1
|
Derrick CJ, Eley L, Alqahtani A, Henderson DJ, Chaudhry B. Zebrafish arterial valve development occurs through direct differentiation of second heart field progenitors. Cardiovasc Res 2025; 121:157-173. [PMID: 39460530 PMCID: PMC11998914 DOI: 10.1093/cvr/cvae230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/03/2024] [Accepted: 09/15/2024] [Indexed: 10/28/2024] Open
Abstract
AIMS Bicuspid aortic valve (BAV) is the most common congenital heart defect, affecting at least 2% of the population. The embryonic origins of BAV remain poorly understood, with few assays for validating patient variants, limiting the identification of causative genes for BAV. In both human and mouse, the left and right leaflets of the arterial valves arise from the outflow tract cushions, with interstitial cells originating from neural crest cells and the overlying endocardium through endothelial-to-mesenchymal transition (EndoMT). In contrast, an EndoMT-independent mechanism of direct differentiation of cardiac progenitors from the second heart field (SHF) is responsible for the formation of the anterior and posterior leaflets. Defects in either of these developmental mechanisms can result in BAV. Although zebrafish have been suggested as a model for human variant testing, their naturally bicuspid arterial valve has not been considered suitable for understanding human arterial valve development. Here, we have set out to investigate to what extent the processes involved in arterial valve development are conserved in zebrafish and, ultimately, whether functional testing of BAV variants could be carried out. METHODS AND RESULTS Using a combination of live imaging, immunohistochemistry, and Cre-mediated lineage tracing, we show that the zebrafish arterial valve primordia develop directly from SHF progenitors with no contribution from EndoMT or neural crest, in keeping with the human and mouse anterior and posterior leaflets. Moreover, once formed, these primordia share common subsequent developmental events with all three aortic valve leaflets. CONCLUSION Our work highlights a conserved ancestral mechanism of arterial valve leaflet formation from the SHF and identifies that development of the arterial valve is distinct from that of the atrioventricular valve in zebrafish. Crucially, this confirms the utility of zebrafish for understanding the development of specific BAV subtypes and arterial valve dysplasia, offering potential for high-throughput variant testing.
Collapse
Affiliation(s)
- Christopher J Derrick
- International Centre for Life, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Lorraine Eley
- International Centre for Life, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Ahlam Alqahtani
- International Centre for Life, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Deborah J Henderson
- International Centre for Life, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Bill Chaudhry
- International Centre for Life, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| |
Collapse
|
2
|
Zhao W, Li B, Hao J, Sun R, He P, Lv H, He M, Shen J, Han Y. Therapeutic potential of natural products and underlying targets for the treatment of aortic aneurysm. Pharmacol Ther 2024; 259:108652. [PMID: 38657777 DOI: 10.1016/j.pharmthera.2024.108652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/22/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Aortic aneurysm is a vascular disease characterized by irreversible vasodilatation that can lead to dissection and rupture of the aortic aneurysm, a life-threatening condition. Thoracic aortic aneurysm (TAA) and abdominal aortic aneurysm (AAA) are two main types. The typical treatments for aortic aneurysms are open surgery and endovascular aortic repair, which are only indicated for more severe patients. Most patients with aneurysms have an insidious onset and slow progression, and there are no effective drugs to treat this stage. The inability of current animal models to perfectly simulate all the pathophysiological states of human aneurysms may be the key to this issue. Therefore, elucidating the molecular mechanisms of this disease, finding new therapeutic targets, and developing effective drugs to inhibit the development of aneurysms are the main issues of current research. Natural products have been applied for thousands of years to treat cardiovascular disease (CVD) in China and other Asian countries. In recent years, natural products have combined multi-omics, computational biology, and integrated pharmacology to accurately analyze drug components and targets. Therefore, the multi-component and multi-target complexity of natural products have made them a potentially ideal treatment for multifactorial diseases such as aortic aneurysms. Natural products have regained popularity worldwide. This review provides an overview of the known natural products for the treatment of TAA and AAA and searches for potential cardiovascular-targeted natural products that may treat TAA and AAA based on various cellular molecular mechanisms associated with aneurysm development.
