1
|
Das A, Ghosh S, Sing S, Jana G, Basu A. Interaction, inhibition and disruption of lysozyme fibrillar aggregates by the plant alkaloid berberine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 335:125965. [PMID: 40058085 DOI: 10.1016/j.saa.2025.125965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/11/2025] [Accepted: 02/26/2025] [Indexed: 03/24/2025]
Abstract
This study investigated the interaction and impact of berberine, a pharmacologically important natural alkaloid, on lysozyme amyloidosis with the aim to develop effective anti-amyloidogenic agents. Interaction between berberine and lysozyme was analyzed using both theoretical and experimental tools to unleash its anti-amyloidogenic potency. The intrinsic fluorescence of lysozyme was quenched by berberine through static mechanism, indicating the presence of single binding site predominantly involving TRP residues. Complexation with berberine caused microenvironmental and conformational changes in lysozyme as shown by synchronous and 3D fluorescence spectroscopic analysis. Molecular docking and dynamic simulation study revealed the probable binding site and pharmacokinetics involved in lysozyme-berberine complexation. Berberine significantly inhibited lysozyme fibrillation which was confirmed by Thioflavin T, Congo red, Nile red and ANS assays. FTIR and circular dichroism studies revealed that berberine reduced β-sheet content of lysozyme fibrillar samples, indicating inhibition of fibril formation. Additionally, berberine can degrade pathogenic mature fibril as well. Amyloid inhibition and defibrillation was visualised by atomic force microscopy.
Collapse
Affiliation(s)
- Arindam Das
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721102, India
| | - Sougata Ghosh
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721102, India
| | - Shukdeb Sing
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721102, India
| | - Gouranga Jana
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721102, India
| | - Anirban Basu
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721102, India.
| |
Collapse
|
2
|
Tshiyoyo KS, Rabbad A, Yusuf AA, Malgas S. Combination of citrus peel-derived essential oils with acarbose to inhibit amylolytic enzymes - A potential type II diabetes treatment approach. Int J Biol Macromol 2025; 306:141504. [PMID: 40015399 DOI: 10.1016/j.ijbiomac.2025.141504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/05/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
Type 2 diabetes (T2D) can be managed by inhibiting amylolytic enzymes, α-amylase and α-glucosidase, reducing the impact of dietary carbohydrates on blood glucose elevation. Acarbose, a current α-glucose inhibitor (AGI), has excessive α-amylase inhibition, resulting in side effects associated with large amounts of undigested starch being fermented in the colon. This study evaluated the AGI efficacy of citrus peel-derived essential oils, where they were first tested in silico against the target amylolytic enzymes, and then their AGI activity was tested in vitro. The synergistic effects of the essential oils with acarbose against amylolytic enzymes were also determined. In silico and in vitro data of the efficacy of the essential oils as AGIs correlated positively; lower Ki values correlated with more negative binding affinity. Furthermore, molecular dynamic simulations of the most potent compounds were evaluated and indicated relative flexibility and stability induced upon ligand interactions with the protein. The standard AGI drug, acarbose, had the lowest Ki (0.10 ± 0.01 mg/mL) and more negative binding affinity (-7.5 kcal/mol) than the essential oils for α-glucosidase; however, the essential oils only showed potent inhibition against α-glucosidase, with the most potent essential oils being valencene (Ki = 0.33 ± 0.04 mg/mL), carveol (Ki = 0.53 ± 0.02 mg/mL) and geraniol (Ki = 0.56 ± 0.02 mg/mL). The essential oils and acarbose displayed competitive inhibition of α-glucosidase. Furthermore, a combination of acarbose with carveol or geraniol at a ratio of 12.5 μg/mL: 2 mg/mL exhibited antagonistic (CI > 10) and synergistic (CI < 0.7) effects on α-amylase and α-glucosidase inhibition, respectively. Carveol or geraniol can be considered as potentially therapeutic in managing T2D, as it may display lowered AGI-associated side effects.
Collapse
Affiliation(s)
- Kadima Samuel Tshiyoyo
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Ali Rabbad
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Abdullahi Ahmed Yusuf
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Samkelo Malgas
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
3
|
Kumar SA, Selvaa Kumar C, Dsouza N. Bitter taste receptors establish a stable binding affinity with the SARS-CoV-2-spike 1 protein akin to ACE2. J Biomol Struct Dyn 2025; 43:3845-3858. [PMID: 38189335 DOI: 10.1080/07391102.2023.2300128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 12/23/2023] [Indexed: 01/09/2024]
Abstract
COVID-19 is caused by the highly contagious SARS-CoV-2 virus, which originated in Wuhan, China, resulting in the highest worldwide mortality rate. Gustatory dysfunction is common among individuals infected with the Wild-type Wuhan strain. However, there are no reported cases of gustatory dysfunction among patients infected with the mutant delta variant. The reason behind this remains elusive to date. This in-silico-based study aims to unravel this clinical factor by evaluating the overall binding affinity of predominant bitter taste receptors associated with gustatory function (T2R-4, 10, 14, 19, 31, 38, 43, and 46) with the Receptor Binding Domain (RBD) of spike 1 (S1) protein of Wuhan (Wild)/delta-SARS-CoV-2 (mut1-T478K; mut2-E484K) variants. Based on docking and MM/PBSA free binding energy scores, the Wild RBD showed a stronger interaction with T2R-46 compared to the ACE2 protein. However, both delta variant mutants (mut1 and mut2) could not establish a stronger binding affinity with bitter taste receptor proteins, except for T2R-43 against mut1. In conclusion, the delta variants could not establish a better binding affinity with bitter taste receptors, contradicting the Wild variant that determines the severity of gustatory dysfunction among patients exposed to the delta and Wild SARS-CoV-2 variants. The study's inference also proposes T2R-46 as an alternate binding receptor target for RBD-S1 of Wild SARS-CoV-2, augmenting its virulence in all functional organs with compromised α-gustducin interaction and bitter sensitization. This in-silico-based study needs further wet-lab-based validation for a better understanding of the role of T2R-46-based viral entry in the human host.
Collapse
Affiliation(s)
- Senthil Arun Kumar
- Department of Biotechnology, Parul Institute of Technology, Parul University, Vadodara, Gujarat, India
| | - C Selvaa Kumar
- School of Biotechnology and Bioinformatics, D. Y. Patil Deemed to Be University, Sector-15, CBD Belapur, Navi Mumbai, India
| | - Norine Dsouza
- Department of Biotechnology, St. Xavier's College, Mumbai, India
| |
Collapse
|
4
|
Shahrior R, Tamkin S, Khan MB, Meraj AJ, Bhuiyan H. In-silico investigation integrated with machine learning to identify potential inhibitors targeting AKT2: Key driver of cancer cell progression and metastasis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 267:108793. [PMID: 40305999 DOI: 10.1016/j.cmpb.2025.108793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 04/13/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND AND OBJECTIVE In search of a key driver for the invasive growth of cancer metastasis, AKT2 is found to be exceptionally expressed in colorectal cancer and its metastasis. Again, exceeding genomic arrangements of AKT2 can be held responsible for HGSC (High-grade serous ovarian cancer) and breast cancer cell metastasis. FDA-approved capivasertib, a potential drug targeting the AKT signaling pathway, has a few side effects such as plausible alterations of liver function and gastrointestinal issues. Hence, this research aims to detect compounds with higher drug potency for selective AKT2 inhibition to encounter the incidence of different types of cancer cell metastasis. METHODS Eight machine-learning models were engaged to classify active and inactive drug candidates among 1148 collected compounds from the CHEMBL database. Potential drug candidates with greater IC50 value and no Lipinski violations were then addressed to molecular docking and molecular dynamics simulation using PyRx, AutoDock Vina and Desmond package. RESULTS From docking studies, three of the initial drug candidates provided greater binding affinities within a range from -10.9 to -9.8 kcal/mol, comparable to that of Capivasertib and backed up by post-docking MM/GBSA analysis. Again, the prediction of pharmacokinetic properties and bioactivity scores of drug candidates revealed their drug-likeliness and safer ADMET profiles for future clinical trials. Finally, 100 ns MD simulation computation for these lead compounds exhibited greater stability and drug potency during interactions with AKT2 protein, followed by PCA and DCCM analysis. CONCLUSION However, future in-vivo research can ascertain whether our proposed drug candidates can pass the standard clinical trials as publicly accessible novel drug targets.
Collapse
Affiliation(s)
- Rahat Shahrior
- Department of Biomedical Engineering, Khulna University of Engineering and Technology, Khulna 9203, Bangladesh
| | - Salwa Tamkin
- Department of Computer Science and Engineering, BRAC University, Kha 224, Bir Uttam Rafiqul Islam Avenue, Merul Badda, Dhaka, 1212, Bangladesh
| | - Mohammad Badhruddouza Khan
- Department of Biomedical Engineering, Khulna University of Engineering and Technology, Khulna 9203, Bangladesh
| | - Ahmed Jebail Meraj
- Department of Biomedical Engineering, Khulna University of Engineering and Technology, Khulna 9203, Bangladesh
| | - Hanif Bhuiyan
- Data Scientist, Performance & Analytics Group, City of Gold Coast, Bundall, QLD 4217, Australia.
| |
Collapse
|
5
|
Kącka-Zych A, Zeroual A, Syed A, Bahkali AH. Docking Survey, ADME, Toxicological Insights, and Mechanistic Exploration of the Diels-Alder Reaction Between Hexachlorocyclopentadiene and Dichloroethylene. J Comput Chem 2025; 46:e70092. [PMID: 40200797 DOI: 10.1002/jcc.70092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/24/2025] [Accepted: 03/16/2025] [Indexed: 04/10/2025]
Abstract
The Diels-Alder (DA) reaction between hexachlorocyclopentadiene and 1,2-dichloroethylene has been studied using the Molecular Electron Density Theory (MEDT) through Density Functional Theory (DFT) calculations at the B3LYP/6-31G(d) level. The electronic structure of the reagents has been characterized through the electron localization function (ELF) and the conceptual DFT (CDFT). The DA reaction of hexachlorocyclopentadiene with 1,2-dichloroethylene proceeds via a synchronous or low asynchronous one-step mechanism. Based on the conducted research, a two-step mechanism with a biradical intermediate was completely ruled out. Bonding Evolution Theory (BET) study of the DA reaction shows that this reaction is topologically characterized by nine different phases. The reaction begins with the rupture of the double bonds in substrate molecules. Formation of the first CC single bond takes place in phase VII, while the second CC single bond takes place in phase IX. Formation of these two single bonds takes place by sharing the nonbonding electron densities of the two pairs of pseudoradical centers. In addition, this study evaluates some ligands as potential HIV-1 inhibitors. Docking results identified 5 and 5-F as the most promising candidates, surpassing AZT in theoretical affinity. ADME analysis revealed limitations in solubility and absorption for compounds 3, 4, and 5, while 5-F showed better solubility but low absorption. Toxicity concerns around 5-F suggest the need for risk management, while the other compounds require further safety assessment.
