|
Soares AR, Picciotto MR. Nicotinic regulation of microglia: potential contributions to addiction. J Neural Transm (Vienna) 2024; 131:425-435. [PMID: 37778006 PMCID: PMC11189589 DOI: 10.1007/s00702-023-02703-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Clinical and preclinical studies have identified immunosuppressive effects of nicotine, with potential implications for treating nicotine addiction. Here we review how nicotine can regulate microglia, the resident macrophages in the brain, and corresponding effects of nicotine on neuroimmune signaling. There is significant evidence that activation of α7 nicotinic acetylcholine receptors (nAChRs) on microglia can trigger an anti-inflammatory cascade that alters microglial polarization and activity, cytokine release, and intracellular calcium concentrations, leading to neuroprotection. These anti-inflammatory effects of nicotine-dependent α7 nAChR signaling are lost during withdrawal, suggesting that neuroimmune signaling is potentiated during abstinence, and thus, heightened microglial activity may drive circuit disruption that contributes to withdrawal symptoms and hyperkatifeia. In sum, the clinical literature has highlighted immunomodulatory effects of nicotine and the potential for anti-inflammatory compounds to treat addiction. The preclinical literature investigating the underlying mechanisms points to a role of microglial engagement in the circuit dysregulation and behavioral changes that occur during nicotine addiction and withdrawal, driven, at least in part, by activation of α7 nAChRs on microglia. Specifically targeting microglial signaling may help alleviate withdrawal symptoms in people with nicotine dependence and help to promote abstinence.
Collapse
Affiliation(s)
- Alexa R Soares
- Department of Psychiatry, Yale University, 34 Park Street-3rd floor Research, New Haven, CT, 06508, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, 06508, USA
| | - Marina R Picciotto
- Department of Psychiatry, Yale University, 34 Park Street-3rd floor Research, New Haven, CT, 06508, USA.
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, 06508, USA.
| |
Collapse
|
10
|
Ruiz-Fernández I, Sánchez-Díaz R, Ortega-Sollero E, Martín P. Update on the role of T cells in cognitive impairment. Br J Pharmacol 2024; 181:799-815. [PMID: 37559406 DOI: 10.1111/bph.16214] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/03/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023] Open
Abstract
The central nervous system (CNS) has long been considered an immune-privileged site, with minimal interaction between immune cells, particularly of the adaptive immune system. Previously, the presence of immune cells in this organ was primarily linked to events involving disruption of the blood-brain barrier (BBB) or inflammation. However, current research has shown that immune cells are found patrolling CNS under homeostatic conditions. Specifically, T cells of the adaptive immune system are able to cross the BBB and are associated with ageing and cognitive impairment. In addition, T-cell infiltration has been observed in pathological conditions, where inflammation correlates with poor prognosis. Despite ongoing research, the role of this population in the ageing brain under both physiological and pathological conditions is not yet fully understood. In this review, we provide an overview of the interactions between T cells and other immune and CNS parenchymal cells, and examine the molecular mechanisms by which these interactions may contribute to normal brain function and the scenarios in which disruption of these connections lead to cognitive impairment. A comprehensive understanding of the role of T cells in the ageing brain and the underlying molecular pathways under normal conditions could pave the way for new research to better understand brain disorders. LINKED ARTICLES: This article is part of a themed issue From Alzheimer's Disease to Vascular Dementia: Different Roads Leading to Cognitive Decline. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.6/issuetoc.