Collapse
Affiliation(s)
- Wenwen Zhao
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China.
| | - Bufan Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Jinjun Hao
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Ruochen Sun
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Peng He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Hongyu Lv
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Mou He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Jie Shen
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Yantao Han
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
3
|
Akam-Baxter EA, Bergemann D, Ridley SJ, To S, Andrea B, Moon B, Ma H, Zhou Y, Aguirre A, Caravan P, Gonzalez-Rosa JM, Sosnovik DE. Dynamics of collagen oxidation and cross linking in regenerating and irreversibly infarcted myocardium. Nat Commun 2024; 15:4648. [PMID: 38858347 PMCID: PMC11164919 DOI: 10.1038/s41467-024-48604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/29/2024] [Indexed: 06/12/2024] Open
Abstract
In mammalian hearts myocardial infarction produces a permanent collagen-rich scar. Conversely, in zebrafish a collagen-rich scar forms but is completely resorbed as the myocardium regenerates. The formation of cross-links in collagen hinders its degradation but cross-linking has not been well characterized in zebrafish hearts. Here, a library of fluorescent probes to quantify collagen oxidation, the first step in collagen cross-link (CCL) formation, was developed. Myocardial injury in mice or zebrafish resulted in similar dynamics of collagen oxidation in the myocardium in the first month after injury. However, during this time, mature CCLs such as pyridinoline and deoxypyridinoline developed in the murine infarcts but not in the zebrafish hearts. High levels of newly oxidized collagen were still seen in murine scars with mature CCLs. These data suggest that fibrogenesis remains dynamic, even in mature scars, and that the absence of mature CCLs in zebrafish hearts may facilitate their ability to regenerate.
Collapse
Affiliation(s)
- Eman A Akam-Baxter
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, MA, USA.
| | - David Bergemann
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sterling J Ridley
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Samantha To
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Brittany Andrea
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Brianna Moon
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hua Ma
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yirong Zhou
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Aaron Aguirre
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter Caravan
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, MA, USA
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Juan Manuel Gonzalez-Rosa
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Biology Department, Boston College, Chestnut Hill, USA
| | - David E Sosnovik
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, MA, USA
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Lai ZY, Yang CC, Chen PH, Chen WC, Lai TY, Lu GY, Yang CY, Wang KY, Liu WC, Chen YC, Liu LYM, Chuang YJ. Syndecan-4 is required for early-stage repair responses during zebrafish heart regeneration. Mol Biol Rep 2024; 51:604. [PMID: 38700644 PMCID: PMC11068835 DOI: 10.1007/s11033-024-09531-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/08/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND The healing process after a myocardial infarction (MI) in humans involves complex events that replace damaged tissue with a fibrotic scar. The affected cardiac tissue may lose its function permanently. In contrast, zebrafish display a remarkable capacity for scar-free heart regeneration. Previous studies have revealed that syndecan-4 (SDC4) regulates inflammatory response and fibroblast activity following cardiac injury in higher vertebrates. However, whether and how Sdc4 regulates heart regeneration in highly regenerative zebrafish remains unknown. METHODS AND RESULTS This study showed that sdc4 expression was differentially regulated during zebrafish heart regeneration by transcriptional analysis. Specifically, sdc4 expression increased rapidly and transiently in the early regeneration phase upon ventricular cryoinjury. Moreover, the knockdown of sdc4 led to a significant reduction in extracellular matrix protein deposition, immune cell accumulation, and cell proliferation at the lesion site. The expression of tgfb1a and col1a1a, as well as the protein expression of Fibronectin, were all down-regulated under sdc4 knockdown. In addition, we verified that sdc4 expression was required for cardiac repair in zebrafish via in vivo electrocardiogram analysis. Loss of sdc4 expression caused an apparent pathological Q wave and ST elevation, which are signs of human MI patients. CONCLUSIONS Our findings support that Sdc4 is required to mediate pleiotropic repair responses in the early stage of zebrafish heart regeneration.