Collapse
Affiliation(s)
- Agnieszka Kącka-Zych
- Department of Organic Chemistry and Technology, Cracow University of Technology, Cracow, Poland
| | - Abdellah Zeroual
- Molecular Modeling and Spectroscopy Research Team, Department of Chemistry, Faculty of Sciences, Chouaïb Doukkali University, El Jadida, Morocco
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Cai Y, Huang G, Ren M, Chai Y, Huang X, Yan T. Synthesizing network pharmacology, bioinformatics, and in vitro experimental verification to screen candidate targets of Salidroside for mitigating Alzheimer's disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4539-4558. [PMID: 39503755 DOI: 10.1007/s00210-024-03555-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/19/2024] [Indexed: 04/10/2025]
Abstract
Alzheimer's disease (AD) is a neurological disorder leading to cognitive deficits. Salidroside (Sal), a primary bioactive ingredient extracted from the roots of Rhodiola rosea L., has potent neuroprotective effects in AD. However, studies on potential targets for Sal-anchored AD are limited. In this study, we combined network pharmacology, bioinformatics, and experimental validation to identify potential targets of Sal treating AD. First, we screened 10 pyroptosis-related genes (PRGs) in Sal and AD using public databases. Then, we used Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes enrichment analysis to explore the biological functions of the shared PRGs (Sal and AD). This finding exhibited that pathways linked to inflammation, like the nucleotide oligomerization domain (NOD)-like receptors signaling pathway, are important for Sal to help fight AD. The GeneMANIA functional results subsequently revealed an association between AD and the processes of inflammasome complex and inflammatory response. Additionally, nine hub genes were identified in the protein-protein interaction network of these shared PRGs. Subsequent analysis of the genes and phenotypes confirmed that these nine hub genes were directly correlated with AD. Subsequently, an in vitro AD model was created using rat adrenal pheochromocytoma cell line (PC12) cells induced by amyloid β-peptide (Aβ) 25-35 (20 µM). Sal significantly reduced the pyroptosis caused by Aβ 25-35 in PC12 cells and decreased the expression levels of IL-1β, CASP1, IL-18, PYCARD, and NLRP3. Furthermore, molecular docking and molecular dynamics simulations confirmed that Sal could stably bind to NLRP3. Druggability analysis revealed that Sal had excellent druggability. These results demonstrated that Sal could alleviate AD by targeting IL-1β, CASP1, IL-18, PYCARD, and NLRP3 to regulate the NLRP3-mediated pyroptosis signaling pathway.
Collapse
Affiliation(s)
- Yawen Cai
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guiqin Huang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Menghui Ren
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuhui Chai
- Department of Pharmacy, Shanghai Changhai Hospital, Second Military University, Shanghai, 200433, China
| | - Xi Huang
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Tianhua Yan
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
7
|
Iqbal MW, Haider SZ, Nawaz MZ, Irfan M, Al-Ghanim KA, Sun X, Yuan Q. Molecular simulations guided drugs repurposing to inhibit human GPx1 enzyme for cancer therapy. Bioorg Chem 2025; 157:108279. [PMID: 39983407 DOI: 10.1016/j.bioorg.2025.108279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 02/23/2025]
Abstract
Overexpression of the antioxidant enzyme glutathione peroxidase-1 (GPx1) is associated with different cancer types. Inhibitors of GPx1, including mercaptosuccinic acid and pentathiepins derivatives, have been proposed previously and investigated as potent drugs to combat cancer. However, these compounds often lack specificity and demonstrate off-target effects, which necessitates the need for more targeted, non-toxic, and effective GPx1 inhibitors. This study utilized molecular docking and dynamic simulations based computational pipeline to repurpose drugs, approved by The Food and Drug Administration [1], as potent GPx1 inhibitors from a library containing 1615 synthetic compounds. The drug suitability and stability of the selected compounds were further investigated using ADMET, bioactivity probability, Molecular Mechanics-Generalized Born Surface Area (MM-GBSA), and Molecular Mechanics-Poisson-Boltzmann Surface Area (MM-PBSA) analyses. Initially, 13 compounds were virtually screened based on the Triangle Matcher algorithm, docking modules, and GBVI/WSA dG scoring function. Of these 13 screened compounds, three compounds, including dronedarone, nilotinib, and thonzonium, were rigorously selected based on their ADMET profiles, physicochemical properties, drug suitability, and stability and were subjected to Molecular Dynamic (MD) simulations. MD simulations further validated the stability of the dronedarone, nilotinib, and thonzonium complexes with GPx1 and provided further insights into the mechanism of their interaction. The in-silico approaches used herein revealed thonzonium, dronedarone, and nilotinib as potent GPx1 inhibitors.
Collapse
Affiliation(s)
- Muhammad Waleed Iqbal
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Syed Zeeshan Haider
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Muhammad Zohaib Nawaz
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Muhammad Irfan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
8
|
Sree Agash SG, Rajasekaran R. Selection of alkaliphilic Bacillus pectate lyases based on reactivity and pH-dependent stability in simulated environment for industrial applications. Carbohydr Res 2025; 549:109372. [PMID: 39742802 DOI: 10.1016/j.carres.2024.109372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/11/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
Pectate lyases, known for their alkaliphilic nature, are ideal for industrial applications that require specific pH conditions, particularly in industries such as textiles and pulp extraction. These enzymes, primarily from the polysaccharide lyase family 1 (PL1) of different microbial sources, play a vital role in polysaccharide degradation. Given the potent pectinolytic activity of Bacillus pectate lyases, targeting these enzymes is crucial for identifying the most effective candidates. To address challenges in enzyme selection, we examined the initial catalytic interactions of Bacillus species N16-5 (sp_N16-5), Bacillus species TS-47 (sp_TS-47), and Bacillus species subtilis strain 168 (sub_168) with pectin using molecular docking, focusing on the binding of pectin to the active-site tunnel region. We employed steered molecular dynamics simulations to analyze the disassociation period of pectin, where sp_N16-5 demonstrated higher compactness and we applied a semi-empirical quantum mechanical approach for reaction modeling. Our analysis through NPT ensemble-based dynamics analysis emphasised the structural stability and compactness required to withstand high-production conditions. We identified Bacillus species N16-5 (sp_N16-5) as the most efficient pectinolytic lyase, as it showed strong affinity, reactivity and higher interaction, also sp_N16-5 shows its enthalpy of reaction at 9 kcal/mol with a lower activation energy barrier at 27 kcal/mol which is closest to the typical range among the chosen Bacillus pectate lyase, enabling rapid pectin conversion alongside low energy input. Outcomes from the pH-dependent molecular dynamics revealed the sp_N16-5 to possess a greater structural endurability, comparatively, this study streamlines the screening process for selecting optimal Bacillus pectate lyases through in-silico investigation for industrial applications.
Collapse
Affiliation(s)
- S G Sree Agash
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT Deemed to Be University), Vellore, Tamil Nadu, India
| | - R Rajasekaran
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT Deemed to Be University), Vellore, Tamil Nadu, India.
| |
Collapse
|
9
|
Pandey AR, Kumar A, Shrivastava NK, Singh J, Yadav S, Sonkar AB, Kumar D, Kumar R, Saeedan AS, Ansari MN, Aldossary SA, Akhter Y, Kaithwas G. Advancing siRNA Therapeutics targeting MCT-4: A Multifaceted approach integrating Arithmetical Designing, Screening, and molecular dynamics validation. Int Immunopharmacol 2025; 147:113980. [PMID: 39798472 DOI: 10.1016/j.intimp.2024.113980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/15/2025]
Abstract
Monocarboxylate transporter 4 (MCT-4) is involved in various metabolic processes which are crucial in maintaining cellular pH and energy metabolism, and thus influence the tumor microenvironment. The study is aimed to rationally design effective Small interfering RNA (siRNA) that can silence MCT-4. We utilized a comprehensive workflow integrating multiple tools such as siDirect version 2.0, Oligowalk and i-score designer, to evaluate sequence features and predict target site accessibility, Guanine-Cytosine (GC) content and thermodynamic stability. Five (M1, M2, M3, M4 and M5) siRNAs sequences were retrived and subjected to further scrutiny on the account of off-target elimation, sequence conservation, secondary structure formation, and thermodynamic properties. The M1 demonstrated off targets and the M2 sequence showed secondry conformation and therefore M3, M4 and M5 were considered for further evaluation. Additionally, molecular docking and simulations (50 ns) were conducted with human Argonaute 2 protein (h-Arg-2). The post- molecular dynamics (MD) analysis revealed M4 (5'UUGAAGAAGACACUGACGG3') as a most appropriate siRNA candidate agsint MCT-4 on the basis of Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), and H-Bond results. The Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) analysis was also performed to further validate the selected siRNA candidates, which further affirmed M4 (5'UUGAAGAAGACACUGACGG3') as an potential candidate for future in-vitro and in-vivo evaluation.