Collapse
Affiliation(s)
| | - Raquel Sánchez-Díaz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | | | - Pilar Martín
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| |
Collapse
|
11
|
Gao Z, Tan H, Song X, Zhuang T, Kong R, Wang Y, Yan X, Yao R. Troxerutin dampened hypothalamic neuroinflammation via microglial IL-22/IL-22R1/IRF3 activation in dihydrotestosterone-induced polycystic ovary syndrome rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155280. [PMID: 38183697 DOI: 10.1016/j.phymed.2023.155280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/22/2023] [Accepted: 12/10/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is the most common reproductive-endocrine condition in premenopausal women. Troxerutin, a common clinical anti-coagulant agent, was shown to work as a strong IL-22 boosting agent counteracting the hyperactivated gonadotrophin releasing hormone (GnRH) neurons and heightened GnRH release, the neuroendocrine origin of PCOS with unknown mechanism in rats. Exploring the off-label use of troxerutin medication for PCOS is thus sorely needed. METHODS Serum IL-22 content and hypothalamic IL-22 protein were detected. Inflammatory factor levels in hypothalamo-pituitary were evaluated. Immunofluorescence staining was employed to determine the activation and M1/M2-prone polarization of microglia in arcuate hypothalamus and median eminence. RNA-sequencing and transcriptome analysis were applied to explore the potential driver of microglia M2-polarization in response to IL-22 bolstering effect. The function of microglial IL-22/IL-22R1/IRF3 system was further verified using in vivo knockdown of IL-22R1 and a potent IRF3 inhibitor in BV2 microglial cell lines in vitro. RESULTS Troxerutin augmented serum IL-22 content, and its consequent spillover into the hypothalamus led to the direct activation of IL-22R1/IRF3 system on microglia, thereby promoted microglia M2 polarization in arcuate hypothalamus and median eminence, dampened hypothalamic neuroinflammation, inhibited hyperactive GnRH and rescued a breadth of PCOS-like traits in dihydrotestosterone (DHT) rats. The salutary effects of troxerutin treatment on hypothalamic neuroinflammation, microglial M1/2 polarization, GnRH secretion and numerous PCOS-like features were blocked by in vivo knockdown of IL-22R1. Moreover, evidence in vitro illustrated that IL-22 supplement to BV-2 microglia cell lines promoted M2 polarization, overproduction of anti-inflammatory marker and limitation of pro-inflammatory factors, whereas these IL-22 effects were blunted by geldanamycin, a potent IRF3 inhibitor. CONCLUSION Here, the present study reported the potential off-label use of troxerutin medication, a common clinical anti-coagulant agent and an endogenous IL-22 enhancer, for multiple purposes in PCOS. The rational underlying the application of troxerutin as a therapeutic choice in PCOS derived from its activity as an IL-22 memetic agent targeting the neuro-endocrine origin of PCOS, and its promotive impact on microglia M2 polarization via activating microglial IL-22R1/IRF3 system in the arcuate hypothalamus and median eminence of DHT female rats.
Collapse
Affiliation(s)
- Zixuan Gao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221009, PR China; Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Xuzhou Medical University, 388 Fuxing South Road, Xuzhou 221000, PR China
| | - Huihui Tan
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221009, PR China
| | - Xueli Song
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221009, PR China
| | - Tao Zhuang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221009, PR China
| | - Renyu Kong
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221009, PR China
| | - Yuying Wang
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Xuzhou Medical University, 388 Fuxing South Road, Xuzhou 221000, PR China
| | - Xiaonan Yan
- Clinical Center for Reproductive Medicine, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University,199 Jiefang South Road, Xuzhou 221000, PR China.
| | - Ruiqin Yao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221009, PR China.
| |
Collapse
|
12
|
Afsar A, Chen M, Xuan Z, Zhang L. A glance through the effects of CD4 + T cells, CD8 + T cells, and cytokines on Alzheimer's disease. Comput Struct Biotechnol J 2023; 21:5662-5675. [PMID: 38053545 PMCID: PMC10694609 DOI: 10.1016/j.csbj.2023.10.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Unfortunately, despite numerous studies, an effective treatment for AD has not yet been established. There is remarkable evidence indicating that the innate immune mechanism and adaptive immune response play significant roles in the pathogenesis of AD. Several studies have reported changes in CD8+ and CD4+ T cells in AD patients. This mini-review article discusses the potential contribution of CD4+ and CD8+ T cells reactivity to amyloid β (Aβ) protein in individuals with AD. Moreover, this mini-review examines the potential associations between T cells, heme oxygenase (HO), and impaired mitochondria in the context of AD. While current mathematical models of AD have not extensively addressed the inclusion of CD4+ and CD8+ T cells, there exist models that can be extended to consider AD as an autoimmune disease involving these T cell types. Additionally, the mini-review covers recent research that has investigated the utilization of machine learning models, considering the impact of CD4+ and CD8+ T cells.
