1
|
Mercanoglu B, Schraps N, Giannou AD, Neuburg E, Kempski J, Wagener C, Melling N, Bockhorn M, Hackert T, Wolters-Eisfeld G. Overexpression of Tn antigen induces chronic pancreatitis in mice. Sci Rep 2025; 15:11306. [PMID: 40175689 PMCID: PMC11965491 DOI: 10.1038/s41598-025-96060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025] Open
Abstract
Altered O-glycosylation is a key contributor to various pathophysiological processes. Notably, the expression of the Tn antigen is primarily attributed to dysfunction of the chaperone Cosmc, while the overexpression of polypeptide N-acetylgalactosaminyltransferases (GalNAc-Ts) has also been implicated in numerous diseases. We generated a transgenic mouse model with conditional Cosmc-knockout and simultaneous overexpression of polypeptide N-acetylgalactosaminyltransferase 2 (GalNT2) mediated by the pancreas-specific transcription factor 1a (Ptf1a)-Cre mouse strain to investigate the effect of Tn antigen overexpression on the pancreas in vivo. Histopathological examination of the transgenic pancreas revealed a chronic pancreatitis phenotype with interlobular fibrosis and focal necrosis after only a few weeks as a result of Tn antigen overexpression. In the later stages, there was a progressive loss of pancreatic parenchyma with consecutive exocrine pancreatic insufficiency and malnutrition in the transgenic mice. Flow cytometric analyses have also confirmed that significant infiltration of immune cells occurs in the course of pancreatitis. In the transgenic mouse model presented here, we demonstrated that overexpression of the Tn antigen in the pancreas results in chronic pancreatitis, highlighting the pathophysiological importance of truncated O-glycosylation.
Collapse
Affiliation(s)
- Baris Mercanoglu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| | - Nina Schraps
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Anastasios D Giannou
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Elena Neuburg
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Jan Kempski
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | | | - Nathaniel Melling
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Maximilian Bockhorn
- Department of General and Visceral Surgery, University Medical Center Oldenburg, 26133, Oldenburg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Gerrit Wolters-Eisfeld
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| |
Collapse
|
2
|
Scofield S, Koshko L, Stilgenbauer L, Booms A, Berube R, Kassotis C, Lin CH, Jang H, Kim S, Stemmer P, Lempradl A, Sadagurski M. Integrative multi-omics analysis of metabolic dysregulation induced by occupational benzene exposure in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 971:179060. [PMID: 40068415 PMCID: PMC11928247 DOI: 10.1016/j.scitotenv.2025.179060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
Type 2 Diabetes Mellitus (T2DM) is a significant public health burden. Emerging evidence links volatile organic compounds (VOCs), such as benzene to endocrine disruption and metabolic dysfunction. However, the effects of chronic environmentally relevant VOC exposures on metabolic health are still emerging. Building on our previous findings that benzene exposure at smoking levels (50 ppm) induces metabolic impairments in male mice, we investigated the effects of benzene exposure below OSHA's Occupational Exposure Limit (OEL) on metabolic health. Adult male C57BL/6 mice were exposed to 0.9 ppm benzene 8 h a day for 9 weeks. We assessed measures of metabolic homeostasis and conducted RNA and proteome sequencing on insulin-sensitive organs (liver, skeletal muscle, adipose tissue). At this dose, exposure caused significant metabolic disruptions, including hyperglycemia, hyperinsulinemia, and insulin resistance. Transcriptomic analysis of liver, muscle, and adipose tissue identified key changes in metabolic and immune pathways especially in liver. Proteomic analysis of the liver revealed mitochondrial dysfunction as a shared feature, with disruptions in oxidative phosphorylation, mitophagy, and immune activation. Comparative analysis with high-dose (50 ppm) exposure showed conserved and dose-specific transcriptomic changes in liver, particularly in metabolic and immune responses. Our study is the first to comprehensively assess the impacts of occupational benzene exposure on metabolic health, highlighting mitochondrial dysfunction as a central mechanism and the dose-dependent molecular pathways in insulin-sensitive organs driving benzene-induced metabolic imbalance. Our data indicate that the current OSHA OEL for benzene is insufficient and needs to be lowered, as they could result in adverse metabolic health in exposed workers, particularly men, following chronic exposure.