Collapse
Affiliation(s)
- Aadya Raj Pandey
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Anurag Kumar
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Neeraj Kumar Shrivastava
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Jyoti Singh
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Sneha Yadav
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Archana Bharti Sonkar
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Dharmendra Kumar
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Rohit Kumar
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Abdulaziz S Saeedan
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Mohd Nazam Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Sara A Aldossary
- Department of Pharmaceutical Sciences, Clinical Pharmacy College, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Yusuf Akhter
- Department of Biotechnology, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road Lucknow, 226025, India
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226025, India.
| |
Collapse
|
10
|
Bisht A, Nayal A, Tewari D, Kumar S, Chandra S. Investigating the aging-modulatory mechanism of Rasayana Churna, an Ayurvedic herbal formulation, using a computational approach. Biogerontology 2025; 26:53. [PMID: 39907831 DOI: 10.1007/s10522-025-10188-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025]
Abstract
This study investigates the impact and mechanisms of Rasayana Churna, an Ayurvedic poly-herbal formulation, in treating aging-related disorders through text mining, network pharmacology, molecular docking simulation, Super-MMPBSA, and density functional theory. The text mining of Rasayana Churna highlighted the diverse therapeutic potential of Phyllanthus emblica, Tinospora cordifolia, and Tribulus terrestris in managing aging-related disorders through their antidiabetic, antioxidant, and anti-inflammatory properties. Using network pharmacology, 17 bioactive compounds and 137 corresponding potential targets of Rasayana Churna were identified and used to construct protein-protein interaction and hub gene networks. Key targets such as AKT1, BCL2, ESR1, and GSK3B were linked to aging-related pathways, with GO and KEGG enrichment analyses highlighting processes like apoptosis, oxidative stress response, and pathways like PI3K-Akt signaling. Molecular docking analysis identified 14 compounds with strong binding affinity toward the key aging target AKT1. Three bioactive compounds-Kaempferol, N-Caffeoyltyramine, and Multifidol glucoside-exhibited superior stability and binding interactions in MD simulations, confirmed by RMSD, RMSF, Rg, hydrogen bonding, SASA, PCA, and free energy landscape analysis. Super-MMPBSA (last 30 ns) calculation was performed to analyze dynamic behavior and protein-ligand stability, revealing significantly lower ΔG binding free energy values for the three hit compounds (- 177.871, - 164.855, - 199.649 kJ/mol, respectively) compared to the AKT1-reference complex (- 109.463 kJ/mol). DFT analysis revealed favorable electronic properties and kinetic stability for these compounds. Integrating traditional Ayurvedic knowledge with computational techniques suggests Rasayana Churna could prevent and manage aging-related conditions. However, further in vitro, in vivo, and clinical studies are needed to validate its aging-modulatory potential.
Collapse
Affiliation(s)
- Amisha Bisht
- Department of Botany, Pt. Badridutt Pandey Campus Bageshwar, Soban Singh Jeena University, Almora, Uttarakhand, 263601, India
| | - Anita Nayal
- Computational Biology and Biotechnology Laboratory, Department of Botany, Soban Singh Jeena University, Almora, Uttarakhand, 263601, India
| | - Disha Tewari
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, 263136, India
| | - Sanjay Kumar
- Department of Botany, Hukum Singh Bora Govt. P. G. College, Someshwar, Uttarakhand, 263637, India
| | - Subhash Chandra
- Computational Biology and Biotechnology Laboratory, Department of Botany, Soban Singh Jeena University, Almora, Uttarakhand, 263601, India.
| |
Collapse
|
11
|
Wani MJ, Zofair SFF, Salman KA, Moin S, Hasan A. Aloin reduces advanced glycation end products, decreases oxidative stress, and enhances structural stability in glycated low-density lipoprotein. Int J Biol Macromol 2025; 289:138823. [PMID: 39694362 DOI: 10.1016/j.ijbiomac.2024.138823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Glycation of proteins has been linked to several cardiovascular diseases, including atherosclerosis and diabetes mellitus. Various natural compounds have been explored for their anti-glycating ability. Aloin is the major anthraquinone glycoside, acquired from the Aloe species. This study focuses on aloin's anti-glycating and anti-oxidative potential on glycated low-density lipoprotein (LDL). Fluorescence studies related to anti-glycation showed that aloin significantly reduced the formation of fluorescent advanced glycation end-products (AGEs), hydrophobic environment, and fibrillar aggregates in glycated LDL. A decrease in oxidative stress markers was also seen in glycated LDL in the presence of aloin. Circular dichroism spectra depicted the positive role aloin played in restoring the secondary structure of LDL. Mode of binding between aloin and LDL were obtained through spectroscopic measurements, which revealed significant binding characteristics. Molecular docking studies confirmed the interaction with a binding energy of -8.5 kcal/mol, indicating a strong affinity between aloin and LDL. Furthermore, the stability of the aloin-LDL complex was validated by molecular dynamics simulations, showing that the secondary structure of LDL remained largely unchanged throughout the simulation period, indicating high stability of the complex. These findings open up new possibilities for using aloin in therapeutic applications aimed at cardiovascular health, potentially leading to the development of novel treatments or preventive measures for atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Mohd Junaid Wani
- Department of Biochemistry, J.N.M.C., Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, U.P., India.
| | - Syeda Fauzia Farheen Zofair
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Khushtar Anwar Salman
- Department of Biochemistry, J.N.M.C., Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Shagufta Moin
- Department of Biochemistry, J.N.M.C., Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Asif Hasan
- Department of Cardiology, J.N.M.C., Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, U.P., India
| |
Collapse
|
12
|
Chatterjee C, Ghosh P, Singh R, Kumar A, Singh SK. Integrated application of target-based and ligand-based drug-designing approaches for the identification of novel caspase-6 inhibitors. J Biomol Struct Dyn 2024:1-15. [PMID: 39671711 DOI: 10.1080/07391102.2024.2440149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/10/2024] [Indexed: 12/15/2024]
Abstract
Caspase-6 (CASP6) is an effector caspase that has been marked to possess various pathological attributes associated with neurodegeneration. It is widely expressed in the neurodegenerative brain and peripheral tissues. It plays a vital role in apoptotic cell death and also performs non-apoptotic functions like axon pruning which contribute to the degeneration of neurons. Increment in active CASP6 levels in the cerebrospinal fluid has been observed during inflammation and has been linked to the early onset of Alzheimer's disease (AD). In the current study, a novel CASP6 inhibitor was identified with the help of integrated target-based and ligand-based drug-designing approaches. Various molecular features of US9 (PDB ID 8EG6) were used to generate models. The pharmacophore models were evaluated using the EF value, GH score, and percentage yield to select the best-suited model. The best model was used to screen the ZINC-15 database to obtain virtual hits. The undesirable compounds were eliminated using various nodes in KNIME workflow. The resulting compounds were further subjected to docking-based virtual screening (DBVS) to find the lead compounds. Further, the molecular docking studies were carried out in three stages, followed by pharmacokinetic property prediction and toxicity studies. The top two virtual hits, i.e. ZINC000012563650 and ZINC000069415222, were considered for molecular dynamics simulation studies. Compound ZINC000069415222 was found to possess better stability, drug-like properties, and lower toxicity under simulated conditions. Thus, ZINC000069415222 was identified as a potential CASP6 inhibitor that could be further explored experimentally as an anti-AD drug.
Collapse
Affiliation(s)
- Chayanika Chatterjee
- Pharmaceutical Chemistry Research Laboratory-I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Powsali Ghosh
- Pharmaceutical Chemistry Research Laboratory-I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ravi Singh
- Pharmaceutical Chemistry Research Laboratory-I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory-I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sushil Kumar Singh
- Pharmaceutical Chemistry Research Laboratory-I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
13
|
Ubaid A, Shakir M, Ali A, Khan S, Alrehaili J, Anwer R, Abid M. Synthesis and Structure-Activity Relationship (SAR) Studies on New 4-Aminoquinoline-Hydrazones and Isatin Hybrids as Promising Antibacterial Agents. Molecules 2024; 29:5777. [PMID: 39683935 DOI: 10.3390/molecules29235777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
In response to the escalating crisis of antimicrobial resistance (AMR), there is an urgent need to research and develop novel antibiotics. This study presents the synthesis and assessment of innovative 4-aminoquinoline-benzohydrazide-based molecular hybrids bearing aryl aldehydes (HD1-23) and substituted isatin warheads (HS1-12), characterized using multispectroscopic techniques with high purity confirmed by HRMS. The compounds were evaluated against a panel of clinically relevant antibacterial strains including the Gram-positive Enterococcus faecium, Bacillus subtilis, and Staphylococcus aureus and a Gram-negative Pseudomonas aeruginosa bacterial strain. Preliminary screenings revealed that several test compounds had significant antimicrobial effects, with HD6 standing out as a promising compound. Additionally, HD6 demonstrated impressively low minimum inhibitory concentrations (MICs) in the range of (8-128 μg/mL) against the strains B. subtilis, S. aureus and P. aeruginosa. Upon further confirmation, HD6 not only showed bactericidal properties with low minimum bactericidal concentrations (MBCs) such as (8 μg/mL against B. subtilis) but also displayed a synergistic effect when combined with the standard drug ciprofloxacin (CIP), highlighted by its FICI value of (0.375) against P. aeruginosa, while posing low toxicity risk. Remarkably, HD6 also inhibited a multidrug-resistant (MDR) bacterial strain, marking it as a critical addition to our antimicrobial arsenal. Computation studies were performed to investigate the possible mechanism of action of the most potent hybrid HD6 on biofilm-causing protein (PDB ID: 7C7U). The findings suggested that HD6 exhibits favorable binding free energy, which is supported by the MD simulation studies, presumably responsible for the bacterial growth inhibition. Overall, this study provides a suitable core for further synthetic alterations for their optimization as an antibacterial agent.