Collapse
Grants
- MOST 110-2311-B-007-005-MY3 Ministry of Science and Technology, Taiwan
- MOST 110-2311-B-007-005-MY3 Ministry of Science and Technology, Taiwan
- MOST 110-2311-B-007-005-MY3 Ministry of Science and Technology, Taiwan
- MOST 110-2311-B-007-005-MY3 Ministry of Science and Technology, Taiwan
- MOST 110-2311-B-007-005-MY3 Ministry of Science and Technology, Taiwan
- MOST 110-2311-B-007-005-MY3 Ministry of Science and Technology, Taiwan
- MOST 110-2311-B-007-005-MY3 Ministry of Science and Technology, Taiwan
- MOST 110-2311-B-007-005-MY3 Ministry of Science and Technology, Taiwan
- MOST 110-2311-B-007-005-MY3 Ministry of Science and Technology, Taiwan
- MOST 110-2311-B-007-005-MY3 Ministry of Science and Technology, Taiwan
- MOST 110-2311-B-007-005-MY3 Ministry of Science and Technology, Taiwan
- MOST 110-2311-B-007-005-MY3 Ministry of Science and Technology, Taiwan
Collapse
Affiliation(s)
- Zih-Yin Lai
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
| | - Chung-Chi Yang
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
- Division of Cardiovascular Medicine, Taoyuan Armed Forces General Hospital, Taoyuan City, 325208, Taiwan, ROC
- Cardiovascular Division, Tri-Service General Hospital, National Defense Medical Center, Taipei City, 114201, Taiwan, ROC
| | - Po-Hsun Chen
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
| | - Wei-Chen Chen
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
| | - Ting-Yu Lai
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
| | - Guan-Yun Lu
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
| | - Chiao-Yu Yang
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
| | - Ko-Ying Wang
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
| | - Wei-Cen Liu
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
| | - Yu-Chieh Chen
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
| | - Lawrence Yu-Min Liu
- Department of Internal Medicine, Division of Cardiology, Hsinchu MacKay Memorial Hospital, Hsinchu, 300044, Taiwan, ROC.
- Department of Medicine, MacKay Medical College, New Taipei City, 252005, Taiwan, ROC.
| | - Yung-Jen Chuang
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC.
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC.
| |
Collapse
|
5
|
Mariano CG, de Oliveira VC, Ambrósio CE. Gene editing in small and large animals for translational medicine: a review. Anim Reprod 2024; 21:e20230089. [PMID: 38628493 PMCID: PMC11019828 DOI: 10.1590/1984-3143-ar2023-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/16/2024] [Indexed: 04/19/2024] Open
Abstract
The CRISPR/Cas9 system is a simpler and more versatile method compared to other engineered nucleases such as Zinc Finger Nucleases (ZFNs) and Transcription Activator-Like Effector Nucleases (TALENs), and since its discovery, the efficiency of CRISPR-based genome editing has increased to the point that multiple and different types of edits can be made simultaneously. These advances in gene editing have revolutionized biotechnology by enabling precise genome editing with greater simplicity and efficacy than ever before. This tool has been successfully applied to a wide range of animal species, including cattle, pigs, dogs, and other small animals. Engineered nucleases cut the genome at specific target positions, triggering the cell's mechanisms to repair the damage and introduce a mutation to a specific genomic site. This review discusses novel genome-based CRISPR/Cas9 editing tools, methods developed to improve efficiency and specificity, the use of gene-editing on animal models and translational medicine, and the main challenges and limitations of CRISPR-based gene-editing approaches.