Collapse
Affiliation(s)
- Sydney Scofield
- Department of Biological Sciences, Integrative Biosciences Center (IBio), Wayne State University, Detroit, MI, USA
| | - Lisa Koshko
- Department of Biological Sciences, Integrative Biosciences Center (IBio), Wayne State University, Detroit, MI, USA
| | - Lukas Stilgenbauer
- Department of Biological Sciences, Integrative Biosciences Center (IBio), Wayne State University, Detroit, MI, USA
| | - Alix Booms
- Van Andel Research Institute, Grand Rapids, MI, USA
| | - Roxanne Berube
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA; Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Christopher Kassotis
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA; Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Chung-Ho Lin
- School of Natural Resources, University of Missouri, Columbia, MO, USA
| | - Hyejeong Jang
- Department of Oncology, School of Medicine, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Seongho Kim
- Department of Oncology, School of Medicine, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Paul Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | | | - Marianna Sadagurski
- Department of Biological Sciences, Integrative Biosciences Center (IBio), Wayne State University, Detroit, MI, USA; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
3
|
Scofield S, Koshko L, Stilgenbauer L, Booms A, Berube R, Kassotis C, Lin CH, Jang H, Kim S, Stemmer P, Lempradl A, Sadagurski M. Integrative multiomics analysis of metabolic dysregulation induced by occupational benzene exposure in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.22.629805. [PMID: 39763906 PMCID: PMC11703235 DOI: 10.1101/2024.12.22.629805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Background Type 2 Diabetes Mellitus (T2DM) is a significant public health burden. Emerging evidence links volatile organic compounds (VOCs), such as benzene to endocrine disruption and metabolic dysfunction. However, the effects of chronic environmentally relevant VOC exposures on metabolic health are still emerging. Objective Building on our previous findings that benzene exposure at smoking levels (50 ppm) induces metabolic impairments in male mice, we investigated the effects of occupationally relevant, below OSHA approved, benzene exposure on metabolic health. Methods Adult male C57BL/6 mice were exposed to 0.9ppm benzene 8 hours a day for 9 weeks. We assessed measures of metabolic homeostasis and conducted RNA and proteome sequencing on insulin-sensitive organs (liver, skeletal muscle, adipose tissue). Results This low-dose exposure caused significant metabolic disruptions, including hyperglycemia, hyperinsulinemia, and insulin resistance. Transcriptomic analysis of liver, skeletal muscle, and adipose tissue identified key changes in metabolic and immune pathways especially in liver. Proteomic analysis of the liver revealed mitochondrial dysfunction as a shared feature, with disruptions in oxidative phosphorylation, mitophagy, and immune activation. Comparative analysis with high-dose (50 ppm) exposure showed both conserved and dose-specific transcriptomic changes in liver, particularly in metabolic and immune responses. Conclusions Our study is the first to comprehensively assess the impacts of occupational benzene exposure on metabolic health, highlighting mitochondrial dysfunction as a central mechanism and the dose-dependent molecular pathways in insulin-sensitive organs driving benzene-induced metabolic imbalance. Our data indicate that current OSHA occupational exposure limits for benzene are insufficient, as they could result in adverse metabolic health in exposed workers, particularly men, following chronic exposure.
Collapse
|
4
|
Matheny-Rabun C, Mokashi SS, Radenkovic S, Wiggins K, Dukes-Rimsky L, Angel P, Ghesquiere B, Kozicz T, Steet R, Morava E, Flanagan-Steet H. O-GlcNAcylation modulates expression and abundance of N-glycosylation machinery in an inherited glycosylation disorder. Cell Rep 2024; 43:114976. [PMID: 39561044 PMCID: PMC11656453 DOI: 10.1016/j.celrep.2024.114976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 11/21/2024] Open
Abstract
Core components of the N-glycosylation pathway are known, but the metabolic and post-translational mechanisms regulating this pathway in normal and disease states remain elusive. Using a multi-omic approach in zebrafish, we discovered a mechanism whereby O-GlcNAcylation directly impacts the expression and abundance of two rate-limiting proteins in the N-linked glycosylation pathway. We show in a model of an inherited glycosylation disorder PMM2-CDG, congenital disorders of glycosylation that phosphomannomutase deficiency is associated with increased levels of UDP-GlcNAc and protein O-GlcNAcylation. O-GlcNAc modification increases the transcript and protein abundance of both NgBR and Dpagt1 in pmm2m/m mutants. Modulating O-GlcNAc levels, NgBR abundance, or Dpagt1 activity exacerbated the cartilage phenotypes in pmm2 mutants, suggesting that O-GlcNAc-mediated increases in the N-glycosylation machinery are protective. These findings highlight nucleotide-sugar donors as metabolic sensors that regulate two spatially separated glycosylation pathways, demonstrating how their coordination is relevant to disease severity in the most common congenital disorder of glycosylation.