Collapse
Affiliation(s)
- Ayesha Ubaid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohd Shakir
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Asghar Ali
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
- Clinical Biochemistry Laboratory, Department of Biochemistry, School of Chemical and Life Science, Jamia Hamdard, New Delhi 110062, India
| | - Sobia Khan
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Jihad Alrehaili
- Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317-4233, Saudi Arabia
| | - Razique Anwer
- Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317-4233, Saudi Arabia
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
14
|
Abdalla M, Abdelkhalig SM, Edet UO, Zothantluanga JH, Umoh EA, Moglad E, Nkang NA, Hader MM, Alanazi TMR, AlShouli S, Al-Shouli S. Molecular dynamics-based computational investigations on the influence of tumor suppressor p53 binding protein against other proteins/peptides. Sci Rep 2024; 14:29871. [PMID: 39622863 PMCID: PMC11612205 DOI: 10.1038/s41598-024-81499-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024] Open
Abstract
The tumor-suppressing p-53 binding protein is a crucial protein that is involved in the prevention of cancer via its regulatory effect on a number of cellular processes. Recent evidence indicates that it interacts with a number of other proteins involved in cancer in ways that are not fully understood. An understanding of such interactions could provide insights into novel ways p53 further exerts its tumour prevention role via its interactions with diverse proteins. Thus, this study aimed to examine the interactions of the p53 protein with other proteins (peptides and histones) using molecular simulation dynamics. We opted for a total of seven proteins, namely 2LVM, 2MWO, 2MWP, 4CRI, 4 × 34, 5Z78, and 6MYO (control), and had their PBD files retrieved from the protein database. These proteins were then docked against the p-53 protein and the resulting interactions were examined using molecular docking simulations run at 500 ns. The result of the interactions revealed the utilisation of various amino acids in the process. The peptide that interacted with the highest number of amino acids was 5Z78 and these were Lys10, Gly21, Trp24, Pro105, His106, and Arg107, indicating a stronger interaction. The RMSD and RMSF values indicate that the complexes formed were stable, with 4CRI, 6MYO, and 2G3R giving the most stable values (less than 2.5 Å). Other parameters, including the SASA, Rg, and number of hydrogen bonds, all indicated the formation of fairly stable complexes. Our study indicates that overall, the interactions of 53BP1 with p53K370me2, p53K382me2, methylated K810 Rb, p53K381acK382me2, and tudor-interacting repair regulator protein indicated interactions that were not as strong as those with the histone protein. Thus, it could be that P53 may mediate its tumour suppressing effect via interactions with amino acids and histone.
Collapse
Affiliation(s)
- Mohnad Abdalla
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University, Jinan, China.
| | - Sozan M Abdelkhalig
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh, 11597, Saudi Arabia
| | - Uwem O Edet
- Department of Biological (Microbiology), Faculty of Natural and Applied Sciences, Arthur Jarvis University, Akpabuyo, Cross River State, Nigeria.
| | - James H Zothantluanga
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Ekementeabasi Aniebo Umoh
- Department of Human Physiology, Faculty of Basic Medical Sciences, Arthur Jarvis University, Akpabuyo, Cross River State, Nigeria
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, P.O. Box 173, Alkharj, 11942, Saudi Arabia
| | - Nkoyo Ani Nkang
- Science Laboratory Department, Faculty of Biological Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| | - Meshari M Hader
- Dietary Department, Dr. Soliman Fakeeh Hospital, Jeddah, Saudi Arabia
| | | | - Sawsan AlShouli
- Pharmacy Department, Security Forces Hospital, Riyadh, 11481, Saudi Arabia
| | - Samia Al-Shouli
- Immunology Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh, 11461, Saudi Arabia
| |
Collapse
|
15
|
Larga JGB, Munabirul WT, Moin AT, Sarwar Jyoti MM, Nasrin MS, Al Mueid MA, Ahad A, Parvez A, Yeasmin MS, Barhate RM, Patil RB, Bonifacio MC. Cutting-edge Bioinformatics strategies for synthesizing Cyclotriazadisulfonamide (CADA) analogs in next-Generation HIV therapies. Sci Rep 2024; 14:29764. [PMID: 39613787 PMCID: PMC11607333 DOI: 10.1038/s41598-024-77106-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/21/2024] [Indexed: 12/01/2024] Open
Abstract
Cyclotriazadisulfonamide (CADA) is a macrocyclic compound known for its unique mechanism in inhibiting HIV infection by downregulating the CD4 T-cell receptor, a crucial entry point for the virus. Unlike other antiretrovirals, CADA exhibits activity against a wide range of HIV strains, as all HIV variants require CD4 binding for infection. Furthermore, CADA has shown a synergistic effect with clinically approved anti-HIV drugs, offering potential for enhanced therapeutic strategies (Vermeire & Schols, [65]). One proposed mechanism for CADA's inhibition of the CD4 receptor involves blocking the gates of the Sec61 channel, thereby preventing its translocation. However, CADA suffers from poor solubility and bioavailability. To address this, the study aimed to design CADA analogs with improved binding to the Sec61 channel, enhanced bioavailability, and reduced toxicity. The analogs were designed using SeeSAR, with Avogadro and Meeko used for 3D configuration and pseudoatom placement, respectively. AutoDock Vina version 1.2.4 was employed to predict the binding energies of these analogs. Of the 113 analogs designed, 93 demonstrated a more negative binding energy to the Sec61 channel compared to CADA. Structure-binding energy analyses were done to the top-binding analogs to show favorable structural modifications. Enzyme-ligand interactions were analyzed to elucidate the forces contributing to these binding energies. Additionally, 33 of the 113 analogs were deemed bioavailable using a bioavailability criteria specific for macrocycles. Toxicity predictions using PASS Online and StopTox identified analogs JGL023, JGL024, JGL032, and JGL047 as potential drug candidates. Molecular dynamics simulations using Gromacs-2020.4 revealed that JGL023 and JGL032 exhibited the most favorable binding to the Sec61 channel, as determined by evaluating ligand and residue flexibility, compactness, contact frequency, motion pathways, free energy, and other relevant parameters. Synthetic routes for these four analogs were proposed for future studies. The results of this study offer a new perspective on developing drugs to inhibit HIV entry.
Collapse
Affiliation(s)
- Jay Gabriel B Larga
- Department of Biochemistry, College of Allied Sciences, De La Salle Medical and Health Sciences Institute, City of Dasmariñas, Cavite, 4114, Philippines
| | - Wrynan T Munabirul
- Department of Biochemistry, College of Allied Sciences, De La Salle Medical and Health Sciences Institute, City of Dasmariñas, Cavite, 4114, Philippines
| | - Abu Tayab Moin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, 4331, Bangladesh.
| | - Md Maisum Sarwar Jyoti
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation Shizuoka University, Ohya 836, Suruga-Ku, Shizuoka, 422-8529, Japan.
| | - Mst Sanjida Nasrin
- Department of Bioinformatics, School of Biosciences, University of Skövde, Högskolevägen, Skövde, 408 541 28, Sweden.
| | - Minhaz Abdullah Al Mueid
- Department of Pharmacy, Faculty of Biological Science, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Abdul Ahad
- Department of Pharmacy, Jagannath University, Dhaka, 1100, Bangladesh
| | - Anwar Parvez
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh.
| | - Mst Sabrina Yeasmin
- Department of Pharmacy, Independent University Bangladesh, Dhaka, 1229, Bangladesh
| | - Rupali M Barhate
- Department of Pharmaceutical Chemistry, Sinhgad Technical Education Society's, Sinhgad College of Pharmacy, Off Sinhgad Road, Vadgaon (Bk), Pune, 411041, Maharashtra, India
| | - Rajesh B Patil
- Department of Pharmaceutical Chemistry, Sinhgad Technical Education Society's, Sinhgad College of Pharmacy, Off Sinhgad Road, Vadgaon (Bk), Pune, 411041, Maharashtra, India.
| | - Margel C Bonifacio
- Department of Biochemistry, College of Allied Sciences, De La Salle Medical and Health Sciences Institute, City of Dasmariñas, Cavite, 4114, Philippines.
| |
Collapse
|
16
|
Ejiohuo O, Bajia D, Pawlak J, Szczepankiewicz A. Asoprisnil as a Novel Ligand Interacting with Stress-Associated Glucocorticoid Receptor. Biomedicines 2024; 12:2745. [PMID: 39767652 PMCID: PMC11726916 DOI: 10.3390/biomedicines12122745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025] Open
Abstract
Background/objective: The glucocorticoid receptor (GR) is critical in regulating cortisol production during stress. This makes it a key target for treating conditions associated with hypothalamic-pituitary-adrenal (HPA) axis dysregulation, such as mental disorders. This study explores novel ligands beyond mifepristone for their potential to modulate GR with improved efficacy and safety. By investigating these interactions, we seek to identify new pharmacotherapeutic options for stress-related mental illness. Methods: The ligands asoprisnil, campestanol, and stellasterol were selected based on structural similarities to mifepristone (reference ligand) and evaluated for pharmacological and ADME (absorption, distribution, metabolism, and excretion) properties using the SwissADME database. Molecular docking with AutoDock 4.2.6 and molecular dynamics simulations were performed to investigate ligand-protein interactions with the human glucocorticoid receptor, and binding free energies were calculated using MMPBSA. Results: Pharmacokinetic analysis revealed that asoprisnil exhibited high gastrointestinal absorption and obeyed Lipinski's rule, while mifepristone crossed the blood-brain barrier. Toxicological predictions showed that mifepristone was active for neurotoxicity and immunotoxicity, while asoprisnil, campestanol, and stellasterol displayed lower toxicity profiles. Asoprisnil demonstrated the highest stability in molecular dynamics simulations, with the highest negative binding energy of -62.35 kcal/mol, when compared to mifepristone, campestanol, and stellasterol, with binding energies of -57.08 kcal/mol, -49.99 kcal/mol, and -46.69 kcal/mol, respectively. Conclusion: This makes asoprisnil a potentially favourable therapeutic candidate compared to mifepristone. However, further validation of asoprisnil's interaction, efficacy, and safety in stress-related mental disorders through experimental studies and clinical trials is needed.
