1
|
Iobbi V, Parisi V, Giacomini M, De Riccardis F, Brun P, Núñez-Pons L, Drava G, Giordani P, Monti MC, Poggi R, Murgia Y, De Tommasi N, Bisio A. Sesterterpenoids: sources, structural diversity, biological activity, and data management. Nat Prod Rep 2025; 42:443-481. [PMID: 39832137 DOI: 10.1039/d4np00041b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Reviewing the literature published up to October 2024.Sesterterpenoids are one of the most chemically diverse and biologically promising subgroup of terpenoids, the largest family of secondary metabolites. The present review article summarizes more than seven decades of studies on isolation and characterization of more than 1600 structurally novel sesterterpenoids, supplemented by biological, pharmacological, ecological, and geographic distribution data. All the information have been implemented in eight tables available on the web and a relational database https://sesterterpenoids.unige.net/. The interface has two sections, one open to the public for reading only and the other, protected by an authentication mechanism, for timely updating of published results.
Collapse
Affiliation(s)
- Valeria Iobbi
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Valentina Parisi
- Department of Pharmacy, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy.
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Mauro Giacomini
- Department of Informatics, Bioengineering, Robotics and System Science, University of Genova, Via all'Opera Pia 13, 16146 Genova, Italy
| | - Francesco De Riccardis
- Department of Chemistry and Biology "A. Zambelli", Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Paola Brun
- Department of Molecular Medicine, Section of Microbiology, University of Padova, Via A. Gabelli, 63, 35121 Padova, Italy
| | - Laura Núñez-Pons
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Giuliana Drava
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Paolo Giordani
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Maria Chiara Monti
- Department of Pharmacy, University of Napoli "Federico II", Via T. De Amicis 95, 80131 Napoli, Italy
| | - Roberto Poggi
- Museo Civico di Storia Naturale Giacomo Doria, Via Brigata Liguria 9, 16121 Genova, Italy
| | - Ylenia Murgia
- Department of Informatics, Bioengineering, Robotics and System Science, University of Genova, Via all'Opera Pia 13, 16146 Genova, Italy
| | - Nunziatina De Tommasi
- Department of Pharmacy, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy.
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Angela Bisio
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| |
Collapse
|
2
|
Han C, Song A, He Y, Yang L, Chen L, Dai W, Wu Q, Yuan S. Genome mining and biosynthetic pathways of marine-derived fungal bioactive natural products. Front Microbiol 2024; 15:1520446. [PMID: 39726967 PMCID: PMC11669671 DOI: 10.3389/fmicb.2024.1520446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Marine fungal natural products (MFNPs) are a vital source of pharmaceuticals, primarily synthesized by relevant biosynthetic gene clusters (BGCs). However, many of these BGCs remain silent under standard laboratory culture conditions, delaying the development of novel drugs from MFNPs to some extent. This review highlights recent efforts in genome mining and biosynthetic pathways of bioactive natural products from marine fungi, focusing on methods such as bioinformatics analysis, gene knockout, and heterologous expression to identify relevant BGCs and elucidate the biosynthetic pathways and enzyme functions of MFNPs. The research efforts presented in this review provide essential insights for future gene-guided mining and biosynthetic pathway analysis in MFNPs.
Collapse
Affiliation(s)
- Caihua Han
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Anjing Song
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Yueying He
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Liu Yang
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Litong Chen
- Center of Ocean Expedition, School of Atmospheric Science, Sun Yat-sen University, Zhuhai, China
| | - Wei Dai
- Teaching and Experimental Center, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qilin Wu
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Siwen Yuan
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| |
Collapse
|
3
|
Saito N, Katayama T, Minami A, Oikawa H, Maruyama JI. Versatile filamentous fungal host highly-producing heterologous natural products developed by genome editing-mediated engineering of multiple metabolic pathways. Commun Biol 2024; 7:1263. [PMID: 39367037 PMCID: PMC11452556 DOI: 10.1038/s42003-024-06958-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
Natural secondary metabolites are medically, agriculturally, and industrially beneficial to humans. For mass production, a heterologous production system is required, and various metabolic engineering trials have been reported in Escherichia coli and Saccharomyces cerevisiae to increase their production levels. Recently, filamentous fungi, especially Aspergillus oryzae, have been expected to be excellent hosts for the heterologous production of natural products; however, large-scale metabolic engineering has hardly been reported. Here, we elucidated candidate metabolic pathways to be modified for increased model terpene production by RNA-seq and metabolome analyses in A. oryzae and selected pathways such as ethanol fermentation, cytosolic acetyl-CoA production from citrate, and the mevalonate pathway. We performed metabolic modifications targeting these pathways using CRISPR/Cas9 genome editing and demonstrated their effectiveness in heterologous terpene production. Finally, a strain containing 13 metabolic modifications was generated, which showed enhanced heterologous production of pleuromutilin (8.5-fold), aphidicolin (65.6-fold), and ophiobolin C (28.5-fold) compared to the unmodified A. oryzae strain. Therefore, the strain generated by engineering multiple metabolic pathways can be employed as a versatile highly-producing host for a wide variety of terpenes.