Collapse
Affiliation(s)
| | - Sneha S Mokashi
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Silvia Radenkovic
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Kali Wiggins
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Lynn Dukes-Rimsky
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Peggi Angel
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bart Ghesquiere
- Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Metabolomics Core Facility Leuven, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Tamas Kozicz
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard Steet
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
5
|
Liu H, Wang F, Hu Z, Wei J. Potential Drug Targets for Diabetic Retinopathy Identified Through Mendelian Randomization Analysis. Transl Vis Sci Technol 2024; 13:17. [PMID: 39541108 PMCID: PMC11572760 DOI: 10.1167/tvst.13.11.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose This study aimed to investigate the causal effect of plasma proteins on diabetic retinopathy (DR) risk and identify potential drug targets for this disease. Methods Two-sample Mendelian randomization was performed to explore potential drug targets for DR. A total of 734 proteins were selected as instrumental variables. The Steiger filtering test and colocalization analysis were conducted to determine the causal direction and genetic pleiotropy. Plasma proteins from the decode study were used to validate the findings. Results Eleven plasma proteins were associated with DR risk. Genetically predicted high levels of CCL3L1 (odds ratio [OR] = 0.582; 95% confidence interval [CI], 0.343-0.986; P = 0.044), PAM (OR = 0.782; 95% CI, 0.652-0.937; P = 0.008), GP1BA (OR = 0.793; 95% CI, 0.632-0.994; P = 0.044), GALNT16 (OR = 0.832; 95% CI, 0.727-0.952; P = 0.008), POGLUT1 (OR = 0.836; 95% CI = 0.703-0.995; P = 0.043), and DKK3 (OR = 0.859; 95% CI, 0.777-0.950; P = 0.003) have the protective effect on DR risk. Genetically predicted high levels of GFRA2 (OR = 1.104; 95% CI, 1.028-1.187; P = 0.007), PATE4 (OR = 1.405; 95% CI, 1.060-1.860; P = 0.018), GSTA1 (OR = 1.464; 95% CI, 1.163-1.842; P = 0.001), SIRPG (OR = 1.600, 95% CI, 1.244-2.057; P = 2.51E-04), and MAPK13 (OR = 1.731; 95% CI, 1.233-2.431; P = 0.002) were associated with an increased risk of DR. However, the colocalization analysis results suggested that SIRPG and GP1BA have a shared causal variant with DR. Conclusions CCL3L1, PAM, GALNT16, POGLUT1, DKK3, GFRA2, PATE4, GSTA1, and MAPK13 were associated with DR risk and were identified as potential drug targets for DR. Translational Relevance The present study has highlighted the role of CCL3L1, PAM, GALNT16, POGLUT1, DKK3, GFRA2, PATE4, GSTA1, and MAPK13 in the development of DR.
Collapse
Affiliation(s)
- Huan Liu
- Department of Ophthalmology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, PR China
| | - Feiyan Wang
- Department of Ophthalmology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, PR China
| | - Ziqing Hu
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, USA
| | - Jing Wei
- Department of Ophthalmology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, PR China
| |
Collapse
|
6
|
Shu T, Zhang Y, Sun T, Zhu Y. Polypeptide N-Acetylgalactosaminyl transferase 14 is a novel mediator in pancreatic β-cell function and growth. Mol Cell Endocrinol 2024; 591:112269. [PMID: 38763428 DOI: 10.1016/j.mce.2024.112269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024]
Abstract
Polypeptide N-Acetylgalactosaminyl transferase 14 (GALNT14) plays important roles in cancer progression and chemotherapy response. Here, we show that GALNT14 is highly expressed in pancreatic β cells and regulates β cell function and growth. We found that the expression level of Ganlt14 was significantly decreased in the primary islets from three rodent type-2 diabetic models. Single-Cell sequencing defined that Galnt14 was mainly expressed in β cells of mouse islets. Galnt14 knockout (G14KO) INS-1 cell line, constructed by using CRISPR/Cas9 technology were growth normal, but showed blunt shape, and increased basal insulin secretion. Combined proteomics and glycoproteomics demonstrated that G14KO altered cell-to-cell junctions, communication, and adhesion. Insulin receptor (IR) and IGF1-1R were indirectly confirmed for GALNT14 substrates, contributed to diminished IGF1-induced p-AKT levels and cell growth in G14KO cells. Overall, this study uncovers that GALNT14 is a novel modulator in regulating β cells biology, providing a missing link of β cells O-glycosylation to diabetes development.
