1
|
García-Cruz VM, Arias C. Palmitic Acid Induces Posttranslational Modifications of Tau Protein in Alzheimer's Disease-Related Epitopes and Increases Intraneuronal Tau Levels. Mol Neurobiol 2024; 61:5129-5141. [PMID: 38167971 PMCID: PMC11249523 DOI: 10.1007/s12035-023-03886-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
Metabolic diseases derived from an unhealthy lifestyle have been linked with an increased risk for developing cognitive impairment and even Alzheimer's disease (AD). Although high consumption of saturated fatty acids such as palmitic acid (PA) has been associated with the development of obesity and type II diabetes, the mechanisms connecting elevated neuronal PA levels and increased AD marker expression remain unclear. Among other effects, PA induces insulin resistance, increases intracellular calcium and reactive oxygen species (ROS) production, and reduces the NAD+/NADH ratio, resulting in decreased activity of the deacetylase Sirtuin1 (SIRT1) in neurons. These mechanisms may affect signaling pathways that impact the posttranslational modifications (PTMs) of the tau protein. To analyze the role played by PA in inducing the phosphorylation and acetylation of tau, we examined PTM changes in human tau in differentiated neurons from human neuroblastoma cells. We found changes in the phosphorylation state of several AD-related sites, namely, S199/202 and S214, that were mediated by a mechanism associated with the dysregulated activity of the kinases GSK3β and mTOR. PA also increased the acetylation of residue K280 and elevated total tau level after long exposure time. These findings provide information about the mechanisms by which saturated fatty acids cause tau PTMs that are similar to those observed in association with AD biochemical changes.
Collapse
Affiliation(s)
- Valeria Melissa García-Cruz
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, 04510, México
| | - Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, 04510, México.
| |
Collapse
|
2
|
Zhong H, Liu H, Liu H. Molecular Mechanism of Tau Misfolding and Aggregation: Insights from Molecular Dynamics Simulation. Curr Med Chem 2024; 31:2855-2871. [PMID: 37031392 DOI: 10.2174/0929867330666230409145247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/01/2023] [Accepted: 02/27/2023] [Indexed: 04/10/2023]
Abstract
Tau dysfunction has a close association with many neurodegenerative diseases, which are collectively referred to as tauopathies. Neurofibrillary tangles (NFTs) formed by misfolding and aggregation of tau are the main pathological process of tauopathy. Therefore, uncovering the misfolding and aggregation mechanism of tau protein will help to reveal the pathogenic mechanism of tauopathies. Molecular dynamics (MD) simulation is well suited for studying the dynamic process of protein structure changes. It provides detailed information on protein structure changes over time at the atomic resolution. At the same time, MD simulation can also simulate various conditions conveniently. Based on these advantages, MD simulations are widely used to study conformational transition problems such as protein misfolding and aggregation. Here, we summarized the structural features of tau, the factors affecting its misfolding and aggregation, and the applications of MD simulations in the study of tau misfolding and aggregation.
Collapse
Affiliation(s)
- Haiyang Zhong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hongli Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Huanxiang Liu
- Faculty of Applied Science, Macao Polytechnic University, Macao, SAR, 999078, China
| |
Collapse
|
3
|
Shah SJA, Zhang Q, Guo J, Liu H, Liu H, Villà-Freixa J. Identification of Aggregation Mechanism of Acetylated PHF6* and PHF6 Tau Peptides Based on Molecular Dynamics Simulations and Markov State Modeling. ACS Chem Neurosci 2023; 14:3959-3971. [PMID: 37830541 DOI: 10.1021/acschemneuro.3c00578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
The microtubule-associated protein tau (MAPT) has a critical role in the development and preservation of the nervous system. However, tau's dysfunction and accumulation in the human brain can lead to several neurodegenerative diseases, such as Alzheimer's disease, Down's syndrome, and frontotemporal dementia. The microtubule binding (MTB) domain plays a significant, important role in determining the tau's pathophysiology, as the core of paired helical filaments PHF6* (275VQIINK280) and PHF6 (306VQIVYK311) of R2 and R3 repeat units, respectively, are formed in this region, which promotes tau aggregation. Post-translational modifications, and in particular lysine acetylation at K280 of PHF6* and K311 of PHF6, have been previously established to promote tau misfolding and aggregation. However, the exact aggregation mechanism is not known. In this study, we established an atomic-level nucleation-extension mechanism of the separated aggregation of acetylated PHF6* and PHF6 hexapeptides, respectively, of tau. We show that the acetylation of the lysine residues promotes the formation of β-sheet enriched high-ordered oligomers. The Markov state model analysis of ac-PHF6* and ac-PHF6 aggregation revealed the formation of an antiparallel dimer nucleus which could be extended from both sides in a parallel manner to form mixed-oriented and high-ordered oligomers. Our study describes the detailed mechanism for acetylation-driven tau aggregation, which provides valuable insights into the effect of post-translation modification in altering the pathophysiology of tau hexapeptides.