Collapse
Affiliation(s)
- Naoya Saito
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takuya Katayama
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Atsushi Minami
- Division of Chemistry, Graduated school of Science, Hokkaido University, Kita-ku, Sapporo, Japan
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Tokyo, Japan
| | - Hideaki Oikawa
- Division of Chemistry, Graduated school of Science, Hokkaido University, Kita-ku, Sapporo, Japan
- Innovation Center of Marine Biotechnology and Pharmaceuticals, School of Biotechnology and Health Science, Wuyi University, Jiangmen, Guangdong, China
| | - Jun-Ichi Maruyama
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
4
|
Zheng Y, Li Q, Gu M, Liao H, Liang Y, Liu F, Li XN, Sun W, Chen C, Zhang Y, Zhu H. Undobolins A-L, Ophiobolin-Type Sesterterpenoids from Aspergillus undulatus. JOURNAL OF NATURAL PRODUCTS 2024; 87:1965-1974. [PMID: 39051441 DOI: 10.1021/acs.jnatprod.4c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Twelve previously undescribed ophiobolin-type sesterterpenoids, undobolins A-L (1-12), were isolated from Aspergillus undulatus, and their structures were elucidated by spectroscopic analysis, ECD calculations, and single-crystal X-ray diffraction experiments. Compound 1 was the second example of 20-nor-ophiobolin reported, while compounds 2-6 were notable for oxygenation of C-2, and compound 6 showed significant inhibitory activity against ConA-induced T lymphocyte proliferation with an IC50 value of 2.3 μM, which suggests a promising new direction in the quest for immunosuppressive agents.
Collapse
Affiliation(s)
- Yuyi Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Minglang Gu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Hong Liao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yu Liang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Fei Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, People's Republic of China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
5
|
Zhang C, Wu J, Sun Q, Ding S, Tao H, He Y, Qiu H, Shu B, Zhu D, Zhu H, Hong K. De novo production of bioactive sesterterpenoid ophiobolins in Saccharomyces cerevisiae cell factories. Microb Cell Fact 2024; 23:129. [PMID: 38711040 DOI: 10.1186/s12934-024-02406-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Sesterterpenoids are rare species among the terpenoids family. Ophiobolins are sesterterpenes with a 5-8-5 tricyclic skeleton. The oxidized ophiobolins exhibit significant cytotoxic activity and potential medicinal value. There is an urgent need for large amounts of ophiobolins supplication for drug development. The synthetic biology approach has been successfully employed in lots of terpene compound production and inspired us to develop a cell factory for ophiobolin biosynthesis. RESULTS We developed a systematic metabolic engineering strategy to construct an ophiobolin biosynthesis chassis based on Saccharomyces cerevisiae. The whole-cell biotransformation methods were further combined with metabolic engineering to enhance the expression of key ophiobolin biosynthetic genes and improve the supply of precursors and cofactors. A high yield of 5.1 g/L of ophiobolin F was reached using ethanol and fatty acids as substrates. To accumulate oxidized ophiobolins, we optimized the sources and expression conditions for P450-CPR and alleviated the toxicity of bioactive compounds to cells through PDR engineering. We unexpectedly obtained a novel ophiobolin intermediate with potent cytotoxicity, 5-hydroxy-21-formyl-ophiobolin F, and the known bioactive compound ophiobolin U. Finally, we achieved the ophiobolin U titer of 128.9 mg/L. CONCLUSIONS We established efficient cell factories based on S. cerevisiae, enabling de novo biosynthesis of the ophiobolin skeleton ophiobolin F and oxidized ophiobolins derivatives. This work has filled the gap in the heterologous biosynthesis of sesterterpenoids in S. cerevisiae and provided valuable solutions for new drug development based on sesterterpenoids.