Collapse
Affiliation(s)
- Tingting Shu
- Department of Central Laboratory, Geriatric Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210024, China
| | - Yan Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Tong Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
7
|
Takahashi A, Koike R, Watanabe S, Kuribayashi K, Wabitsch M, Miyamoto M, Komuro A, Seki M, Nashimoto M, Shimizu-Ibuka A, Yamashita K, Iwata T. Polypeptide N-acetylgalactosaminyltransferase-15 regulates adipogenesis in human SGBS cells. Sci Rep 2024; 14:20049. [PMID: 39209927 PMCID: PMC11362553 DOI: 10.1038/s41598-024-70930-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Adipogenesis involves intricate molecular mechanisms regulated by various transcription factors and signaling pathways. In this study, we aimed to identify factors specifically induced during adipogenesis in the human preadipocyte cell line, SGBS, but not in the mouse preadipocyte cell line, 3T3-L1. Microarray analysis revealed distinct gene expression profiles, with 1460 genes induced in SGBS cells and 1297 genes induced in 3T3-L1 cells during adipogenesis, with only 297 genes commonly induced. Among the genes uniquely induced in SGBS cells, we focused on GALNT15, which encodes polypeptide N-acetylgalactosaminyltransferase-15. Its expression increased transiently during adipogenesis in SGBS cells but remained low in 3T3-L1 cells. Overexpression of GALNT15 increased mRNA levels of CCAAT-enhancer binding protein (C/EBPα) and leptin but had no significant impact on adipogenesis in SGBS cells. Conversely, knockdown of GALNT15 suppressed mRNA expression of adipocyte marker genes, reduced lipid accumulation, and decreased the percentage of cells with oil droplets. The induction of C/EBPα and peroxisome proliferator-activated receptor γ during adipogenesis was promoted or suppressed in SGBS cells subjected to overexpression or knockdown of GALNT15, respectively. These data suggest that polypeptide N-acetylgalactosaminyltransferase-15 is a novel regulatory molecule that enhances adipogenesis in SGBS cells.
Collapse
Affiliation(s)
- Asuka Takahashi
- Department of Functional Morphology, Graduate School of Pharmaceutical Sciences, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, 956-8603, Japan
| | - Ryo Koike
- Department of Functional Morphology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Medical and Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata, 956-8603, Japan
| | - Shota Watanabe
- Department of Functional Morphology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Medical and Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata, 956-8603, Japan
| | - Kyoko Kuribayashi
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Tōon, 791-0295, Japan
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075, Ulm, Germany
| | - Masahiko Miyamoto
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, 956-8603, Japan
| | - Akihiko Komuro
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, 956-8603, Japan
| | - Mineaki Seki
- Division of DNA Repair and Genome Integrity, Faculty of Medical Technology, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, 956-8603, Japan
| | - Masayuki Nashimoto
- RNA Therapeutics Division, Faculty of Medical Technology, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, 956-8603, Japan
| | | | - Kikuji Yamashita
- Division of Anatomy and Histology, Faculty of Medical Technology, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, 956-8603, Japan
| | - Takeo Iwata
- Department of Functional Morphology, Graduate School of Pharmaceutical Sciences, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, 956-8603, Japan.