Collapse
Affiliation(s)
- Clésio Gomes Mariano
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo – USP, Pirassununga, SP, Brasil
| | - Vanessa Cristina de Oliveira
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo – USP, Pirassununga, SP, Brasil
| | - Carlos Eduardo Ambrósio
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo – USP, Pirassununga, SP, Brasil
| |
Collapse
|
6
|
Zhang J, Liang Y, Zeng W, Gao X, Wang D, Mai C, Lin Z, Zhao H, Li X. Inducing aortic aneurysm/dissection in zebrafish: evaluating the efficacy of β-Aminopropionic Nitrile as a model. Anim Cells Syst (Seoul) 2024; 28:84-92. [PMID: 38440122 PMCID: PMC10911251 DOI: 10.1080/19768354.2024.2322055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/17/2024] [Indexed: 03/06/2024] Open
Abstract
Aortic aneurysm/dissection (AAD) poses a life-threatening cardiovascular emergency with complex mechanisms and a notably high mortality rate. Zebrafish (Danio rerio) serve as valuable models for AAD due to the conservation of their three-layered arterial structure and genome with that of humans. However, the existing studies have predominantly focused on larval zebrafish, leaving a gap in our understanding of adult zebrafish. In this study, we utilized β-Aminopropionic Nitrile (BAPN) impregnation to induce AAD in both larval and adult zebrafish. Following induction, larval zebrafish exhibited a 28% widening of the dorsal aortic diameter (p < 0.0004, n = 10) and aortic arch malformations, with a high malformation rate of 75% (6/8). Conversely, adult zebrafish showed a 41.67% (5/12) mortality rate 22 days post-induction. At this time point, the dorsal aortic area had expanded by 2.46 times (p < 0.009), and the vessel wall demonstrated significant thickening (8.22 ± 2.23 μM vs. 26.38 ± 10.74 μM, p < 0.05). Pathological analysis revealed disruptions in the smooth muscle layer, contributing to a 58.33% aneurysm rate. Moreover, the expression levels of acta2, tagln, cnn1a, and cnn1b were decreased, indicating a weakened contractile phenotype. Transcriptome sequencing showed a significant overlap between the molecular features of zebrafish tissues post-BAPN treatment and those of AAD patients. Our findings present a straightforward and practical method for generating AAD models in both larval and adult zebrafish using BAPN.
Collapse
Affiliation(s)
- Jiarui Zhang
- School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
- Department of Emergency Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People’s Republic of China
| | - Yaowen Liang
- Department of Emergency Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People’s Republic of China
- Shantou University Medical College, Shantou, People’s Republic of China
| | - Weiyue Zeng
- School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
- Department of Emergency Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People’s Republic of China
| | - Xiaoyan Gao
- School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
- Department of Emergency Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People’s Republic of China
| | - Dingchen Wang
- School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
- Department of Emergency Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People’s Republic of China
| | - Cong Mai
- School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
- Department of Emergency Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People’s Republic of China
| | - Zhuoheng Lin
- Department of Emergency Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People’s Republic of China
| | - Haishan Zhao
- Department of Emergency Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People’s Republic of China
| | - Xin Li
- Department of Emergency Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
7
|
Schindler M, Endlich N. Zebrafish as a model for podocyte research. Am J Physiol Renal Physiol 2024; 326:F369-F381. [PMID: 38205541 DOI: 10.1152/ajprenal.00335.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/25/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Podocytes, specialized postmitotic cells, are central players in various kidney-related diseases. Zebrafish have become a valuable model system for studying podocyte biology because they are genetically easy to manipulate, transparent, and their glomerular structure is similar to that of mammals. This review provides an overview of the knowledge of podocyte biology in zebrafish larvae, with particular focus on their essential contribution to understanding the mechanisms that underlie kidney diseases as well as supporting drug development. In addition, special attention is given to advances in live-imaging techniques allowing the observation of dynamic processes, including podocyte motility, podocyte process behavior, and glomerulus maturation. The review further addresses the functional aspects of podocytes in zebrafish larvae. This includes topics such as glomerular filtration, ultrastructural analyses, and evaluation of podocyte response to nephrotoxic insults. Studies presented in this context have provided important insights into the maintenance and resistance of the glomerular filtration barrier in zebrafish larvae and explored the potential transferability of these findings to mammals such as mice, rats, and most importantly, humans. The recent ability to identify potential therapeutic targets represents a promising new way to identify drugs that could effectively treat podocyte-associated glomerulopathies in humans. In summary, this review gives an overview about the importance of zebrafish as a model for podocyte-related disease and targeted drug development. It also highlights the key role of advanced imaging techniques in transparent zebrafish larvae, improving our understanding of glomerular diseases and the significant potential for translation of these findings to humans.