Collapse
Affiliation(s)
- Caizhe Zhang
- Department of Radiation and Medical Oncology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Ministry of Education, Wuhan University, Wuhan, 430071, China
| | - Jun Wu
- Department of Radiation and Medical Oncology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Ministry of Education, Wuhan University, Wuhan, 430071, China
| | - Qing Sun
- Department of Radiation and Medical Oncology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Ministry of Education, Wuhan University, Wuhan, 430071, China
| | - Shuaishuai Ding
- Department of Radiation and Medical Oncology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Ministry of Education, Wuhan University, Wuhan, 430071, China
| | - Hua Tao
- Department of Radiation and Medical Oncology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Ministry of Education, Wuhan University, Wuhan, 430071, China
| | - Yuhua He
- Department of Radiation and Medical Oncology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Ministry of Education, Wuhan University, Wuhan, 430071, China
| | - Hui Qiu
- Department of Radiation and Medical Oncology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Ministry of Education, Wuhan University, Wuhan, 430071, China
| | - Bei Shu
- Department of Radiation and Medical Oncology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Ministry of Education, Wuhan University, Wuhan, 430071, China
| | - Dongqing Zhu
- Department of Radiation and Medical Oncology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Ministry of Education, Wuhan University, Wuhan, 430071, China
| | - Hengcheng Zhu
- Department of Urology, Renmin Hospital of Wuhan University, No. 238 Jie-Fang Avenue, Wuhan, 430060, China
| | - Kui Hong
- Department of Radiation and Medical Oncology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Ministry of Education, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
6
|
Evidente A. The incredible story of ophiobolin A and sphaeropsidin A: two fungal terpenes from wilt-inducing phytotoxins to promising anticancer compounds. Nat Prod Rep 2024; 41:434-468. [PMID: 38131643 DOI: 10.1039/d3np00035d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Covering: 2000 to 2023This review presents the exceptional story of ophiobolin A (OphA) and sphaeropsidin A (SphA), a sesterterpene and a diterpene, respectively, which were initially isolated as fungal phytotoxins and subsequently shown to possess other interesting biological activities, including promising anticancer activities. Ophiobolin A is a phytotoxin produced by different fungal pathogens, all belonging to the Bipolaris genus. Initially, it was only known as a very dangerous phytotoxin produced by fungi attacking essential cereals, such as rice and barley. However, extensive and interesting studies were carried out to define its original carbon skeleton, which is characterized by a typical 5 : 8 : 5 ring system and shared with fusicoccins and cotylenins, and its phytotoxic activity on host and non-host plants. The biosynthesis of OphA was also defined by describing the different steps starting from mevalonate and through the rearrangement of the acyclic C-25 precursor lead the toxin is obtained. OphA was also produced as a bioherbicide from Drechslera gigantea and proposed for the biocontrol of the widespread and dangerous weed Digitaria sanguinaria. To date, more than sixty ophiobolins have been isolated from different fungi and their biological activities and structure-activity relationship investigated, which were also described using their hemisynthetic derivatives. In the last two decades, thorough studies have been performed on the potential anticancer activity of OphA and its original mode of action, attracting great interest from scientists. Sphaeropsidin A has a similar story. It was isolated as the main phytotoxin from Diplodia cupressi, the causal agent of Italian cypress canker disease, resulting in the loss of millions of plants in a few years in the Mediterranean basin. The damage to the forest, environment and ornamental heritage are noteworthy and economic losses are also suffered by tree nurseries and the wood industry. Six natural analogues of SphA were isolated and several interesting hemisynthetic derivatives were prepared to study its structure-activity relationship. Surprisingly, sphaeropsidin A showed other interesting biological activities, including antibiotic, antifungal, and antiviral. In the last decade, extensive studies have focused on the anticancer activity and original mode of action of SphA. Furthermore, specific hemisynthetic studies enable the preparation of derivatives of SphA, preserving its chromophore, which showed a noteworthy increase in anticancer activity. It has been demonstrated that ophiobolin A and sphaeropsidin A are promising natural products showing potent activity against some malignant cancers, such as brain glioblastoma and different melanomas.
Collapse
Affiliation(s)
- Antonio Evidente
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70125 Bari, Italy.
| |
Collapse
|
7
|
Li B, Tan C, Ma T, Jia Y. Bioinspired Total Synthesis of Bipolarolides A and B. Angew Chem Int Ed Engl 2024; 63:e202319306. [PMID: 38212293 DOI: 10.1002/anie.202319306] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
We have achieved the first total synthesis of bipolarolides A and B, which possess an intriguing and complex 5/6/6/6/5 caged pentacyclic skeleton with seven contiguous stereocenters. The synthesis features a lithium-halogen exchange/intermolecular nucleophilic addition to link two enantioenriched fragments, two ring-closing metathesis reactions to assemble the five- and eight-membered rings, and a bioinspired Prins reaction/ether formation cascade cyclization to construct the 5/6/6/6/5 caged skeleton.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, 315010, China
| | - Chuanzhen Tan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, 315010, China
| | - Tianhao Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, 315010, China
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, 315010, China
| |
Collapse
|
8
|
Chen YL, Xiong LA, Ma LF, Fang L, Zhan ZJ. Natural product-derived ferroptosis mediators. PHYTOCHEMISTRY 2024; 219:114002. [PMID: 38286199 DOI: 10.1016/j.phytochem.2024.114002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
It has been 11 years since ferroptosis, a new mode of programmed cell death, was first proposed. Natural products are an important source of drug discovery. In the past five years, natural product-derived ferroptosis regulators have been discovered in an endless stream. Herein, 178 natural products discovered so far to trigger or resist ferroptosis are classified into 6 structural classes based on skeleton type, and the mechanisms of action that have been reported are elaborated upon. If pharmacodynamic data are sufficient, the structure and bioactivity relationship is also presented. This review will provide medicinal chemists with some effective ferroptosis regulators, which will promote the research of natural product-based treatment of ferroptosis-related diseases in the future.
Collapse
Affiliation(s)
- Yi-Li Chen
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Lin-An Xiong
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Lie-Feng Ma
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Luo Fang
- Department of Pharmacy, Zhejiang Cancer Hospital, PR China.
| | - Zha-Jun Zhan
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China.
| |
Collapse
|