Collapse
Affiliation(s)
- Atefeh Afsar
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Min Chen
- Department of Mathematical Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Zhenyu Xuan
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Li Zhang
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
13
|
Madeshiya AK, Pillai A. Innate lymphoid cells in depression: Current status and perspectives. Biomark Neuropsychiatry 2022; 7. [PMID: 37123464 PMCID: PMC10136288 DOI: 10.1016/j.bionps.2022.100055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The recent discovery of innate lymphoid cells (ILCs) has provided new insights into our understanding of the pathogenesis of many disease conditions with immune dysregulation. Type 1 innate lymphoid cells (ILC1s) induce type I immunity and are characterized by the expression of signature cytokine IFN-γ and the master transcription factor T-bet; ILC2s stimulate type II immune responses and are defined by the expression of signature cytokines IL-5 and IL-13, and transcription factors ROR-α and GATA3; ILC3s requires the transcription factor RORγt and produce IL-22 and IL-17. ILCs are largely tissue-resident and are enriched at barrier surfaces of the mammalian body. Increasing evidence shows that inflammation is involved in the pathogenesis of depression. Although few studies have directly investigated the role of ILCs in depression, several studies have examined the levels of cytokines produced by ILCs in depressed subjects. This review summarizes the potential roles of ILCs in depression. A better understanding of the biology of ILCs may lead to the development of new therapeutic strategies for the management of depression.
Collapse
|
14
|
Al-Musawi AF, Al-Hakeim HK, Al-Khfaji ZA, Al-Haboby IH, Almulla AF, Stoyanov DS, Maes M. In Schizophrenia, the Effects of the IL-6/IL-23/Th17 Axis on Health-Related Quality of Life and Disabilities Are Partly Mediated by Generalized Cognitive Decline and the Symptomatome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15281. [PMID: 36429996 PMCID: PMC9690590 DOI: 10.3390/ijerph192215281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/31/2022] [Accepted: 11/15/2022] [Indexed: 05/08/2023]
Abstract
Schizophrenia patients show increased disabilities and lower quality of life (DisQoL). Nevertheless, there are no data on whether the activation of the interleukin (IL)-6, IL-23, T helper (Th)-17 axis, and lower magnesium and calcium levels impact DisQoL scores. This study recruited 90 patients with schizophrenia (including 40 with deficit schizophrenia) and 40 healthy controls and assessed the World Health Association QoL instrument-Abbreviated version and Sheehan Disability scale, Brief Assessment of Cognition in Schizophrenia (BACS), IL-6, IL-23, IL-17, IL-21, IL-22, tumor necrosis factor (TNF)-α, magnesium and calcium. Regression analyses showed that a large part of the first factor extracted from the physical, psychological, social and environmental HR-QoL and interference with school/work, social life, and home responsibilities was predicted by a generalized cognitive deterioration (G-CoDe) index (a latent vector extracted from BACs scores), and the first vector extracted from various symptom domains ("symptomatome"), whereas the biomarkers had no effects. Partial Least Squares analysis showed that the IL6IL23Th17 axis and magnesium/calcium had highly significant total (indirect + direct) effects on HR-QoL/disabilities, which were mediated by G-CoDe and the symptomatome (a first factor extracted from negative and positive symptoms). The IL6IL23Th17 axis explained 63.1% of the variance in the behavioral-cognitive-psycho-social (BCPS) worsening index a single latent trait extracted from G-CoDe, symptomatome, HR-QoL and disability data. In summary, the BCPS worsening index is partly caused by the neuroimmunotoxic effects of the IL6IL23Th17 axis in subjects with lowered antioxidant defenses (magnesium and calcium), thereby probably damaging the neuronal circuits that may underpin deficit schizophrenia.