- Department of Functional Morphology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Medical and Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata, 956-8603, Japan.
| |
Collapse
|
8
|
Trischitta V, Antonucci A, Adamski J, Prehn C, Menzaghi C, Marucci A, Di Paola R. GALNT2 expression is associated with glucose control and serum metabolites in patients with type 2 diabetes. Acta Diabetol 2024; 61:1007-1013. [PMID: 38627282 PMCID: PMC11329529 DOI: 10.1007/s00592-024-02280-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/19/2024] [Indexed: 08/09/2024]
Abstract
AIMS Aim of this study was to investigate in type 2 diabetes whether expression level of GALNT2, a positive modulator of insulin sensitivity, is associated with a metabolic signature. METHODS Five different metabolite families, including acylcarnitines, aminoacids, biogenic amines, phospholipids and sphingolipids were investigated in fasting serum of 70 patients with type 2 diabetes, by targeted metabolomics. GALNT2 expression levels were measured in peripheral white blood cells by RT-PCR. The association between GALNT2 expression and serum metabolites was assessed using false discovery rate followed by stepwise selection and, finally, multivariate model including several clinical parameters as confounders. The association between GALNT2 expression and the same clinical parameters was also investigated. RESULTS GALNT2 expression was independently correlated with HbA1c levels (P value = 0.0052), a finding that is the likely consequence of the role of GALNT2 on insulin sensitivity. GALNT2 expression was also independently associated with serum levels of the aminoacid glycine (P value = 0.014) and two biogenic amines phenylethylamine (P value = 0.0065) and taurine (P value = 0.0011). The association of GALNT2 expression with HbA1c was not mediated by these three metabolites. CONCLUSIONS Our data indicate that in type 2 diabetes the expression of GALNT2 is associated with several serum metabolites. This association needs to be further investigated to understand in depth its role in mediating the effect of GALNT2 on insulin sensitivity, glucose control and other clinical features in people with diabetes.
Collapse
Affiliation(s)
- Vincenzo Trischitta
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo Della Sofferenza, 71013, San Giovanni Rotondo, Foggia, Italy.
- Department of Experimental Medicine, Sapienza University, 00161, Rome, Italy.
| | - Alessandra Antonucci
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo Della Sofferenza, 71013, San Giovanni Rotondo, Foggia, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Singapore
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Cornelia Prehn
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Claudia Menzaghi
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo Della Sofferenza, 71013, San Giovanni Rotondo, Foggia, Italy
| | - Antonella Marucci
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo Della Sofferenza, 71013, San Giovanni Rotondo, Foggia, Italy
| | - Rosa Di Paola
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo Della Sofferenza, 71013, San Giovanni Rotondo, Foggia, Italy.
| |
Collapse
|
9
|
Šimon M, Mikec Š, Atanur SS, Konc J, Morton NM, Horvat S, Kunej T. Whole genome sequencing of mouse lines divergently selected for fatness (FLI) and leanness (FHI) revealed several genetic variants as candidates for novel obesity genes. Genes Genomics 2024; 46:557-575. [PMID: 38483771 PMCID: PMC11024027 DOI: 10.1007/s13258-024-01507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 02/25/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND Analysing genomes of animal model organisms is widely used for understanding the genetic basis of complex traits and diseases, such as obesity, for which only a few mouse models exist, however, without their lean counterparts. OBJECTIVE To analyse genetic differences in the unique mouse models of polygenic obesity (Fat line) and leanness (Lean line) originating from the same base population and established by divergent selection over more than 60 generations. METHODS Genetic variability was analysed using WGS. Variants were identified with GATK and annotated with Ensembl VEP. g.Profiler, WebGestalt, and KEGG were used for GO and pathway enrichment analysis. miRNA seed regions were obtained with miRPathDB 2.0, LncRRIsearch was used to predict targets of identified lncRNAs, and genes influencing adipose tissue amount were searched using the IMPC database. RESULTS WGS analysis revealed 6.3 million SNPs, 1.3 million were new. Thousands of potentially impactful SNPs were identified, including within 24 genes related to adipose tissue amount. SNP density was highest in pseudogenes and regulatory RNAs. The Lean line carries SNP rs248726381 in the seed region of mmu-miR-3086-3p, which may affect fatty acid metabolism. KEGG analysis showed deleterious missense variants in immune response and diabetes genes, with food perception pathways being most enriched. Gene prioritisation considering SNP GERP scores, variant consequences, and allele comparison with other mouse lines identified seven novel obesity candidate genes: 4930441H08Rik, Aff3, Fam237b, Gm36633, Pced1a, Tecrl, and Zfp536. CONCLUSION WGS revealed many genetic differences between the lines that accumulated over the selection period, including variants with potential negative impacts on gene function. Given the increasing availability of mouse strains and genetic polymorphism catalogues, the study is a valuable resource for researchers to study obesity.