Collapse
Affiliation(s)
- Maximilian Schindler
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
8
|
Yang F, Teng J, Liu J, Yu D, Gao P, Yu P, Jiang Q, Xu Y, Xia W. Texture maintenance and degradation mechanism of ice-stored grass carp (Ctenopharyngodon idella): A scope of intramuscular connective tissue. Food Chem 2024; 432:137256. [PMID: 37643518 DOI: 10.1016/j.foodchem.2023.137256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Although intramuscular connective tissue (IMCT) is low in fish, its impact on texture cannot be ignored due to its special location. Therefore, this study was aimed to investigate the contribution of IMCT degradation to fish softening and its mechanism induced by endogenous proteases. Results showed that IMCT honeycomb-like structure collapsed entirely on the 10th day of ice storage, along with a decrease of shear force by 36.5%. Meanwhile, IMCT and myofibrils (MF) degradation accelerated softening by 25.1% and 15.3% during 10 days of ice storage, respectively. Next, IMCT deterioration was indicated to be highly correlated with decorin degradation (0.956**), followed by elastin (0.928**) and collagen (0.904**). Ulteriorly, endogenous collagenase was shown to degrade IMCT crucial components, while endogenous cathepsins had little effect. In conclusion, this study confirmed that IMCT played an essential role in maintaining fish texture and was mainly degraded by endogenous collagenase.
Collapse
Affiliation(s)
- Fang Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jialu Teng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jixuan Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Pei Gao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Peipei Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixing Jiang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Yanshun Xu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wenshui Xia
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
9
|
Wang Y, Panicker IS, Anesi J, Sargisson O, Atchison B, Habenicht AJR. Animal Models, Pathogenesis, and Potential Treatment of Thoracic Aortic Aneurysm. Int J Mol Sci 2024; 25:901. [PMID: 38255976 PMCID: PMC10815651 DOI: 10.3390/ijms25020901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Thoracic aortic aneurysm (TAA) has a prevalence of 0.16-0.34% and an incidence of 7.6 per 100,000 person-years, accounting for 1-2% of all deaths in Western countries. Currently, no effective pharmacological therapies have been identified to slow TAA development and prevent TAA rupture. Large TAAs are treated with open surgical repair and less invasive thoracic endovascular aortic repair, both of which have high perioperative mortality risk. Therefore, there is an urgent medical need to identify the cellular and molecular mechanisms underlying TAA development and rupture to develop new therapies. In this review, we summarize animal TAA models including recent developments in porcine and zebrafish models: porcine models can assess new therapeutic devices or intervention strategies in a large mammal and zebrafish models can employ large-scale small-molecule suppressor screening in microwells. The second part of the review covers current views of TAA pathogenesis, derived from recent studies using these animal models, with a focus on the roles of the transforming growth factor-beta (TGFβ) pathway and the vascular smooth muscle cell (VSMC)-elastin-contractile unit. The last part discusses TAA treatment options as they emerge from recent preclinical studies.
Collapse
Affiliation(s)
- Yutang Wang
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (I.S.P.)
| | - Indu S. Panicker
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (I.S.P.)
| | - Jack Anesi
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (I.S.P.)
| | - Owen Sargisson
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (I.S.P.)
| | - Benjamin Atchison
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (I.S.P.)