Collapse
Affiliation(s)
- Ovinuchi Ejiohuo
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland;
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, 60-572 Poznan, Poland;
| | - Donald Bajia
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland;
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, 60-572 Poznan, Poland
| | - Joanna Pawlak
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | | |
Collapse
|
17
|
Suleman M, Moltrasio C, Tricarico PM, Marzano AV, Crovella S. Natural Compounds Targeting Thymic Stromal Lymphopoietin (TSLP): A Promising Therapeutic Strategy for Atopic Dermatitis. Biomolecules 2024; 14:1521. [PMID: 39766227 PMCID: PMC11673240 DOI: 10.3390/biom14121521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease with rising prevalence, marked by eczematous lesions, itching, and a weakened skin barrier often tied to filaggrin gene mutations. This breakdown allows allergen and microbe entry, with thymic stromal lymphopoietin (TSLP) playing a crucial role by activating immune pathways that amplify the allergic response. TSLP's central role in AD pathogenesis makes it a promising therapeutic target. Consequently, in this study, we used the virtual drug screening, molecular dynamics simulation, and binding free energies calculation approaches to explore the African Natural Product Database against the TSLP protein. The molecular screening identified four compounds with high docking scores, namely SA_0090 (-7.37), EA_0131 (-7.10), NA_0018 (-7.03), and WA_0006 (-6.99 kcal/mol). Furthermore, the KD analysis showed a strong binding affinity of these compounds with TSLP, with values of -5.36, -5.36, -5.34, and -5.32 kcal/mol, respectively. Moreover, the strong binding affinity of these compounds was further validated by molecular dynamic simulation analysis, which revealed that the WA_0006-TSLP is the most stable complex with the lowest average RMSD. However, the total binding free energies were -40.5602, -41.0967, -27.3293, and -51.3496 kcal/mol, respectively, showing the strong interaction between the selected compounds and TSLP. Likewise, these compounds showed excellent pharmacokinetics characteristics. In conclusion, this integrative approach provides a foundation for the development of safe and effective treatments for AD, potentially offering relief to millions of patients worldwide.
Collapse
Affiliation(s)
- Muhammad Suleman
- Laboratory of Animal Research Center (LARC), Qatar University, Doha 2713, Qatar;
| | - Chiara Moltrasio
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (C.M.); (A.V.M.)
| | - Paola Maura Tricarico
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 34137 Trieste, Italy;
| | - Angelo Valerio Marzano
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (C.M.); (A.V.M.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC), Qatar University, Doha 2713, Qatar;
| |
Collapse
|
18
|
Chatterjee D, Sivashanmugam K. Computational approach towards repurposing of FDA approved drug molecules: strategy to combat antibiotic resistance conferred by Pseudomonas aeruginosa. J Biomol Struct Dyn 2024:1-16. [PMID: 39580714 DOI: 10.1080/07391102.2024.2431666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/22/2024] [Indexed: 11/26/2024]
Abstract
Antimicrobial resistance is recognized as a major worldwide public health dilemma in the current century. Pseudomonas aeruginosa, a Gram-negative opportunistic pathogen, causes nosocomial infections like respiratory tract infections, urinary tract infections, dermatitis, and cystic fibrosis. It manifests antibiotic resistance via intrinsic, acquired, and adaptive pathways, where efflux pumps function in the extrusion of antibiotics from the cell. MexB protein, part of the tripartite efflux pumps MexAB-OprM present in P.aeruginosa, expels the penems and β-lactam antibiotics, thereby enhancing Pseudomonas resistance. The current study was intended to screen around 1602 clinically approved drugs to understand their ability to inhibit the MexB protein. Amongst them, the top 5 drug molecules were selected based on the binding energies for analyzing their physio-chemical and toxicity properties. Lomitapide was found to have the maximum negative binding energy followed by Nilotinib, whereas Nilotinib's number of hydrogen bonds was higher than that of Lomitapide. ADMET study revealed that all 5 drug molecules had limited solubility. Also, Lomitapide and Venetoclax showed low bioavailability scores, while Nilotinib, Eltrombopag, and Conivaptan demonstrated higher potential for therapeutic levels. A molecular dynamic simulation study of the 5 drugs against MexB was carried out for 200 nanoseconds. The RMSD, RMSF, Hydrogen bond formation, Radius of gyration, SASA, PCA, DCCM, DSSP and MM-PBSA binding energy calculation along with demonstrated high stability of the MexB-Nilotinib complex with lesser distortions. Our study concludes, that Nilotinib is a potential inhibitor and can be developed as a therapeutic agent against MexB protein for controlling P. aeruginosa infections.
Collapse
Affiliation(s)
- Debolina Chatterjee
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | | |
Collapse
|
19
|
Singh N, Singh AK. Screening of phytoconstituents from Bacopa monnieri (L.) Pennell and Mucuna pruriens (L.) DC. to identify potential inhibitors against Cerebroside sulfotransferase. PLoS One 2024; 19:e0307374. [PMID: 39446901 PMCID: PMC11500956 DOI: 10.1371/journal.pone.0307374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/01/2024] [Indexed: 10/26/2024] Open
Abstract
Cerebroside sulfotransferase (CST) is considered a target protein in developing substrate reduction therapy for metachromatic leukodystrophy. This study employed a multistep virtual screening approach for getting a specific and potent inhibitor against CST from 35 phytoconstituents of Bacopa monnieri (L.) Pennell and 31 phytoconstituents of Mucuna pruriens (L.) DC. from the IMPPAT 2.0 database. Using a binding score cutoff of -8.0 kcal/mol with ADME and toxicity screening, four phytoconstituents IMPHY009537 (Stigmastenol), IMPHY004141 (alpha-Amyrenyl acetate), IMPHY014836 (beta-Sitosterol), and IMPHY001534 (jujubogenin) were considered for in-depth analysis. In the binding pocket of CST, the major amino acid residues that decide the orientation and interaction of compounds are Lys85, His84, His141, Phe170, Tyr176, and Phe177. The molecular dynamics simulation with a 100ns time span further validated the stability and rigidity of the docked complexes of the four hits by exploring the structural deviation and compactness, hydrogen bond interaction, solvent accessible surface area, principal component analysis, and free energy landscape analysis. Stigmastenol from Bacopa monnieri with no potential cross targets was found to be the most potent and selective CST inhibitor followed by alpha-Amyrenyl acetate from Mucuna pruriens as the second-best performing inhibitor against CST. Our computational drug screening approach may contribute to the development of oral drugs against metachromatic leukodystrophy.
Collapse
Affiliation(s)
- Nivedita Singh
- Department of Dravyaguna, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Anil Kumar Singh
- Department of Dravyaguna, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
20
|
Singh N, Singh AK. Phytoconstituents of Withania somnifera (L.) Dunal (Ashwagandha) unveiled potential cerebroside sulfotransferase inhibitors: insight through virtual screening, molecular dynamics, toxicity, and reverse pharmacophore analysis. J Biol Eng 2024; 18:59. [PMID: 39444022 PMCID: PMC11515467 DOI: 10.1186/s13036-024-00456-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
Cerebroside sulfotransferase (CST) is considered as therapeutic target for substrate reduction therapy (SRT) for metachromatic leukodystrophy (MLD). The present study evaluates the therapeutic potential of 57 phytoconstituents of Withania somnifera against CST. Using binding score cutoff ≤-7.0 kcal/mol, top 10 compounds were screened and after ADME and toxicity-based screening, Withasomidienone, 2,4-methylene-cholesterol, and 2,3-Didehydrosomnifericin were identified as safe and potent drug candidates for CST inhibition. Key substrate binding site residues involved in interaction were LYS82, LYS85, SER89, TYR176, PHE170, PHE177. Four steroidal Lactone-based withanolide backbone of these compounds played a critical role in stabilizing their position in the active site pocket. 100 ns molecular dynamics simulation and subsequent trajectory analysis through structural deviation and compactness, principal components, free energy landscape and correlation matrix confirmed the stability of CST-2,3-Didehydrosomnifericin complex throughout the simulation and therefore is considered as the most potent drug candidate for CST inhibition and Withasomidienone as the second most potent drug candidate. The reverse pharmacophore analysis further confirmed the specificity of these two compounds towards CST as no major cross targets were identified. Thus, identified compounds in this study strongly present their candidature for oral drug and provide route for further development of more specific CST inhibitors.