Collapse
Affiliation(s)
- Martin Šimon
- Chair of Genetics, Animal Biotechnology and Immunology, Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, 1230, Slovenia.
| | - Špela Mikec
- Chair of Genetics, Animal Biotechnology and Immunology, Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, 1230, Slovenia
| | - Santosh S Atanur
- Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Janez Konc
- Laboratory for Molecular Modeling, National Institute of Chemistry, Ljubljana, 1000, Slovenia
| | - Nicholas M Morton
- The Queen's Medical Research Institute, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Simon Horvat
- Chair of Genetics, Animal Biotechnology and Immunology, Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, 1230, Slovenia
| | - Tanja Kunej
- Chair of Genetics, Animal Biotechnology and Immunology, Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, 1230, Slovenia.
| |
Collapse
|
10
|
Di Paola R, Marucci A, Mangiacotti D, Antonucci A, Fontana A, Wang X, Qi L, Menzaghi C, Trischitta V. Leveraging Genetics to Address the Role of GALNT2 on Atherogenic Dyslipidemia. Adv Biol (Weinh) 2023; 7:e2200319. [PMID: 36861373 DOI: 10.1002/adbi.202200319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/20/2023] [Indexed: 03/03/2023]
Abstract
Several studies have shown that downregulation of GALNT2 (Polypeptide N-Acetylgalactosaminyltransferase 2), encoding polypeptide N-acetylgalactosaminyltransferase 2, decreases high-density lipoprotein cholesterol (HDL-C) and increases triglycerides levels by glycosylating key enzymes of lipid metabolism, such as angiopoietin like 3, apolipoprotein C-III, and phospholipid transfer protein. GALNT2 is also a positive modulator of insulin signaling and action, associated with in vivo insulin sensitivity and during adipogenesis strongly upregulates adiponectin. Thus, the hypothesis that GALNT2 affects HDL-C and triglycerides levels also through insulin sensitivity and/or circulating adiponectin, is tested. In 881 normoglycemic individuals the G allele of rs4846914 SNP at the GALNT2 locus, known to associate with GALNT2 downregulation, is associated with low HDL-C and high values of triglycerides, triglycerides/HDL-C ratio, and theHomeostatic Model Assessment of insulin resistance HOMAIR (p-values = 0.01, 0.027, 0.002, and 0.016, respectively). Conversely, no association is observed with serum adiponectin levels (p = 0.091). Importantly, HOMAIR significantly mediates a proportion of the genetic association with HDL-C (21%, 95% CI: 7-35%, p = 0.004) and triglyceride levels (32%, 95% CI: 4-59%, p = 0.023). The results are compatible with the hypothesis that, besides the effect on key lipid metabolism enzymes, GALNT2 alters HDL-C and triglyceride levels also indirectly through a positive effect on insulin sensitivity.