| | - Andreas J. R. Habenicht
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), 80336 Munich, Germany;
| |
Collapse
|
10
|
Sun J, Wu Q, Wei Y, Zhao W, Lv H, Peng W, Zheng J, Chen Y, Wang Z, Pan Y, Xue Y. Agaricus bisporus-Derived Glucosamine Hydrochloride Regulates VEGF through BMP Signaling to Promote Zebrafish Vascular Development and Impairment Repair. Life (Basel) 2023; 13:2330. [PMID: 38137931 PMCID: PMC10745105 DOI: 10.3390/life13122330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Glucosamine hydrochloride (GAH) is a natural component of glycoproteins present in almost all human tissues and participates in the construction of human tissues and cell membranes. GAH has a wide range of biological activities, particularly in anti-inflammatory and osteogenic damage repair. At present, little is known about how GAH functions in angiogenesis. To determine the role of GAH on vascular development and impairment repair, we used the inhibitors VRI, DMH1, and dorsomorphin (DM) to construct vascular-impaired models in Tg(kdrl: mCherry) transgenic zebrafish. We then treated with GAH and measured its repair effects on vascular impairment through fluorescence intensity, mRNA, and protein expression levels of vascular-specific markers. Our results indicate that GAH promotes vascular development and repairs impairment by regulating the vascular endothelial growth factor (VEGF) signaling pathway through modulation of bone morphogenetic protein (BMP) signaling. This study provides an experimental basis for the development of GAH as a drug to repair vascular diseases.
Collapse
Affiliation(s)
- Jiarui Sun
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China; (J.S.); (Q.W.); (Y.W.); (W.Z.); (H.L.); (W.P.); (J.Z.); (Y.C.); (Z.W.)
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Qici Wu
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China; (J.S.); (Q.W.); (Y.W.); (W.Z.); (H.L.); (W.P.); (J.Z.); (Y.C.); (Z.W.)
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Yuxin Wei
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China; (J.S.); (Q.W.); (Y.W.); (W.Z.); (H.L.); (W.P.); (J.Z.); (Y.C.); (Z.W.)
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Wei Zhao
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China; (J.S.); (Q.W.); (Y.W.); (W.Z.); (H.L.); (W.P.); (J.Z.); (Y.C.); (Z.W.)
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Haokun Lv
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China; (J.S.); (Q.W.); (Y.W.); (W.Z.); (H.L.); (W.P.); (J.Z.); (Y.C.); (Z.W.)
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Wei Peng
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China; (J.S.); (Q.W.); (Y.W.); (W.Z.); (H.L.); (W.P.); (J.Z.); (Y.C.); (Z.W.)
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Jiayi Zheng
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China; (J.S.); (Q.W.); (Y.W.); (W.Z.); (H.L.); (W.P.); (J.Z.); (Y.C.); (Z.W.)
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Yixuan Chen
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China; (J.S.); (Q.W.); (Y.W.); (W.Z.); (H.L.); (W.P.); (J.Z.); (Y.C.); (Z.W.)
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Zhengsen Wang
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China; (J.S.); (Q.W.); (Y.W.); (W.Z.); (H.L.); (W.P.); (J.Z.); (Y.C.); (Z.W.)
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Yutian Pan
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China; (J.S.); (Q.W.); (Y.W.); (W.Z.); (H.L.); (W.P.); (J.Z.); (Y.C.); (Z.W.)
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Yu Xue
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China; (J.S.); (Q.W.); (Y.W.); (W.Z.); (H.L.); (W.P.); (J.Z.); (Y.C.); (Z.W.)
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| |
Collapse
|
11
|
Li CJ, Zhai RR, Zhu XY, Guo ZF, Yang H. Discovery of effective combination from Renshen-Fuzi herbal pair against heart failure by spectrum-effect relationship analysis and zebrafish models. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116832. [PMID: 37352946 DOI: 10.1016/j.jep.2023.116832] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/19/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional herbal pair Ginseng Radix et Rhizoma (roots and rhizomes of Panax ginseng C.A. Mey, Renshen in Chinese) and Aconiti Lateralis Radix Praeparata (lateral roots of Aconitum carmichaelii Debeaux, Fuzi in Chinese), composition of two traditional Chinese medicinal herbs, has been widely used in traditional Chinese medicine formula, in which Shenfu decoction has been used clinically in China for the treatment of heart failure at present. AIM OF THE STUDY Although the ginsenosides and aconite alkaloids have been proven as the essential bioactive components in Renshen-Fuzi herbal pair, the exact composition of effective components to combat heart failure are still unclear. Therefore, spectrum-effect relationship analysis was performed to reveal its effective combination for anti-heart failure effect. MATERIALS