Collapse
Affiliation(s)
- Ali Fattah Al-Musawi
- Department of Clinical Pharmacy and Laboratory Sciences, College of Pharmacy, University of Al-Kafeel, Kufa 54001, Iraq
| | | | - Zahraa Abdulrazaq Al-Khfaji
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Al-Zahraa University for Women, Karbala 56001, Iraq
| | | | - Abbas F. Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf 54001, Iraq
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, PathumWan, Bangkok 10330, Thailand
| | - Drozdstoj St. Stoyanov
- Department of Psychiatry, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, PathumWan, Bangkok 10330, Thailand
- Department of Psychiatry, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
- IMPACT, School of Medicine, Barwon Health, The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong 3217, Australia
| |
Collapse
|
15
|
Al-Hakeim HK, Al-Musawi AF, Al-Mulla A, Al-Dujaili AH, Debnath M, Maes M. The interleukin-6/interleukin-23/T helper 17-axis as a driver of neuro-immune toxicity in the major neurocognitive psychosis or deficit schizophrenia: A precision nomothetic psychiatry analysis. PLoS One 2022; 17:e0275839. [PMID: 36256663 PMCID: PMC9578624 DOI: 10.1371/journal.pone.0275839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/24/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Schizophrenia and especially deficit schizophrenia (DSCZ) are characterized by increased activity of neuroimmunotoxic pathways and a generalized cognitive decline (G-CoDe). There is no data on whether the interleukin (IL)-6/IL-23/T helper 17 (IL-6/IL-23/Th17)-axis is more associated with DSCZ than with non-deficit schizophrenia (NDSCZ) and whether changes in this axis are associated with the G-CoDe and the phenome (a factor extracted from all symptom domains) of schizophrenia. METHODS This study included 45 DSCZ and 45 NDSCZ patients and 40 controls and delineated whether the IL-6/IL-23/Th17 axis, trace elements (copper, zinc) and ions (magnesium, calcium) are associated with DSCZ, the G-CoDe and the schizophrenia phenome. RESULTS Increased plasma IL-23 and IL-6 levels were associated with Th17 upregulation, assessed as a latent vector (LV) extracted from IL-17, IL-21, IL-22, and TNF-α. The IL-6/IL-23/Th17-axis score, as assessed by an LV extracted from IL-23, IL-6, and the Th17 LV, was significantly higher in DSCZ than in NDSCZ and controls. We discovered that 70.7% of the variance in the phenome was explained by the IL-6/IL-23/Th17-axis (positively) and the G-CoDe and IL-10 (both inversely); and that 54.6% of the variance in the G-CoDe was explained by the IL-6/IL-23/Th17 scores (inversely) and magnesium, copper, calcium, and zinc (all positively). CONCLUSION The pathogenic IL-6/IL-23/Th17-axis contributes to the generalized neurocognitive deficit and the phenome of schizophrenia, especially that of DSCZ, due to its key role in peripheral inflammation and neuroinflammation and its consequent immunotoxic effects on neuronal circuits. These clinical impairments are more prominent in subjects with lowered IL-10, magnesium, calcium, and zinc.
Collapse
Affiliation(s)
| | - Ali Fattah Al-Musawi
- Department of Clinical Pharmacy and Laboratory Sciences, College of Pharmacy, University of Al-Kafeel, Kufa, Iraq
| | - Abbas Al-Mulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- IMPACT Strategic Research Centre, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
16
|
Chen W, Wang J, Yang H, Sun Y, Chen B, Liu Y, Han Y, Shan M, Zhan J. Interleukin 22 and its association with neurodegenerative disease activity. Front Pharmacol 2022; 13:958022. [PMID: 36176437 PMCID: PMC9514046 DOI: 10.3389/fphar.2022.958022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022] Open
Abstract
It is worth noting that neuroinflammation is well recognized as a symptom of neurodegenerative diseases (NDs). The regulation of neuroinflammation becomes an attractive focus for innovative ND treatment technologies. There is evidence that IL-22 is associated with the development and progression of a wide assortment of NDs. For example, IL-22 can activate glial cells, causing them to generate pro-inflammatory cytokines and encourage lymphocyte infiltration in the brain. IL-22 mRNA is highly expressed in Alzheimer's disease (AD) patients, and a high expression of IL-22 has also been detected in the brains of patients with other NDs. We examine the role of IL-22 in the development and treatment of NDs in this review, and we believe that IL-22 has therapeutic potential in these diseases.
Collapse
Affiliation(s)
- Wenjian Chen
- Department of Orthopaedics, Anhui Provincial Children’s Hospital, Hefei, China
| | - Jianpeng Wang
- School of First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Huaizhi Yang
- School of First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Yuankai Sun
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Bangjie Chen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuchen Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yanxun Han
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ming Shan
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Junfeng Zhan
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|