Collapse
Affiliation(s)
- Nivedita Singh
- Department of Dravyaguna, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Anil Kumar Singh
- Department of Dravyaguna, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
21
|
Singh N, Singh AK. Exploration of phytoconstituents of Medhya Rasayana herbs to identify potential inhibitors for cerebroside sulfotransferase through high-throughput screening. Front Mol Biosci 2024; 11:1476482. [PMID: 39450315 PMCID: PMC11500077 DOI: 10.3389/fmolb.2024.1476482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/17/2024] [Indexed: 10/26/2024] Open
Abstract
Cerebroside sulfotransferase (CST) is a key enzyme in sulfatide biosynthesis and regulation of the myelin sheath in the nervous system. To counter sulfatide accumulation with the deficiency of aryl sulfatase A, CST is considered a target protein in substrate reduction therapy in metachromatic leukodystrophy. In this study, 461 phytoconstituents from four herbs of Medhya Rasayana were screened using multi-pronged virtual screening methods including molecular docking, molecular dynamics (MD) simulation, and reverse pharmacophore analysis. The initial screening of the top 15 hits was based on the binding affinity of the compounds toward the CST substrate-binding site using the lowest free energy of a binding score cutoff of ≤ -7.5 kcal/mol, with the number of conformations in the largest cluster more than 75. The absorption, distribution, metabolism, and excretion (ADME) and toxicity-based pharmacokinetic analysis delivered the top four hits: 18alpha-glycyrrhetinic acid, lupeol, alpha carotene, and beta-carotene, with high blood-brain barrier permeability and negligible toxicity. Furthermore, a 100-ns simulation of protein-ligand complexes with a trajectory analysis of structural deviation, compactness, intramolecular interactions, principal component analysis, free energy landscape, and dynamic cross-correlation analysis showed the binding potential and positioning of the four hits in the binding pocket. Thus, an in-depth analysis of protein-ligand interactions from pre- and post-molecular dynamics simulation, along with reverse pharmacophore mapping, suggests that 18alpha-glycyrrhetinic acid is the most potent and specific CST inhibitor, while beta-carotene could be considered the second most potent compound for CST inhibition as it also exhibited overall stability throughout the simulation. Therefore, the computational drug screening approach applied in this study may contribute to the development of oral drugs as a therapeutic option for metachromatic leukodystrophy.
Collapse
Affiliation(s)
- Nivedita Singh
- Department of Dravyaguna, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | | |
Collapse
|
22
|
Chouhan M, Tiwari PK, Mishra R, Gupta S, Kumar M, Almuqri EA, Ibrahim NA, Basher NS, Chaudhary AA, Dwivedi VD, Verma D, Kumar S. Unearthing phytochemicals as natural inhibitors for pantothenate synthetase in Mycobacterium tuberculosis: A computational approach. Front Pharmacol 2024; 15:1403900. [PMID: 39135797 PMCID: PMC11317409 DOI: 10.3389/fphar.2024.1403900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/18/2024] [Indexed: 08/15/2024] Open
Abstract
Pantothenate synthetase protein plays a pivotal role in the biosynthesis of coenzyme A (CoA), which is a crucial molecule involved in a number of cellular processes including the metabolism of fatty acid, energy production, and the synthesis of various biomolecules, which is necessary for the survival of Mycobacterium tuberculosis (Mtb). Therefore, inhibiting this protein could disrupt CoA synthesis, leading to the impairment of vital metabolic processes within the bacterium, ultimately inhibiting its growth and survival. This study employed molecular docking, structure-based virtual screening, and molecular dynamics (MD) simulation to identify promising phytochemical compounds targeting pantothenate synthetase for tuberculosis (TB) treatment. Among 239 compounds, the top three (rutin, sesamin, and catechin gallate) were selected, with binding energy values ranging from -11 to -10.3 kcal/mol, and the selected complexes showed RMSD (<3 Å) for 100 ns MD simulation time. Furthermore, molecular mechanics generalized Born surface area (MM/GBSA) binding free energy calculations affirmed the stability of these three selected phytochemicals with binding energy ranges from -82.24 ± 9.35 to -66.83 ± 4.5 kcal/mol. Hence, these identified natural plant-derived compounds as potential inhibitors of pantothenate synthetase could be used to inhibit TB infection in humans.
Collapse
Affiliation(s)
- Mandeep Chouhan
- Biological and Bio-computational Lab, Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Prashant Kumar Tiwari
- Biological and Bio-computational Lab, Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Richa Mishra
- Department of Computer Engineering, Parul University, Vadodara, Gujarat, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Mukesh Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Eman Abdullah Almuqri
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Nasir A. Ibrahim
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Nosiba Suliman Basher
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Vivek Dhar Dwivedi
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Bioinformatics Research Division, Quanta Calculus, Greater Noida, India
| | - Devvret Verma
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Sanjay Kumar
- Biological and Bio-computational Lab, Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| |
Collapse
|
23
|
Azarkar S, Abedi M, Lavasani ASO, Ammameh AH, Goharipanah F, Baloochi K, Bakhshi H, Jafari A. Curcumin as a natural potential drug candidate against important zoonotic viruses and prions: A narrative review. Phytother Res 2024; 38:3080-3121. [PMID: 38613154 DOI: 10.1002/ptr.8119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 12/09/2023] [Accepted: 12/17/2023] [Indexed: 04/14/2024]
Abstract
Zoonotic diseases are major public health concerns and undeniable threats to human health. Among Zoonotic diseases, zoonotic viruses and prions are much more difficult to eradicate, as they result in higher infections and mortality rates. Several investigations have shown curcumin, the active ingredient of turmeric, to have wide spectrum properties such as anti-microbial, anti-vascular, anti-inflammatory, anti-tumor, anti-neoplastic, anti-oxidant, and immune system modulator properties. In the present study, we performed a comprehensive review of existing in silico, in vitro, and in vivo evidence on the antiviral (54 important zoonotic viruses) and anti-prion properties of curcumin and curcuminoids in PubMed, Google Scholar, Science Direct, Scopus, and Web of Science databases. Database searches yielded 13,380 results, out of which 216 studies were eligible according to inclusion criteria. Of 216 studies, 135 (62.5%), 24 (11.1%), and 19 (8.8%) were conducted on the effect of curcumin and curcuminoids against SARS-CoV-2, Influenza A virus, and dengue virus, respectively. This review suggests curcumin and curcuminoids as promising therapeutic agents against a wide range of viral zoonoses by targeting different proteins and signaling pathways.
Collapse
Affiliation(s)
- Setareh Azarkar
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Masoud Abedi
- Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | | | - Fatemeh Goharipanah
- Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Kimiya Baloochi
- Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hasan Bakhshi
- Vector-Borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirsajad Jafari
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
24
|
Jangwan NS, Khan M, Das R, Altwaijry N, Sultan AM, Khan R, Saleem S, Singh MF. From petals to healing: consolidated network pharmacology and molecular docking investigations of the mechanisms underpinning Rhododendron arboreum flower's anti-NAFLD effects. Front Pharmacol 2024; 15:1366279. [PMID: 38863975 PMCID: PMC11165132 DOI: 10.3389/fphar.2024.1366279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/25/2024] [Indexed: 06/13/2024] Open
Abstract
Rhododendron arboreum: Sm., also known as Burans is traditionally used as an anti-inflammatory, anti-diabetic, hepatoprotective, adaptogenic, and anti-oxidative agent. It has been used since ancient times in Indian traditional medicine for various liver disorders. However, the exact mechanism behind its activity against NAFLD is not known. The aim of the present study is to investigate the molecular mechanism of Rhododendron arboreum flower (RAF) in the treatment of NAFLD using network pharmacology and molecular docking methods. Bioactives were also predicted for their drug-likeness score, probable side effects and ADMET profile. Protein-protein interaction (PPI) data was obtained using the STRING platform. For the visualisation of GO analysis, a bioinformatics server was employed. Through molecular docking, the binding affinity between potential targets and active compounds were assessed. A total of five active compounds of RAF and 30 target proteins were selected. The targets with higher degrees were identified through the PPI network. GO analysis indicated that the NAFLD treatment with RAF primarily entails a response to the fatty acid biosynthetic process, lipid metabolic process, regulation of cell death, regulation of stress response, and cellular response to a chemical stimulus. Molecular docking and molecular dynamic simulation exhibited that rutin has best binding affinity among active compounds and selected targets as indicated by the binding energy, RMSD, and RMSF data. The findings comprehensively elucidated toxicity data, potential targets of bioactives and molecular mechanisms of RAF against NAFLD, providing a promising novel strategy for future research on NAFLD treatment.
Collapse
Affiliation(s)
- Nitish Singh Jangwan
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Mausin Khan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Dehradun, Uttarakhand, India
| | - Richa Das
- Department of Biotechnology, Parul Institute of Applied Science, Parul University, Vadodara, Gujarat, India
| | - Najla Altwaijry
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahlam Mansour Sultan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ruqaiyah Khan
- Department of Basic Health Sciences, Deanship of Preparatory Year for the Health Colleges, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Mamta F. Singh
- College of Pharmacy, COER University, Roorkee, Uttarakhand, India
| |
Collapse
|
25
|
Pathak RK, Jung DW, Shin SH, Ryu BY, Lee HS, Kim JM. Deciphering the mechanisms and interactions of the endocrine disruptor bisphenol A and its analogs with the androgen receptor. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133935. [PMID: 38442602 DOI: 10.1016/j.jhazmat.2024.133935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
Bisphenol A (BPA) and its various forms used as BPA alternatives in industries are recognized toxic compounds and antiandrogenic endocrine disruptors. These chemicals are widespread in the environment and frequently detected in biological samples. Concerns exist about their impact on hormones, disrupting natural biological processes in humans, together with their negative impacts on the environment and biotic life. This study aims to characterize the interaction between BPA analogs and the androgen receptor (AR) and the effect on the receptor's normal activity. To achieve this goal, molecular docking was conducted with BPA and its analogs and dihydrotestosterone (DHT) as a reference ligand. Four BPA analogs exhibited higher affinity (-10.2 to -8.7 kcal/mol) for AR compared to BPA (-8.6 kcal/mol), displaying distinct interaction patterns. Interestingly, DHT (-11.0 kcal/mol) shared a binding pattern with BPA. ADMET analysis of the top 10 compounds, followed by molecular dynamics simulations, revealed toxicity and dynamic behavior. Experimental studies demonstrated that only BPA disrupts DHT-induced AR dimerization, thereby affecting AR's function due to its binding nature. This similarity to DHT was observed during computational analysis. These findings emphasize the importance of targeted strategies to mitigate BPA toxicity, offering crucial insights for interventions in human health and environmental well-being.