Collapse
Affiliation(s)
- Rosa Di Paola
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, San Giovanni Rotondo, 71013, Italy
| | - Antonella Marucci
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, San Giovanni Rotondo, 71013, Italy
| | - Davide Mangiacotti
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, San Giovanni Rotondo, 71013, Italy
| | - Alessandra Antonucci
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, San Giovanni Rotondo, 71013, Italy
| | - Andrea Fontana
- Biostatistics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, San Giovanni Rotondo, 71013, Italy
| | - Xuan Wang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 1724, New Orleans, LA, 70112, USA
| | - Lu Qi
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 1724, New Orleans, LA, 70112, USA
| | - Claudia Menzaghi
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, San Giovanni Rotondo, 71013, Italy
| | - Vincenzo Trischitta
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, San Giovanni Rotondo, 71013, Italy
- Department of Experimental Medicine, Sapienza University, Piazzale Aldo Moro 5, Rome, 00185, Italy
| |
Collapse
|
11
|
Zhang J, Xue Z, Zhao Q, Zhang K, Zhou A, Shi L, Liu Y. RNA-Sequencing Characterization of lncRNA and mRNA Functions in Septic Pig Liver Injury. Genes (Basel) 2023; 14:genes14040945. [PMID: 37107704 PMCID: PMC10137529 DOI: 10.3390/genes14040945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
We assessed differentially expressed (DE) mRNAs and lncRNAs in the liver of septic pigs to explore the key factors regulating lipopolysaccharide (LPS)-induced liver injury. We identified 543 DE lncRNAs and 3642 DE mRNAs responsive to LPS. Functional enrichment analysis revealed the DE mRNAs were involved in liver metabolism and other pathways related to inflammation and apoptosis. We also found significantly upregulated endoplasmic reticulum stress (ERS)-associated genes, including the receptor protein kinase receptor-like endoplasmic reticulum kinase (PERK), the eukaryotic translation initiation factor 2α (EIF2S1), the transcription factor C/EBP homologous protein (CHOP), and activating transcription factor 4 (ATF4). In addition, we predicted 247 differentially expressed target genes (DETG) of DE lncRNAs. The analysis of protein-protein interactions (PPI) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway detected key DETGs that are involved in metabolic pathways, such as N-Acetylgalactosaminyltransferase 2 (GALNT2), argininosuccinate synthetase 1 (ASS1), and fructose 1,6-bisphosphatase 1 (FBP1). LNC_003307 was the most abundant DE lncRNA in the pig liver, with a marked upregulation of >10-fold after LPS stimulation. We identified three transcripts for this gene using the rapid amplification of the cDNA ends (RACE) technique and obtained the shortest transcript sequence. This gene likely derives from the nicotinamide N-methyltransferase (NNMT) gene in pigs. According to the identified DETGs of LNC_003307, we hypothesize that this gene regulates inflammation and endoplasmic reticulum stress in LPS-induced liver damage in pigs. This study provides a transcriptomic reference for further understanding of the regulatory mechanisms underlying septic hepatic injury.
Collapse
Affiliation(s)
- Jing Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhihui Xue
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qingbo Zhao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Keke Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ao Zhou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Liangyu Shi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
12
|
Di Paola R, Antonucci A, Marucci A, Trischitta V. On the emerging role of GALNT2 on intermediate metabolism and adipogenesis. Acta Diabetol 2022; 59:1255-1256. [PMID: 35729356 DOI: 10.1007/s00592-022-01913-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Rosa Di Paola
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo Della Sofferenza, Viale Cappuccini, 71013, San Giovanni Rotondo, FG, Italy.
| | - Alessandra Antonucci
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo Della Sofferenza, Viale Cappuccini, 71013, San Giovanni Rotondo, FG, Italy
| | - Antonella Marucci
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo Della Sofferenza, Viale Cappuccini, 71013, San Giovanni Rotondo, FG, Italy
| | - Vincenzo Trischitta
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo Della Sofferenza, Viale Cappuccini, 71013, San Giovanni Rotondo, FG, Italy.
- Department of Experimental Medicine, Sapienza University, Rome, Italy.