AND METHODS Firstly, the chemical constituents of Renshen-Fuzi herbal pair were identified using ultra high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS). The 39 major compounds in Renshen-Fuzi with five different compatibility ratios were simultaneously quantified using ultra high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UHPLC-QQQ MS/MS). Subsequently, zebrafish models induced by verapamil hydrochloride were constructed and four heart failure-related indexes were selected for pharmacodynamic evaluation of Renshen-Fuzi. To analyze the spectrum-effect relationships, partial least squares regression (PLSR) models were established among the contents of 39 compounds in Renshen-Fuzi with each pharmacodynamic index. According to the contribution of each compound to the whole efficacy, 12 compounds were finally screened out as the effective combination. RESULTS A total of 157 chemical compounds of Renshen-Fuzi herbal pair were identified, in which 39 components were simultaneously determined. The pharmacological effects indicated that Renshen-Fuzi with 1:2 ratio exhibited the best effect based on zebrafish model, which could improve cardiac output and blood flow velocity and inhibit pericardial enlargement and venous blood stasis significantly. A combination of 9 ginsenosides and 3 aconite alkaloids based on a component-efficacy modeling by PLSR was screened, and exerted approximately equivalent pharmacological effects compared with Renshen-Fuzi herbal pair. CONCLUSIONS Our findings elucidated the effective combination of Renshen-Fuzi herbal pair that has been used in clinic for the treatment of heart failure, which could also promote the pharmacological research and quality control of their formula such as Shenfu decoction.
Collapse
Affiliation(s)
- Chu-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Rong-Rong Zhai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao-Yu Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Zi-Fan Guo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
12
|
Akam EA, Bergemann D, Ridley SJ, To S, Andrea B, Moon B, Ma H, Zhou Y, Aguirre A, Caravan P, Gonzalez-Rosa JM, Sosnovik DE. Dynamics of Collagen Oxidation and Cross Linking in Regenerating and Irreversibly Infarcted Myocardium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.549713. [PMID: 37546963 PMCID: PMC10402057 DOI: 10.1101/2023.07.25.549713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
In mammalian hearts myocardial infarction produces a permanent collagen-rich scar. Conversely, in zebrafish a collagen-rich scar forms but is completely resorbed as the myocardium regenerates. The formation of cross-links in collagen hinders its degradation but cross-linking has not been well characterized in zebrafish hearts. Here, a library of fluorescent probes to quantify collagen oxidation, the first step in collagen cross-link (CCL) formation, was developed. Myocardial injury in mice or zebrafish resulted in similar dynamics of collagen oxidation in the myocardium in the first month after injury. However, during this time, mature CCLs such as pyridinoline and deoxypyridinoline developed in the murine infarcts but not in the zebrafish hearts. High levels of newly oxidized collagen were still seen in murine scars with mature CCLs. These data suggest that fibrogenesis remains dynamic, even in mature scars, and that the absence of mature CCLs in zebrafish hearts may facilitate their ability to regenerate.
Collapse
|
13
|
Hoareau M, El Kholti N, Debret R, Lambert E. Characterization of the Zebrafish Elastin a ( elnasa12235) Mutant: A New Model of Elastinopathy Leading to Heart Valve Defects. Cells 2023; 12:1436. [PMID: 37408270 DOI: 10.3390/cells12101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 07/07/2023] Open
Abstract
Elastic fibers are extracellular macromolecules that provide resilience and elastic recoil to elastic tissues and organs in vertebrates. They are composed of an elastin core surrounded by a mantle of fibrillin-rich microfibrils and are essentially produced during a relatively short period around birth in mammals. Thus, elastic fibers have to resist many physical, chemical, and enzymatic constraints occurring throughout their lives, and their high stability can be attributed to the elastin protein. Various pathologies, called elastinopathies, are linked to an elastin deficiency, such as non-syndromic supravalvular aortic stenosis (SVAS), Williams-Beuren syndrome (WBS), and autosomal dominant cutis laxa (ADCL). To understand these diseases, as well as the aging process related to elastic fiber degradation, and to test potential therapeutic molecules in order to compensate for elastin impairments, different animal models have been proposed. Considering the many advantages of using zebrafish, we here characterize a zebrafish mutant for the elastin a paralog (elnasa12235) with a specific focus on the cardiovascular system and highlight premature heart valve defects at the adult stage.