Collapse
Affiliation(s)
- Rajesh Kumar Pathak
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Da-Woon Jung
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Seung-Hee Shin
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Hee-Seok Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea; Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
26
|
Thandivel S, Rajan P, Gunasekar T, Arjunan A, Khute S, Kareti SR, Paranthaman S. In silico molecular docking and dynamic simulation of anti-cholinesterase compounds from the extract of Catunaregam spinosa for possible treatment of Alzheimer's disease. Heliyon 2024; 10:e27880. [PMID: 38560123 PMCID: PMC10981039 DOI: 10.1016/j.heliyon.2024.e27880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Alzheimer's disease (AD), is characterized by a progressive loss of cognitive abilities as well as behavioral symptoms including disorientation, trouble solving problems, personality and mood changes. Acetylcholinesterase (AChE) is a promising target for symptomatic improvement in AD due to its consistent and early cholinergic deficit. This research has investigated the potential compounds from Catunaregam spinosa as AChE inhibitors as a treatment option for AD, aiming to enhance cholinergic neurotransmission and alleviate cognitive decline. Tacrine, the FDA's first approved treatment for AD, is no longer in use due to its hepatotoxicity. Box-Behnken design (BBD) modelling was used to optimise the ultrasonic extraction of alkaloids from the dried fruits of C. spinosa. GC-MS analysis revealed the presence of ninety phytoconstituents in the extract. Among them, eighty-nine new phytoconstituents are reported in this plant fruit for the first time. Out of ninety phytoconstituents, eight phytoconstituents showed the best binding affinity against the AChE enzyme, i.e., PDB IDs 1GQR, 1QTI and 4PQE of AD targets using iGEMDOCK. The lead hits were tested for their drug-like properties and atomistic binding mechanisms using in silico ADMET prediction, LigPlot analysis, and molecular dynamics simulation. The results suggest four compounds such as 1,4,7,10,13,16-hexaoxacyclooctadecane; butanoic acid, 3-methyl-2-[(phenylmethoxy)imino]-, trime; butane-1,2,3,4-tetraol; and D-(+)-ribonic acid.gamma-lactone as potent inhibitors of AChE for the possible treatment of AD.
Collapse
Affiliation(s)
- Sathish Thandivel
- Department of Pharmacognosy, Sri Shanmugha College of Pharmacy, Salem district, Sankari, 637 304, Tamil Nadu, India
| | - Poovarasan Rajan
- Department of Pharmacognosy, Sri Shanmugha College of Pharmacy, Salem district, Sankari, 637 304, Tamil Nadu, India
| | - Tamizharasan Gunasekar
- Department of Pharmacognosy, Sri Shanmugha College of Pharmacy, Salem district, Sankari, 637 304, Tamil Nadu, India
| | - Abisek Arjunan
- Department of Pharmacognosy, Sri Shanmugha College of Pharmacy, Salem district, Sankari, 637 304, Tamil Nadu, India
| | - Sulekha Khute
- Institute of Pharmacy, Pandit Ravishankar Shukla University, Raipur, 492 010, Chhattisgarh, India
| | - Srinivasa Rao Kareti
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, 484 887, Madhya Pradesh, India
| | - Subash Paranthaman
- Department of Pharmacognosy, Sri Shanmugha College of Pharmacy, Salem district, Sankari, 637 304, Tamil Nadu, India
| |
Collapse
|
27
|
Alotayeq A, Ghannay S, Alhagri IA, Ahmed I, Hammami B, E. A. E. Albadri A, Patel H, Messaoudi S, Kadri A, M. Al-Hazmy S, Aouadi K. Synthesis, optical properties, DNA, β-cyclodextrin interaction, hydrogen isotope sensor and computational study of new enantiopure isoxazolidine derivative (ISoXD). Heliyon 2024; 10:e26341. [PMID: 38404822 PMCID: PMC10884473 DOI: 10.1016/j.heliyon.2024.e26341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024] Open
Abstract
A novel isoxazolidine derivative (ISoXD) dye was successfully synthesized and comprehensively characterized. In this study, we conducted a thorough examination of its various properties, including optical characteristics, interactions with DNA and β-cyclodextrin (β-CD), molecular docking, molecular dynamic simulation, and density functional theory (DFT) calculations. Our investigation encompassed a systematic analysis of the absorption and emission spectra of ISoXD in diverse solvents. The observed variations in the spectroscopic data were attributed to the specific solvent's capacity to engage in hydrogen bonding interactions. Remarkably, the most pronounced intensities were observed in glycol, which can establish many hydrogen bonds with ISoXD. Furthermore, our study revealed a significant distinction in the fluorescence behavior of ISoXD when subjected to different solvents, particularly between CHCl3 and CDCl3. Moreover, we explored the fluorescence intensity of the ISoXD complex in the presence of various metals, both in ethanol and water. The ISoXD complex exhibited a substantial increase of fluorescence upon interaction with different metal ions. The utilization of DFT calculations allowed us to propose an intramolecular charge transfer (ICT) mechanism as a plausible explanation for this quenching phenomenon. The interaction of ISoXD with DNA and β-CD was studied using absorption spectra. The binding constant (K) and the standard Gibbs free energy change (ΔGo) for the interaction between DNA and β-CD with ISoXD were determined. In docking study, ISoXD exhibited significant docking scores (-6.511) and MM-GBSA binding free energies (-66.27 kcal/mol) within the PARP-1 binding cavity. Its binding pattern closely resembles to the co-crystal ligand veliparib, and during a 100ns MD simulation, ISoXD displayed strong stability and formed robust hydrogen bonds with key amino acids. These findings suggest ISoXD's potential as a PARP-1 inhibitor for further investigation in therapeutic development.
Collapse
Affiliation(s)
- Afnan Alotayeq
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Siwar Ghannay
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Ibrahim A. Alhagri
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
- Department of Chemistry, Faculty of Sciences, Ibb University, Ibb, Yemen
| | - Iqrar Ahmed
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule, 424002, India
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Bechir Hammami
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Abuzar E. A. E. Albadri
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Sabri Messaoudi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
- Faculty of Sciences of Bizerte, Carthage University, Jarzouna, Bizerte 7021, Tunisia
| | - Adel Kadri
- Faculty of Science of Sfax, Department of Chemistry, University of Sfax, B.P. 1171, 3000 Sfax, Tunisia
- Department of Chemistry, Faculty of Science and Arts of Baljurashi, Al- Baha University, Saudi Arabia
| | - Sadeq M. Al-Hazmy
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Kaiss Aouadi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
- Department of Chemistry, Laboratory of Heterocyclic Chemistry Natural Product and Reactivity/CHPNR, Faculty of Science of Monastir, University of Monastir, Avenue of the Environment, Monastir, 5019, Tunisia
| |
Collapse
|
28
|
Fatima F, Chourasiya NK, Mishra M, Kori S, Pathak S, Das R, Kashaw V, Iyer AK, Kashaw SK. Curcumin and its Derivatives Targeting Multiple Signaling Pathways to Elicit Anticancer Activity: A Comprehensive Perspective. Curr Med Chem 2024; 31:3668-3714. [PMID: 37221681 DOI: 10.2174/0929867330666230522144312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/23/2023] [Accepted: 04/07/2023] [Indexed: 05/25/2023]
Abstract
The uncontrolled growth and spread of aberrant cells characterize the group of disorders known as cancer. According to GLOBOCAN 2022 analysis of cancer patients in either developed countries or developing countries the main concern cancers are breast cancer, lung cancer, and liver cancer which may rise eventually. Natural substances with dietary origins have gained interest for their low toxicity, anti-inflammatory, and antioxidant effects. The evaluation of dietary natural products as chemopreventive and therapeutic agents, the identification, characterization, and synthesis of their active components, as well as the enhancement of their delivery and bioavailability, have all received significant attention. Thus, the treatment strategy for concerning cancers must be significantly evaluated and may include the use of phytochemicals in daily lifestyle. In the present perspective, we discussed one of the potent phytochemicals, that has been used over the past few decades known as curcumin as a panacea drug of the "Cure-all" therapy concept. In our review firstly we included exhausted data from in vivo and in vitro studies on breast cancer, lung cancer, and liver cancer which act through various cancer-targeting pathways at the molecular level. Now, the second is the active constituent of turmeric known as curcumin and its derivatives are enlisted with their targeted protein in the molecular docking studies, which help the researchers design and synthesize new curcumin derivatives with respective implicated molecular and cellular activity. However, curcumin and its substituted derivatives still need to be investigated with unknown targeting mechanism studies in depth.