Collapse
Affiliation(s)
| | - Qianqian Zhang
- Faculty of Applied Sciences, Macao Polytechnic University, 999078 Macao, SAR, China
| | - Jingjing Guo
- Faculty of Applied Sciences, Macao Polytechnic University, 999078 Macao, SAR, China
| | - Hongli Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, Jiangsu, China
| | - Huanxiang Liu
- Faculty of Applied Sciences, Macao Polytechnic University, 999078 Macao, SAR, China
| | - Jordi Villà-Freixa
- Departament de Biociències, Universitat de Vic─Universitat Central de Catalunya, 08500 Vic, Spain
- Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central (IRIS-CC), 08500 Vic, Spain
| |
Collapse
|
4
|
Park SJ, Kern N, Brown T, Lee J, Im W. CHARMM-GUI PDB Manipulator: Various PDB Structural Modifications for Biomolecular Modeling and Simulation. J Mol Biol 2023; 435:167995. [PMID: 37356910 PMCID: PMC10291205 DOI: 10.1016/j.jmb.2023.167995] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Molecular modeling and simulation play important roles in biomedical research as they provide molecular-level insight into the underlying mechanisms of biological functions that are difficult to elucidate only with experiments. CHARMM-GUI (https://charmm-gui.org) is a web-based cyberinfrastructure that is widely used to generate various molecular simulation system and input files and thus facilitates and standardizes the usage of common and advanced simulation techniques. In particular, PDB Manipulator provides various chemical modification options as the starting point for most input generation modules in CHARMM-GUI. Here, we discuss recent additions to PDB Manipulator, such as non-standard amino acids/RNA substitutions, ubiquitylation and SUMOylation, Lys/Arg post-translational modifications, lipidation, peptide stapling, and improved parameterization options of small molecules. These additional features are expected to make complex PDB modifications easy for biomolecular modeling and simulation.
Collapse
Affiliation(s)
- Sang-Jun Park
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Nathan Kern
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Turner Brown
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Jumin Lee
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA.
| |
Collapse
|
5
|
Walton-Raaby M, Woods R, Kalyaanamoorthy S. Investigating the Theranostic Potential of Graphene Quantum Dots in Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24119476. [PMID: 37298426 DOI: 10.3390/ijms24119476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/16/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Alzheimer's disease (AD) is one of the leading causes of death worldwide, with no definitive diagnosis or known cure. The aggregation of Tau protein into neurofibrillary tangles (NFTs), which contain straight filaments (SFs) and paired helical filaments (PHFs), is a major hallmark of AD. Graphene quantum dots (GQDs) are a type of nanomaterial that combat many of the small-molecule therapeutic challenges in AD and have shown promise in similar pathologies. In this study, two sizes of GQDs, GQD7 and GQD28, were docked to various forms of Tau monomers, SFs, and PHFs. From the favorable docked poses, we simulated each system for at least 300 ns and calculated the free energies of binding. We observed a clear preference for GQD28 in the PHF6 (306VQIVYK311) pathological hexapeptide region of monomeric Tau, while GQD7 targeted both the PHF6 and PHF6* (275VQIINK280) pathological hexapeptide regions. In SFs, GQD28 had a high affinity for a binding site that is available in AD but not in other common tauopathies, while GQD7 behaved promiscuously. In PHFs, GQD28 interacted strongly near the protofibril interface at the putative disaggregation site for epigallocatechin-3-gallate, and GQD7 largely interacted with PHF6. Our analyses revealed several key GQD binding sites that may be used for detecting, preventing, and disassembling the Tau aggregates in AD.
Collapse
Affiliation(s)
- Max Walton-Raaby
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Riley Woods
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | | |
Collapse
|