| |
Collapse
|
13
|
Effect of Sports Energy Drink on Fat Metabolism and Weight Loss of College Students. J FOOD QUALITY 2022. [DOI: 10.1155/2022/3978964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In order to solve the problem of fat metabolism and weight loss of college students, this paper puts forward a problem of the influence of sports energy drinks. Energy drink is a combination of sports drinks, energy drinks, and other special functional drinks (such as nutrient drinks with added vitamins and minerals; herbal drinks with Chinese herbal ingredients), a general term for a large category of drinks that provide specific health and nutritional functions for special groups of people. With the continuous improvement of people's consumption level and their constant attention to their own health, the consumption of energy drinks is also increasing. Energy drinks have become a new generation of drinks after carbonated drinks, drinking water, fruit and vegetable juice, and tea. At present, the total annual output of beverages in the world exceeds 300 billion liters, and functional beverages have become the fastest growing beverage varieties. Fat is the main energy supply material for endurance sports. The catabolism of fat during sports is the key link for the body to obtain energy. For the general population, abnormal fat metabolism is the main cause of obesity. In this paper, 10 healthy male and female college students without training experience were used to determine the maximum fat metabolism intensity FATmax. Based on this, the exercise prescription of maximum fat oxidation intensity for 8 weeks was formulated. The functional ability, maximum oxygen uptake, body fat percentage, quiet heart rate, blood pressure, and vital capacity before and after the experiment were measured to observe the exercise effect. The fitness effect of maximum fat metabolism intensity was studied to provide theoretical support for college students’ fitness exercise. The study found that there was no significant difference between boys and girls in the maximum fat oxidation rate and FATmax, and girls’ E. C. and running speed corresponding to FATmax were significantly lower than those of boys. After 8 weeks of exercise prescription exercise of maximum fat metabolism intensity, the E. C. and maximum oxygen uptake of boys and girls increased significantly; quiet heart rate, vital capacity index, and body fat percentage were significantly improved; and the changes in girls were more significant than boys. The results show that there is no gender difference in FATmax. The corresponding exercise intensity (7.22 METs for boys and 5.25 METs for girls) and running speed (9.73 km/h for boys and 8.65 km/h for girls) can be used as a reference for formulating college students’ fitness exercise prescriptions. The fitness exercise prescription based on FATmax can improve cardiopulmonary function and body composition, especially for girls. FATmax can be used as a reference standard for formulating fitness exercise prescriptions.
Collapse
|
14
|
Verzijl CRC, Oldoni F, Loaiza N, Wolters JC, Rimbert A, Tian E, Yang W, Struik D, Smit M, Kloosterhuis NJ, Fernandez AJ, Samara NL, Ten Hagen KG, Dalal K, Chernish A, McCluggage P, Tabak LA, Jonker JW, Kuivenhoven JA. A novel role for GalNAc-T2 dependent glycosylation in energy homeostasis. Mol Metab 2022; 60:101472. [PMID: 35304331 PMCID: PMC9019398 DOI: 10.1016/j.molmet.2022.101472] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 10/27/2022] Open
Abstract
OBJECTIVE GALNT2, encoding polypeptide N-acetylgalactosaminyltransferase 2 (GalNAc-T2), was initially discovered as a regulator of high-density lipoprotein metabolism. GalNAc-T2 is known to exert these effects through post-translational modification, i.e., O-linked glycosylation of secreted proteins with established roles in plasma lipid metabolism. It has recently become clear that loss of GALNT2 in rodents, cattle, nonhuman primates, and humans should be regarded as a novel congenital disorder of glycosylation that affects development and body weight. The role of GALNT2 in metabolic abnormalities other than plasma lipids, including insulin sensitivity and energy homeostasis, is poorly understood. METHODS GWAS data from the UK Biobank was used to study variation in the GALNT2 locus beyond changes in high-density lipoprotein metabolism. Experimental data were obtained through studies in Galnt2-/- mice and wild-type littermates on both control and high-fat diet. RESULTS First, we uncovered associations between GALNT2 gene variation, adiposity, and body mass index in humans. In mice, we identify the insulin receptor as a novel substrate of GalNAc-T2 and demonstrate that Galnt2-/- mice exhibit decreased adiposity, alterations in insulin signaling and a shift in energy substrate utilization in the inactive phase. CONCLUSIONS This study identifies a novel role for GALNT2 in energy homeostasis, and our findings suggest that the local effects of GalNAc-T2 are mediated through posttranslational modification of the insulin receptor.
Collapse
Affiliation(s)
- Cristy R C Verzijl
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Federico Oldoni
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Natalia Loaiza
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Justina C Wolters
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Antoine Rimbert
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| | - E Tian
- Developmental Glycobiology Section, NIDCR, National Institutes of Health, Bethesda, MD, United States
| | - Weiming Yang
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Dicky Struik
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marieke Smit
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Niels J Kloosterhuis
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Amy J Fernandez
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nadine L Samara
- Structural Biochemistry Unit, National Institutes of Health, Bethesda, MD, United States; Developmental Glycobiology Section, NIDCR, National Institutes of Health, Bethesda, MD, United States
| | - Kelly G Ten Hagen
- Developmental Glycobiology Section, NIDCR, National Institutes of Health, Bethesda, MD, United States
| | - Kruti Dalal
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Aliona Chernish
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Peggy McCluggage
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Lawrence A Tabak
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Johan W Jonker
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jan Albert Kuivenhoven
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|