Collapse
Affiliation(s)
- Marie Hoareau
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Institut de Biologie et Chimie des Protéines, Université de Lyon 1, 7 Passage du Vercors, CEDEX 07, F-69367 Lyon, France
| | - Naïma El Kholti
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Institut de Biologie et Chimie des Protéines, Université de Lyon 1, 7 Passage du Vercors, CEDEX 07, F-69367 Lyon, France
| | - Romain Debret
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Institut de Biologie et Chimie des Protéines, Université de Lyon 1, 7 Passage du Vercors, CEDEX 07, F-69367 Lyon, France
| | - Elise Lambert
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Institut de Biologie et Chimie des Protéines, Université de Lyon 1, 7 Passage du Vercors, CEDEX 07, F-69367 Lyon, France
| |
Collapse
|
14
|
Kawaguchi N, Nakanishi T. Animal Disease Models and Patient-iPS-Cell-Derived In Vitro Disease Models for Cardiovascular Biology-How Close to Disease? BIOLOGY 2023; 12:468. [PMID: 36979160 PMCID: PMC10045735 DOI: 10.3390/biology12030468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023]
Abstract
Currently, zebrafish, rodents, canines, and pigs are the primary disease models used in cardiovascular research. In general, larger animals have more physiological similarities to humans, making better disease models. However, they can have restricted or limited use because they are difficult to handle and maintain. Moreover, animal welfare laws regulate the use of experimental animals. Different species have different mechanisms of disease onset. Organs in each animal species have different characteristics depending on their evolutionary history and living environment. For example, mice have higher heart rates than humans. Nonetheless, preclinical studies have used animals to evaluate the safety and efficacy of human drugs because no other complementary method exists. Hence, we need to evaluate the similarities and differences in disease mechanisms between humans and experimental animals. The translation of animal data to humans contributes to eliminating the gap between these two. In vitro disease models have been used as another alternative for human disease models since the discovery of induced pluripotent stem cells (iPSCs). Human cardiomyocytes have been generated from patient-derived iPSCs, which are genetically identical to the derived patients. Researchers have attempted to develop in vivo mimicking 3D culture systems. In this review, we explore the possible uses of animal disease models, iPSC-derived in vitro disease models, humanized animals, and the recent challenges of machine learning. The combination of these methods will make disease models more similar to human disease.
Collapse
Affiliation(s)
- Nanako Kawaguchi
- Department of Pediatric Cardiology and Adult Congenital Cardiology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan;
| | | |
Collapse
|
15
|
New Therapeutics Targeting Arterial Media Calcification: Friend or Foe for Bone Mineralization? Metabolites 2022; 12:metabo12040327. [PMID: 35448514 PMCID: PMC9027727 DOI: 10.3390/metabo12040327] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 01/27/2023] Open
Abstract
The presence of arterial media calcification, a highly complex and multifactorial disease, puts patients at high risk for developing serious cardiovascular consequences and mortality. Despite the numerous insights into the mechanisms underlying this pathological mineralization process, there is still a lack of effective treatment therapies interfering with the calcification process in the vessel wall. Current anti-calcifying therapeutics may induce detrimental side effects at the level of the bone, as arterial media calcification is regulated in a molecular and cellular similar way as physiological bone mineralization. This especially is a complication in patients with chronic kidney disease and diabetes, who are the prime targets of this pathology, as they already suffer from a disturbed mineral and bone metabolism. This review outlines recent treatment strategies tackling arterial calcification, underlining their potential to influence the bone mineralization process, including targeting vascular cell transdifferentiation, calcification inhibitors and stimulators, vascular smooth muscle cell (VSMC) death and oxidative stress: are they a friend or foe? Furthermore, this review highlights nutritional additives and a targeted, local approach as alternative strategies to combat arterial media calcification. Paving a way for the development of effective and more precise therapeutic approaches without inducing osseous side effects is crucial for this highly prevalent and mortal disease.
Collapse
|