Collapse
Affiliation(s)
- Firdous Fatima
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Nikhil Kumar Chourasiya
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Mitali Mishra
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Shivam Kori
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Sandhya Pathak
- Department of Chemistry, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Ratnesh Das
- Department of Chemistry, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Varsha Kashaw
- Sagar Institute of Pharmaceutical Sciences, Sagar (M.P.), India
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA
- Molecular Imaging Program, Karmanos Cancer Institute, Detroit, Michigan, USA
| | - Sushil Kumar Kashaw
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| |
Collapse
|
29
|
Khan N, Rehman B, Almanaa TN, Aljahdali SM, Waheed Y, Ullah A, Asfandayar M, Al-Harbi AI, Naz T, Arshad M, Sanami S, Ahmad S. A novel therapeutic approach to prevent Helicobacter pylori induced gastric cancer using networking biology, molecular docking, and simulation approaches. J Biomol Struct Dyn 2023; 42:13876-13889. [PMID: 37962871 DOI: 10.1080/07391102.2023.2279276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 10/27/2023] [Indexed: 11/15/2023]
Abstract
Helicobacter pylori infects 50% of the world population and in 80% of cases, the infection progresses to the point where an ulcer develops leading to gastric cancer (GC). This study aimed to prevent GC by predicting Hub genes that are inducing GC. Furthermore, the study objective was to screen inhibitory molecules that block the function of predicted genes through several biophysical approaches. These proteins, such as Mucin 4 (MUC4) and Baculoviral IAP repeat containing 3 (BIRC3), had LogFC values of 2.28 and 3.39, respectively, and were found to be substantially expressed in those who had H. pylori infection. The MUC4 and BIRC3 inhibit apoptosis of infected cells and promote cancerous cell survival. The proteins were examined for their Physico-chemical characteristics, 3D structure and secondary structure analysis, solvent assessable surface area (SASA), active site identification, and network analysis. The MUC4 and BIRC3 expression was inhibited by docking eighty different compounds collected from the ZINC database. Fifty-seven compounds were successfully docked into the active site resulting in the lowest binding energy scores. The ZINC585267910 and ZINC585268691 compounds showed the lowest binding energy of -8.5 kcal/mol for MUC4 and -7.1 kcal/mol for BIRC3, respectively, and were considered best-docked solutions for molecular dynamics simulations. The mean root mean square deviation (RMSD) value for the ZINC585267910-MUC4 complex was 0.86 Å and the ZINC585268691-BIRC3 complex was 1.01 Å. The net MM/GBSA energy value of the ZINC585267910-MUC4 complex estimated was -46.84 kcal/mol and that of the ZINC585268691-BIRC3 complex was -44.84 kcal/mol. In a nutshell, the compounds might be investigated further as an inhibitor of the said proteins to stop the progress of GC induced by H. pylori.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nadeem Khan
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Bushra Rehman
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadaa, Pakistan
| | - Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Yasir Waheed
- Office of Research, Innovation and Commercialization, Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Asad Ullah
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Muhammad Asfandayar
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Alhanouf I Al-Harbi
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu, Saudi Arabia
| | - Tahira Naz
- Department of Chemical and Life Sciences, Qurtuba University of Science and Technology, Peshawar, Pakistan
| | - Muhammad Arshad
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Samira Sanami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
- Department of Natural Sciences, Lebanese American University, Beirut, Lebanon
| |
Collapse
|
30
|
Zaremba A, Zaremba P, Zahorodnia S. De novo designed inhibitor has high affinity to four variants of the RBD of S-glycoprotein of SARS-CoV-2 - an in silico study. J Biomol Struct Dyn 2023; 41:9389-9397. [PMID: 36318624 DOI: 10.1080/07391102.2022.2141886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022]
Abstract
In the years since the rapid invasion of SARS-CoV-2, the world community has fully understood the extent of the danger of this new pathogen. And also the speed with which he is able to adapt both to humans as a species and to the means of combat that are introduced. However, this has already resulted in millions of lost lives and this situation may worsen in the future, due to the further inevitable evolution of the virus. Accordingly, the need for effective drugs is urgent. In this work, using an iterative approach, we de novo designed a molecule that revealed significant affinity to four variants of SARS-CoV-2 - Wuhan, Omicron, Delta and Cluster 5. More precisely, to their receptor-binding domain of S-glycoprotein, in particular, to the site that is directly involved in the recognition of human ACE2.What is confirmed in particular by the ΔGbind of the complexes of RBD of all four SARS-CoV-2 variants with a potential inhibitor: it is in significantly negative values. Along with this, the calculated ADMET parameters can generally be considered acceptable. Accordingly, we believe that the molecule we have designed has a high potential for further development as an effective drug against SARS-CoV-2. However, it currently requires further in vitro and in vivo studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Andrii Zaremba
- Deparment of Reproduction of Viruses, Zabolotny Institute of Microbiology and Virology of NASU, Kyiv, Ukraine
| | - Polina Zaremba
- Deparment of Reproduction of Viruses, Zabolotny Institute of Microbiology and Virology of NASU, Kyiv, Ukraine
| | - Svіtlana Zahorodnia
- Deparment of Reproduction of Viruses, Zabolotny Institute of Microbiology and Virology of NASU, Kyiv, Ukraine
| |
Collapse
|
31
|
Rampogu S, Balasubramaniyam T, Lee JH. Curcumin Chalcone Derivatives Database (CCDD): a Python framework for natural compound derivatives database. PeerJ 2023; 11:e15885. [PMID: 37605747 PMCID: PMC10440061 DOI: 10.7717/peerj.15885] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/20/2023] [Indexed: 08/23/2023] Open
Abstract
We built the Curcumin Chalcone Derivatives Database (CCDD) to enable the effective virtual screening of highly potent curcumin and its analogs. The two-dimensional (2D) structures were drawn using the ChemBioOffice package and converted to 3D structures using Discovery Studio Visualizer V 2021 (DS). The database was built using different Python modules. For the 3D structures, different Python packages were used to obtain the data frame of compounds. This framework is also used to visualize the compounds. The webserver enables the users to screen the compounds according to Lipinski's rule of five. The structures can be downloaded in .sdf and .mol format. The data frame (df) can be downloaded in .csv format. Our webserver can help computational drug discovery researchers find new therapeutics and build new webservers. The CCDD is freely available at: https://srampogu-ccdd-ccdd-8uldk8.streamlit.app/.
Collapse
Affiliation(s)
| | | | - Joon-Hwa Lee
- Department of Chemistry, Gyeongsang National University, Jinju, Gyeongnam, South Korea
| |
Collapse
|
32
|
Li J, Wang SH, Liu YT, Zhang Q, Zhou GZ. Inhibition of autophagic flux by the curcumin analog EF-24 and its antiproliferative effect on MCF-7 cancer cells. J Biochem Mol Toxicol 2023; 37:e23307. [PMID: 36633067 DOI: 10.1002/jbt.23307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/17/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
5-Bis[(2-fluorophenyl)methylene]-4-piperidinone (EF-24) is a curcumin analog, which was identified for its physiochemical stability and diverse pharmacological functions. In the present study, EF-24 was added to the breast cancer cell line MCF-7 and its cellular effects were characterized. The results indicated that EF-24 possessed antiproliferative and antimigratory activities on MCF-7 cells as determined by MTT assay, wound healing, and transwell assay, respectively. In addition, the autophagosomal vesicles could be detected by acridine orange staining and electron microscope analysis in EF-24-treated cells. Conversion of LC3-I to LC3-II was also investigated following EF-24 treatment of the cells. However, the expression analysis of p62 and LC3 revealed that EF-24 could inhibit autophagic flux in MCF-7 cells. Confocal microscopy suggested that EF-24 could inhibit the degradation of autophagic vesicles by blocking the fusion of autophagosomes with lysosomes. EF-24 could also induce apoptosis of MCF-7 cells as determined by Hoechst 33342 staining, flow cytometry analysis, and western blot analysis. Moreover, treatment of the cells with the autophagy inhibitor 3-MA enhanced the PARP1 cleavage of EF-24-treated MCF-7 cells, which indicated the crosstalk between autophagy and apoptosis in breast cancer cells. Additional investigation of EF-24 should be performed in future studies to assess its antiproliferation and antimigratory effects on MCF-7 cells. However, the current results provide a solid foundation for the potential in vivo anticancer activity of this compound.
Collapse
Affiliation(s)
- Jun Li
- Department of Biotechnology, College of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Song-He Wang
- Department of Biotechnology, College of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Yang-Ting Liu
- Department of Biotechnology, College of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Qin Zhang
- Division of Aquaculture and Genetic Breeding, Henan Academy of Fishery Sciences, Zhengzhou, China
| | - Guang-Zhou Zhou
- Department of Biotechnology, College of Bioengineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
33
|
Plant Spices as a Source of Antimicrobial Synergic Molecules to Treat Bacterial and Viral Co-Infections. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238210. [PMID: 36500303 PMCID: PMC9737474 DOI: 10.3390/molecules27238210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
The COVID-19 pandemic exposed the lack of antiviral agents available for human use, while the complexity of the physiological changes caused by coronavirus (SARS-CoV-2) imposed the prescription of multidrug pharmacotherapy to treat infected patients. In a significant number of cases, it was necessary to add antibiotics to the prescription to decrease the risk of co-infections, preventing the worsening of the patient's condition. However, the precautionary use of antibiotics corroborated to increase bacterial resistance. Since the development of vaccines for COVID-19, the pandemic scenario has changed, but the development of new antiviral drugs is still a major challenge. Research for new drugs with synergistic activity against virus and resistant bacteria can produce drug leads to be used in the treatment of mild cases of COVID-19 and to fight other viruses and new viral diseases. Following the repurposing approach, plant spices have been searched for antiviral lead compounds, since the toxic effects of plants that are traditionally consumed are already known, speeding up the drug discovery process. The need for effective drugs in the context of viral diseases is discussed in this review, with special focus on plant-based spices with antiviral and antibiotic activity. The activity of plants against resistant bacteria, the diversity of the components present in plant extracts and the synergistic interaction of these metabolites and industrialized antibiotics are discussed, with the aim of contributing to the development of antiviral and antibiotic drugs. A literature search was performed in electronic databases such as Science Direct; SciELO (Scientific Electronic Library Online); LILACS (Latin American and Caribbean Literature on Health Sciences); Elsevier, SpringerLink; and Google Scholar, using the descriptors: antiviral plants, antibacterial plants, coronavirus treatment, morbidities and COVID-19, bacterial resistance, resistant antibiotics, hospital-acquired infections, spices of plant origin, coronaviruses and foods, spices with antiviral effect, drug prescriptions and COVID-19, and plant synergism. Articles published in English in the period from 2020 to 2022 and relevant to the topic were used as the main inclusion criteria.
Collapse
|